Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp')
-rw-r--r--extern/bullet2/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp1117
1 files changed, 1117 insertions, 0 deletions
diff --git a/extern/bullet2/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp b/extern/bullet2/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
new file mode 100644
index 00000000000..bf77c495404
--- /dev/null
+++ b/extern/bullet2/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
@@ -0,0 +1,1117 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+
+Written by: Marcus Hennix
+*/
+
+
+#include "btConeTwistConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include "LinearMath/btMinMax.h"
+#include <new>
+
+
+
+//#define CONETWIST_USE_OBSOLETE_SOLVER true
+#define CONETWIST_USE_OBSOLETE_SOLVER false
+#define CONETWIST_DEF_FIX_THRESH btScalar(.05f)
+
+
+SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis, const btMatrix3x3& invInertiaWorld)
+{
+ btVector3 vec = axis * invInertiaWorld;
+ return axis.dot(vec);
+}
+
+
+
+
+btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,
+ const btTransform& rbAFrame,const btTransform& rbBFrame)
+ :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
+ m_angularOnly(false),
+ m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER)
+{
+ init();
+}
+
+btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame)
+ :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame),
+ m_angularOnly(false),
+ m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER)
+{
+ m_rbBFrame = m_rbAFrame;
+ init();
+}
+
+
+void btConeTwistConstraint::init()
+{
+ m_angularOnly = false;
+ m_solveTwistLimit = false;
+ m_solveSwingLimit = false;
+ m_bMotorEnabled = false;
+ m_maxMotorImpulse = btScalar(-1);
+
+ setLimit(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
+ m_damping = btScalar(0.01);
+ m_fixThresh = CONETWIST_DEF_FIX_THRESH;
+ m_flags = 0;
+ m_linCFM = btScalar(0.f);
+ m_linERP = btScalar(0.7f);
+ m_angCFM = btScalar(0.f);
+}
+
+
+void btConeTwistConstraint::getInfo1 (btConstraintInfo1* info)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
+ }
+ else
+ {
+ info->m_numConstraintRows = 3;
+ info->nub = 3;
+ calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
+ if(m_solveSwingLimit)
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ }
+ }
+ if(m_solveTwistLimit)
+ {
+ info->m_numConstraintRows++;
+ info->nub--;
+ }
+ }
+}
+
+void btConeTwistConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
+{
+ //always reserve 6 rows: object transform is not available on SPU
+ info->m_numConstraintRows = 6;
+ info->nub = 0;
+
+}
+
+
+void btConeTwistConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
+}
+
+void btConeTwistConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB)
+{
+ calcAngleInfo2(transA,transB,invInertiaWorldA,invInertiaWorldB);
+
+ btAssert(!m_useSolveConstraintObsolete);
+ // set jacobian
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[info->rowskip+1] = 1;
+ info->m_J1linearAxis[2*info->rowskip+2] = 1;
+ btVector3 a1 = transA.getBasis() * m_rbAFrame.getOrigin();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
+ btVector3 a1neg = -a1;
+ a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+ btVector3 a2 = transB.getBasis() * m_rbBFrame.getOrigin();
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
+ a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+ // set right hand side
+ btScalar linERP = (m_flags & BT_CONETWIST_FLAGS_LIN_ERP) ? m_linERP : info->erp;
+ btScalar k = info->fps * linERP;
+ int j;
+ for (j=0; j<3; j++)
+ {
+ info->m_constraintError[j*info->rowskip] = k * (a2[j] + transB.getOrigin()[j] - a1[j] - transA.getOrigin()[j]);
+ info->m_lowerLimit[j*info->rowskip] = -SIMD_INFINITY;
+ info->m_upperLimit[j*info->rowskip] = SIMD_INFINITY;
+ if(m_flags & BT_CONETWIST_FLAGS_LIN_CFM)
+ {
+ info->cfm[j*info->rowskip] = m_linCFM;
+ }
+ }
+ int row = 3;
+ int srow = row * info->rowskip;
+ btVector3 ax1;
+ // angular limits
+ if(m_solveSwingLimit)
+ {
+ btScalar *J1 = info->m_J1angularAxis;
