Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp')
-rw-r--r--extern/bullet2/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp466
1 files changed, 466 insertions, 0 deletions
diff --git a/extern/bullet2/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp b/extern/bullet2/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp
new file mode 100644
index 00000000000..b71ee03d042
--- /dev/null
+++ b/extern/bullet2/BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp
@@ -0,0 +1,466 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+//#define DISABLE_BVH
+
+#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
+#include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
+#include "LinearMath/btSerializer.h"
+
+///Bvh Concave triangle mesh is a static-triangle mesh shape with Bounding Volume Hierarchy optimization.
+///Uses an interface to access the triangles to allow for sharing graphics/physics triangles.
+btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression, bool buildBvh)
+:btTriangleMeshShape(meshInterface),
+m_bvh(0),
+m_triangleInfoMap(0),
+m_useQuantizedAabbCompression(useQuantizedAabbCompression),
+m_ownsBvh(false)
+{
+ m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
+ //construct bvh from meshInterface
+#ifndef DISABLE_BVH
+
+ if (buildBvh)
+ {
+ buildOptimizedBvh();
+ }
+
+#endif //DISABLE_BVH
+
+}
+
+btBvhTriangleMeshShape::btBvhTriangleMeshShape(btStridingMeshInterface* meshInterface, bool useQuantizedAabbCompression,const btVector3& bvhAabbMin,const btVector3& bvhAabbMax,bool buildBvh)
+:btTriangleMeshShape(meshInterface),
+m_bvh(0),
+m_triangleInfoMap(0),
+m_useQuantizedAabbCompression(useQuantizedAabbCompression),
+m_ownsBvh(false)
+{
+ m_shapeType = TRIANGLE_MESH_SHAPE_PROXYTYPE;
+ //construct bvh from meshInterface
+#ifndef DISABLE_BVH
+
+ if (buildBvh)
+ {
+ void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
+ m_bvh = new (mem) btOptimizedBvh();
+
+ m_bvh->build(meshInterface,m_useQuantizedAabbCompression,bvhAabbMin,bvhAabbMax);
+ m_ownsBvh = true;
+ }
+
+#endif //DISABLE_BVH
+
+}
+
+void btBvhTriangleMeshShape::partialRefitTree(const btVector3& aabbMin,const btVector3& aabbMax)
+{
+ m_bvh->refitPartial( m_meshInterface,aabbMin,aabbMax );
+
+ m_localAabbMin.setMin(aabbMin);
+ m_localAabbMax.setMax(aabbMax);
+}
+
+
+void btBvhTriangleMeshShape::refitTree(const btVector3& aabbMin,const btVector3& aabbMax)
+{
+ m_bvh->refit( m_meshInterface, aabbMin,aabbMax );
+
+ recalcLocalAabb();
+}
+
+btBvhTriangleMeshShape::~btBvhTriangleMeshShape()
+{
+ if (m_ownsBvh)
+ {
+ m_bvh->~btOptimizedBvh();
+ btAlignedFree(m_bvh);
+ }
+}
+
+void btBvhTriangleMeshShape::performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget)
+{
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ {
+ btStridingMeshInterface* m_meshInterface;
+ btTriangleCallback* m_callback;
+
+ MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
+ :m_meshInterface(meshInterface),
+ m_callback(callback)
+ {
+ }
+
+ virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
+ {
+ btVector3 m_triangle[3];
+ const unsigned char *vertexbase;
+ int numverts;
+ PHY_ScalarType type;
+ int stride;
+ const unsigned char *indexbase;
+ int indexstride;
+ int numfaces;
+ PHY_ScalarType indicestype;
+
+ m_meshInterface->getLockedReadOnlyVertexIndexBase(
+ &vertexbase,
+ numverts,
+ type,
+ stride,
+ &indexbase,
+ indexstride,
+ numfaces,
+ indicestype,
+ nodeSubPart);
+
+ unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
+ btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
+
+ const btVector3& meshScaling = m_meshInterface->getScaling();
+ for (int j=2;j>=0;j--)
+ {
+ int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
+
+ if (type == PHY_FLOAT)
+ {
+ float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
+
+ m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
+ }
+ else
+ {
+ double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
+
+ m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());
+ }
+ }
+
+ /* Perform ray vs. triangle collision here */
+ m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
+ m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
+ }
+ };
+
+ MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
+
+ m_bvh->reportRayOverlappingNodex(&myNodeCallback,raySource,rayTarget);
+}
+
+void btBvhTriangleMeshShape::performConvexcast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget, const btVector3& aabbMin, const btVector3& aabbMax)
+{
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ {
+ btStridingMeshInterface* m_meshInterface;
+ btTriangleCallback* m_callback;
+
+ MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