+ btScalar *J2 = info->m_J2angularAxis;
+ if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
+ {
+ btTransform trA = transA*m_rbAFrame;
+ btVector3 p = trA.getBasis().getColumn(1);
+ btVector3 q = trA.getBasis().getColumn(2);
+ int srow1 = srow + info->rowskip;
+ J1[srow+0] = p[0];
+ J1[srow+1] = p[1];
+ J1[srow+2] = p[2];
+ J1[srow1+0] = q[0];
+ J1[srow1+1] = q[1];
+ J1[srow1+2] = q[2];
+ J2[srow+0] = -p[0];
+ J2[srow+1] = -p[1];
+ J2[srow+2] = -p[2];
+ J2[srow1+0] = -q[0];
+ J2[srow1+1] = -q[1];
+ J2[srow1+2] = -q[2];
+ btScalar fact = info->fps * m_relaxationFactor;
+ info->m_constraintError[srow] = fact * m_swingAxis.dot(p);
+ info->m_constraintError[srow1] = fact * m_swingAxis.dot(q);
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ info->m_lowerLimit[srow1] = -SIMD_INFINITY;
+ info->m_upperLimit[srow1] = SIMD_INFINITY;
+ srow = srow1 + info->rowskip;
+ }
+ else
+ {
+ ax1 = m_swingAxis * m_relaxationFactor * m_relaxationFactor;
+ J1[srow+0] = ax1[0];
+ J1[srow+1] = ax1[1];
+ J1[srow+2] = ax1[2];
+ J2[srow+0] = -ax1[0];
+ J2[srow+1] = -ax1[1];
+ J2[srow+2] = -ax1[2];
+ btScalar k = info->fps * m_biasFactor;
+
+ info->m_constraintError[srow] = k * m_swingCorrection;
+ if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM)
+ {
+ info->cfm[srow] = m_angCFM;
+ }
+ // m_swingCorrection is always positive or 0
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ srow += info->rowskip;
+ }
+ }
+ if(m_solveTwistLimit)
+ {
+ ax1 = m_twistAxis * m_relaxationFactor * m_relaxationFactor;
+ btScalar *J1 = info->m_J1angularAxis;
+ btScalar *J2 = info->m_J2angularAxis;
+ J1[srow+0] = ax1[0];
+ J1[srow+1] = ax1[1];
+ J1[srow+2] = ax1[2];
+ J2[srow+0] = -ax1[0];
+ J2[srow+1] = -ax1[1];
+ J2[srow+2] = -ax1[2];
+ btScalar k = info->fps * m_biasFactor;
+ info->m_constraintError[srow] = k * m_twistCorrection;
+ if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM)
+ {
+ info->cfm[srow] = m_angCFM;
+ }
+ if(m_twistSpan > 0.0f)
+ {
+
+ if(m_twistCorrection > 0.0f)
+ {
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ }
+ else
+ {
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ srow += info->rowskip;
+ }
+}
+
+
+
+void btConeTwistConstraint::buildJacobian()
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ m_appliedImpulse = btScalar(0.);
+ m_accTwistLimitImpulse = btScalar(0.);
+ m_accSwingLimitImpulse = btScalar(0.);
+ m_accMotorImpulse = btVector3(0.,0.,0.);
+
+ if (!m_angularOnly)
+ {
+ btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
+ btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
+ btVector3 relPos = pivotBInW - pivotAInW;
+
+ btVector3 normal[3];
+ if (relPos.length2() > SIMD_EPSILON)
+ {
+ normal[0] = relPos.normalized();
+ }
+ else
+ {
+ normal[0].setValue(btScalar(1.0),0,0);
+ }
+
+ btPlaneSpace1(normal[0], normal[1], normal[2]);
+
+ for (int i=0;i<3;i++)
+ {
+ new (&m_jac[i]) btJacobianEntry(
+ m_rbA.getCenterOfMassTransform().getBasis().transpose(),
+ m_rbB.getCenterOfMassTransform().getBasis().transpose(),
+ pivotAInW - m_rbA.getCenterOfMassPosition(),
+ pivotBInW - m_rbB.getCenterOfMassPosition(),
+ normal[i],
+ m_rbA.getInvInertiaDiagLocal(),
+ m_rbA.getInvMass(),
+ m_rbB.getInvInertiaDiagLocal(),
+ m_rbB.getInvMass());
+ }
+ }
+
+ calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
+ }
+}
+
+
+
+void btConeTwistConstraint::solveConstraintObsolete(btRigidBody& bodyA,btRigidBody& bodyB,btScalar timeStep)
+{
+ #ifndef __SPU__
+ if (m_useSolveConstraintObsolete)
+ {
+ btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
+ btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
+
+ btScalar tau = btScalar(0.3);
+
+ //linear part
+ if (!m_angularOnly)
+ {
+ btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
+ btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
+
+ btVector3 vel1;
+ bodyA.internalGetVelocityInLocalPointObsolete(rel_pos1,vel1);
+ btVector3 vel2;
+ bodyB.internalGetVelocityInLocalPointObsolete(rel_pos2,vel2);
+ btVector3 vel = vel1 - vel2;
+
+ for (int i=0;i<3;i++)
+ {
+ const btVector3& normal = m_jac[i].m_linearJointAxis;
+ btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
+
+ btScalar rel_vel;
+ rel_vel = normal.dot(vel);
+ //positional error (zeroth order error)
+ btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
+ btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
+ m_appliedImpulse += impulse;
+
+ btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
+ btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
+ bodyA.internalApplyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
+ bodyB.internalApplyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
+
+ }
+ }
+
+ // apply motor
+ if (m_bMotorEnabled)
+ {
+ // compute current and predicted transforms
+ btTransform trACur = m_rbA.getCenterOfMassTransform();
+ btTransform trBCur = m_rbB.getCenterOfMassTransform();
+ btVector3 omegaA; bodyA.internalGetAngularVelocity(omegaA);
+ btVector3 omegaB; bodyB.internalGetAngularVelocity(omegaB);
+ btTransform trAPred; trAPred.setIdentity();
+ btVector3 zerovec(0,0,0);
+ btTransformUtil::integrateTransform(
+ trACur, zerovec, omegaA, timeStep, trAPred);
+ btTransform trBPred; trBPred.setIdentity();
+ btTransformUtil::integrateTransform(
+ trBCur, zerovec, omegaB, timeStep, trBPred);
+
+ // compute desired transforms in world
+ btTransform trPose(m_qTarget);
+ btTransform trABDes = m_rbBFrame * trPose * m_rbAFrame.inverse();
+ btTransform trADes = trBPred * trABDes;
+ btTransform trBDes = trAPred * trABDes.inverse();
+
+ // compute desired omegas in world
+ btVector3 omegaADes, omegaBDes;
+
+ btTransformUtil::calculateVelocity(trACur, trADes, timeStep, zerovec, omegaADes);
+ btTransformUtil::calculateVelocity(trBCur, trBDes, timeStep, zerovec, omegaBDes);
+
+ // compute delta omegas
+ btVector3 dOmegaA = omegaADes - omegaA;
+ btVector3 dOmegaB = omegaBDes - omegaB;
+
+ // compute weighted avg axis of dOmega (weighting based on inertias)
+ btVector3 axisA, axisB;
+ btScalar kAxisAInv = 0, kAxisBInv = 0;
+
+ if (dOmegaA.length2() > SIMD_EPSILON)
+ {
+ axisA = dOmegaA.normalized();
+ kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(axisA);
+ }
+
+ if (dOmegaB.length2() > SIMD_EPSILON)
+ {
+ axisB = dOmegaB.normalized();
+ kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(axisB);
+ }
+
+ btVector3 avgAxis = kAxisAInv * axisA + kAxisBInv * axisB;
+
+ static bool bDoTorque = true;
+ if (bDoTorque && avgAxis.length2() > SIMD_EPSILON)
+ {
+ avgAxis.normalize();
+ kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(avgAxis);
+ kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(avgAxis);
+ btScalar kInvCombined = kAxisAInv + kAxisBInv;
+
+ btVector3 impulse = (kAxisAInv * dOmegaA - kAxisBInv * dOmegaB) /
+ (kInvCombined * kInvCombined);
+
+ if (m_maxMotorImpulse >= 0)
+ {
+ btScalar fMaxImpulse = m_maxMotorImpulse;
+ if (m_bNormalizedMotorStrength)
+ fMaxImpulse = fMaxImpulse/kAxisAInv;
+
+ btVector3 newUnclampedAccImpulse = m_accMotorImpulse + impulse;
+ btScalar newUnclampedMag = newUnclampedAccImpulse.length();
+ if (newUnclampedMag > fMaxImpulse)
+ {
+ newUnclampedAccImpulse.normalize();
+ newUnclampedAccImpulse *= fMaxImpulse;
+ impulse = newUnclampedAccImpulse - m_accMotorImpulse;
+ }
+ m_accMotorImpulse += impulse;
+ }
+
+ btScalar impulseMag = impulse.length();
+ btVector3 impulseAxis = impulse / impulseMag;
+
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag);
+
+ }
+ }
+ else if (m_damping > SIMD_EPSILON) // no motor: do a little damping
+ {
+ btVector3 angVelA; bodyA.internalGetAngularVelocity(angVelA);
+ btVector3 angVelB; bodyB.internalGetAngularVelocity(angVelB);
+ btVector3 relVel = angVelB - angVelA;
+ if (relVel.length2() > SIMD_EPSILON)
+ {
+ btVector3 relVelAxis = relVel.normalized();
+ btScalar m_kDamping = btScalar(1.) /
+ (getRigidBodyA().computeAngularImpulseDenominator(relVelAxis) +
+ getRigidBodyB().computeAngularImpulseDenominator(relVelAxis));
+ btVector3 impulse = m_damping * m_kDamping * relVel;
+
+ btScalar impulseMag = impulse.length();
+ btVector3 impulseAxis = impulse / impulseMag;
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag);
+ }
+ }
+