+ :m_meshInterface(meshInterface),
+ m_callback(callback)
+ {
+ }
+
+ virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
+ {
+ btVector3 m_triangle[3];
+ const unsigned char *vertexbase;
+ int numverts;
+ PHY_ScalarType type;
+ int stride;
+ const unsigned char *indexbase;
+ int indexstride;
+ int numfaces;
+ PHY_ScalarType indicestype;
+
+ m_meshInterface->getLockedReadOnlyVertexIndexBase(
+ &vertexbase,
+ numverts,
+ type,
+ stride,
+ &indexbase,
+ indexstride,
+ numfaces,
+ indicestype,
+ nodeSubPart);
+
+ unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
+ btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
+
+ const btVector3& meshScaling = m_meshInterface->getScaling();
+ for (int j=2;j>=0;j--)
+ {
+ int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
+
+ if (type == PHY_FLOAT)
+ {
+ float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
+
+ m_triangle[j] = btVector3(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ());
+ }
+ else
+ {
+ double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
+
+ m_triangle[j] = btVector3(btScalar(graphicsbase[0])*meshScaling.getX(),btScalar(graphicsbase[1])*meshScaling.getY(),btScalar(graphicsbase[2])*meshScaling.getZ());
+ }
+ }
+
+ /* Perform ray vs. triangle collision here */
+ m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
+ m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
+ }
+ };
+
+ MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
+
+ m_bvh->reportBoxCastOverlappingNodex (&myNodeCallback, raySource, rayTarget, aabbMin, aabbMax);
+}
+
+//perform bvh tree traversal and report overlapping triangles to 'callback'
+void btBvhTriangleMeshShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const
+{
+
+#ifdef DISABLE_BVH
+ //brute force traverse all triangles
+ btTriangleMeshShape::processAllTriangles(callback,aabbMin,aabbMax);
+#else
+
+ //first get all the nodes
+
+
+ struct MyNodeOverlapCallback : public btNodeOverlapCallback
+ {
+ btStridingMeshInterface* m_meshInterface;
+ btTriangleCallback* m_callback;
+ btVector3 m_triangle[3];
+
+
+ MyNodeOverlapCallback(btTriangleCallback* callback,btStridingMeshInterface* meshInterface)
+ :m_meshInterface(meshInterface),
+ m_callback(callback)
+ {
+ }
+
+ virtual void processNode(int nodeSubPart, int nodeTriangleIndex)
+ {
+ const unsigned char *vertexbase;
+ int numverts;
+ PHY_ScalarType type;
+ int stride;
+ const unsigned char *indexbase;
+ int indexstride;
+ int numfaces;
+ PHY_ScalarType indicestype;
+
+
+ m_meshInterface->getLockedReadOnlyVertexIndexBase(
+ &vertexbase,
+ numverts,
+ type,
+ stride,
+ &indexbase,
+ indexstride,
+ numfaces,
+ indicestype,
+ nodeSubPart);
+
+ unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride);
+ btAssert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT);
+
+ const btVector3& meshScaling = m_meshInterface->getScaling();
+ for (int j=2;j>=0;j--)
+ {
+
+ int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
+
+
+#ifdef DEBUG_TRIANGLE_MESH
+ printf("%d ,",graphicsindex);
+#endif //DEBUG_TRIANGLE_MESH
+ if (type == PHY_FLOAT)
+ {
+ float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
+
+ m_triangle[j] = btVector3(
+ graphicsbase[0]*meshScaling.getX(),
+ graphicsbase[1]*meshScaling.getY(),
+ graphicsbase[2]*meshScaling.getZ());
+ }
+ else
+ {
+ double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
+
+ m_triangle[j] = btVector3(
+ btScalar(graphicsbase[0])*meshScaling.getX(),
+ btScalar(graphicsbase[1])*meshScaling.getY(),
+ btScalar(graphicsbase[2])*meshScaling.getZ());
+ }
+#ifdef DEBUG_TRIANGLE_MESH
+ printf("triangle vertices:%f,%f,%f\n",triangle[j].x(),triangle[j].y(),triangle[j].z());
+#endif //DEBUG_TRIANGLE_MESH
+ }
+
+ m_callback->processTriangle(m_triangle,nodeSubPart,nodeTriangleIndex);
+ m_meshInterface->unLockReadOnlyVertexBase(nodeSubPart);
+ }
+
+ };
+
+ MyNodeOverlapCallback myNodeCallback(callback,m_meshInterface);
+
+ m_bvh->reportAabbOverlappingNodex(&myNodeCallback,aabbMin,aabbMax);
+
+
+#endif//DISABLE_BVH
+
+
+}
+
+void btBvhTriangleMeshShape::setLocalScaling(const btVector3& scaling)
+{
+ if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
+ {
+ btTriangleMeshShape::setLocalScaling(scaling);
+ buildOptimizedBvh();
+ }
+}
+
+void btBvhTriangleMeshShape::buildOptimizedBvh()
+{
+ if (m_ownsBvh)
+ {
+ m_bvh->~btOptimizedBvh();
+ btAlignedFree(m_bvh);
+ }
+ ///m_localAabbMin/m_localAabbMax is already re-calculated in btTriangleMeshShape. We could just scale aabb, but this needs some more work
+ void* mem = btAlignedAlloc(sizeof(btOptimizedBvh),16);
+ m_bvh = new(mem) btOptimizedBvh();
+ //rebuild the bvh...