+ // joint limits
+ {
+ ///solve angular part
+ btVector3 angVelA;
+ bodyA.internalGetAngularVelocity(angVelA);
+ btVector3 angVelB;
+ bodyB.internalGetAngularVelocity(angVelB);
+
+ // solve swing limit
+ if (m_solveSwingLimit)
+ {
+ btScalar amplitude = m_swingLimitRatio * m_swingCorrection*m_biasFactor/timeStep;
+ btScalar relSwingVel = (angVelB - angVelA).dot(m_swingAxis);
+ if (relSwingVel > 0)
+ amplitude += m_swingLimitRatio * relSwingVel * m_relaxationFactor;
+ btScalar impulseMag = amplitude * m_kSwing;
+
+ // Clamp the accumulated impulse
+ btScalar temp = m_accSwingLimitImpulse;
+ m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) );
+ impulseMag = m_accSwingLimitImpulse - temp;
+
+ btVector3 impulse = m_swingAxis * impulseMag;
+
+ // don't let cone response affect twist
+ // (this can happen since body A's twist doesn't match body B's AND we use an elliptical cone limit)
+ {
+ btVector3 impulseTwistCouple = impulse.dot(m_twistAxisA) * m_twistAxisA;
+ btVector3 impulseNoTwistCouple = impulse - impulseTwistCouple;
+ impulse = impulseNoTwistCouple;
+ }
+
+ impulseMag = impulse.length();
+ btVector3 noTwistSwingAxis = impulse / impulseMag;
+
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*noTwistSwingAxis, impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*noTwistSwingAxis, -impulseMag);
+ }
+
+
+ // solve twist limit
+ if (m_solveTwistLimit)
+ {
+ btScalar amplitude = m_twistLimitRatio * m_twistCorrection*m_biasFactor/timeStep;
+ btScalar relTwistVel = (angVelB - angVelA).dot( m_twistAxis );
+ if (relTwistVel > 0) // only damp when moving towards limit (m_twistAxis flipping is important)
+ amplitude += m_twistLimitRatio * relTwistVel * m_relaxationFactor;
+ btScalar impulseMag = amplitude * m_kTwist;
+
+ // Clamp the accumulated impulse
+ btScalar temp = m_accTwistLimitImpulse;
+ m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) );
+ impulseMag = m_accTwistLimitImpulse - temp;
+
+ btVector3 impulse = m_twistAxis * impulseMag;
+
+ bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_twistAxis,impulseMag);
+ bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_twistAxis,-impulseMag);
+ }
+ }
+ }
+#else
+btAssert(0);
+#endif //__SPU__
+}
+
+
+
+
+void btConeTwistConstraint::updateRHS(btScalar timeStep)
+{
+ (void)timeStep;
+
+}
+
+
+#ifndef __SPU__
+void btConeTwistConstraint::calcAngleInfo()
+{
+ m_swingCorrection = btScalar(0.);
+ m_twistLimitSign = btScalar(0.);
+ m_solveTwistLimit = false;
+ m_solveSwingLimit = false;
+
+ btVector3 b1Axis1,b1Axis2,b1Axis3;
+ btVector3 b2Axis1,b2Axis2;
+
+ b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0);
+ b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0);
+
+ btScalar swing1=btScalar(0.),swing2 = btScalar(0.);
+
+ btScalar swx=btScalar(0.),swy = btScalar(0.);
+ btScalar thresh = btScalar(10.);
+ btScalar fact;
+
+ // Get Frame into world space
+ if (m_swingSpan1 >= btScalar(0.05f))
+ {
+ b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1);
+ swx = b2Axis1.dot(b1Axis1);
+ swy = b2Axis1.dot(b1Axis2);
+ swing1 = btAtan2Fast(swy, swx);
+ fact = (swy*swy + swx*swx) * thresh * thresh;
+ fact = fact / (fact + btScalar(1.0));
+ swing1 *= fact;
+ }
+
+ if (m_swingSpan2 >= btScalar(0.05f))
+ {
+ b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2);
+ swx = b2Axis1.dot(b1Axis1);
+ swy = b2Axis1.dot(b1Axis3);
+ swing2 = btAtan2Fast(swy, swx);
+ fact = (swy*swy + swx*swx) * thresh * thresh;
+ fact = fact / (fact + btScalar(1.0));
+ swing2 *= fact;
+ }
+
+ btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1);
+ btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2);
+ btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq;
+
+ if (EllipseAngle > 1.0f)
+ {
+ m_swingCorrection = EllipseAngle-1.0f;
+ m_solveSwingLimit = true;
+ // Calculate necessary axis & factors
+ m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3));
+ m_swingAxis.normalize();
+ btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
+ m_swingAxis *= swingAxisSign;
+ }
+
+ // Twist limits
+ if (m_twistSpan >= btScalar(0.))