+ m_bvh->build(m_meshInterface,m_useQuantizedAabbCompression,m_localAabbMin,m_localAabbMax);
+ m_ownsBvh = true;
+}
+
+void btBvhTriangleMeshShape::setOptimizedBvh(btOptimizedBvh* bvh, const btVector3& scaling)
+{
+ btAssert(!m_bvh);
+ btAssert(!m_ownsBvh);
+
+ m_bvh = bvh;
+ m_ownsBvh = false;
+ // update the scaling without rebuilding the bvh
+ if ((getLocalScaling() -scaling).length2() > SIMD_EPSILON)
+ {
+ btTriangleMeshShape::setLocalScaling(scaling);
+ }
+}
+
+
+
+///fills the dataBuffer and returns the struct name (and 0 on failure)
+const char* btBvhTriangleMeshShape::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btTriangleMeshShapeData* trimeshData = (btTriangleMeshShapeData*) dataBuffer;
+
+ btCollisionShape::serialize(&trimeshData->m_collisionShapeData,serializer);
+
+ m_meshInterface->serialize(&trimeshData->m_meshInterface, serializer);
+
+ trimeshData->m_collisionMargin = float(m_collisionMargin);
+
+
+
+ if (m_bvh && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_BVH))
+ {
+ void* chunk = serializer->findPointer(m_bvh);
+ if (chunk)
+ {
+#ifdef BT_USE_DOUBLE_PRECISION
+ trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)chunk;
+ trimeshData->m_quantizedFloatBvh = 0;
+#else
+ trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)chunk;
+ trimeshData->m_quantizedDoubleBvh= 0;
+#endif //BT_USE_DOUBLE_PRECISION
+ } else
+ {
+
+#ifdef BT_USE_DOUBLE_PRECISION
+ trimeshData->m_quantizedDoubleBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
+ trimeshData->m_quantizedFloatBvh = 0;
+#else
+ trimeshData->m_quantizedFloatBvh = (btQuantizedBvhData*)serializer->getUniquePointer(m_bvh);
+ trimeshData->m_quantizedDoubleBvh= 0;
+#endif //BT_USE_DOUBLE_PRECISION
+
+ int sz = m_bvh->calculateSerializeBufferSizeNew();
+ btChunk* chunk = serializer->allocate(sz,1);
+ const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
+ serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,m_bvh);
+ }
+ } else
+ {
+ trimeshData->m_quantizedFloatBvh = 0;
+ trimeshData->m_quantizedDoubleBvh = 0;
+ }
+
+
+
+ if (m_triangleInfoMap && !(serializer->getSerializationFlags()&BT_SERIALIZE_NO_TRIANGLEINFOMAP))
+ {
+ void* chunk = serializer->findPointer(m_triangleInfoMap);
+ if (chunk)
+ {
+ trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)chunk;
+ } else
+ {
+ trimeshData->m_triangleInfoMap = (btTriangleInfoMapData*)serializer->getUniquePointer(m_triangleInfoMap);
+ int sz = m_triangleInfoMap->calculateSerializeBufferSize();
+ btChunk* chunk = serializer->allocate(sz,1);
+ const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
+ serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,m_triangleInfoMap);
+ }
+ } else
+ {
+ trimeshData->m_triangleInfoMap = 0;
+ }
+
+ return "btTriangleMeshShapeData";
+}
+
+void btBvhTriangleMeshShape::serializeSingleBvh(btSerializer* serializer) const
+{
+ if (m_bvh)
+ {
+ int len = m_bvh->calculateSerializeBufferSizeNew(); //make sure not to use calculateSerializeBufferSize because it is used for in-place
+ btChunk* chunk = serializer->allocate(len,1);
+ const char* structType = m_bvh->serialize(chunk->m_oldPtr, serializer);
+ serializer->finalizeChunk(chunk,structType,BT_QUANTIZED_BVH_CODE,(void*)m_bvh);
+ }
+}
+
+void btBvhTriangleMeshShape::serializeSingleTriangleInfoMap(btSerializer* serializer) const
+{
+ if (m_triangleInfoMap)
+ {
+ int len = m_triangleInfoMap->calculateSerializeBufferSize();
+ btChunk* chunk = serializer->allocate(len,1);
+ const char* structType = m_triangleInfoMap->serialize(chunk->m_oldPtr, serializer);
+ serializer->finalizeChunk(chunk,structType,BT_TRIANLGE_INFO_MAP,(void*)m_triangleInfoMap);
+ }
+}
+
+
+
+