+ {
+ btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1);
+ btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1);
+ btVector3 TwistRef = quatRotate(rotationArc,b2Axis2);
+ btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) );
+ m_twistAngle = twist;
+
+// btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.);
+ btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? btScalar(1.0f) : btScalar(0.);
+ if (twist <= -m_twistSpan*lockedFreeFactor)
+ {
+ m_twistCorrection = -(twist + m_twistSpan);
+ m_solveTwistLimit = true;
+ m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
+ m_twistAxis.normalize();
+ m_twistAxis *= -1.0f;
+ }
+ else if (twist > m_twistSpan*lockedFreeFactor)
+ {
+ m_twistCorrection = (twist - m_twistSpan);
+ m_solveTwistLimit = true;
+ m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
+ m_twistAxis.normalize();
+ }
+ }
+}
+#endif //__SPU__
+
+static btVector3 vTwist(1,0,0); // twist axis in constraint's space
+
+
+
+void btConeTwistConstraint::calcAngleInfo2(const btTransform& transA, const btTransform& transB, const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB)
+{
+ m_swingCorrection = btScalar(0.);
+ m_twistLimitSign = btScalar(0.);
+ m_solveTwistLimit = false;
+ m_solveSwingLimit = false;
+ // compute rotation of A wrt B (in constraint space)
+ if (m_bMotorEnabled && (!m_useSolveConstraintObsolete))
+ { // it is assumed that setMotorTarget() was alredy called
+ // and motor target m_qTarget is within constraint limits
+ // TODO : split rotation to pure swing and pure twist
+ // compute desired transforms in world
+ btTransform trPose(m_qTarget);
+ btTransform trA = transA * m_rbAFrame;
+ btTransform trB = transB * m_rbBFrame;
+ btTransform trDeltaAB = trB * trPose * trA.inverse();
+ btQuaternion qDeltaAB = trDeltaAB.getRotation();
+ btVector3 swingAxis = btVector3(qDeltaAB.x(), qDeltaAB.y(), qDeltaAB.z());
+ m_swingAxis = swingAxis;
+ m_swingAxis.normalize();
+ m_swingCorrection = qDeltaAB.getAngle();
+ if(!btFuzzyZero(m_swingCorrection))
+ {
+ m_solveSwingLimit = true;
+ }
+ return;
+ }
+
+
+ {
+ // compute rotation of A wrt B (in constraint space)
+ btQuaternion qA = transA.getRotation() * m_rbAFrame.getRotation();
+ btQuaternion qB = transB.getRotation() * m_rbBFrame.getRotation();
+ btQuaternion qAB = qB.inverse() * qA;
+ // split rotation into cone and twist
+ // (all this is done from B's perspective. Maybe I should be averaging axes...)
+ btVector3 vConeNoTwist = quatRotate(qAB, vTwist); vConeNoTwist.normalize();
+ btQuaternion qABCone = shortestArcQuat(vTwist, vConeNoTwist); qABCone.normalize();
+ btQuaternion qABTwist = qABCone.inverse() * qAB; qABTwist.normalize();
+
+ if (m_swingSpan1 >= m_fixThresh && m_swingSpan2 >= m_fixThresh)
+ {
+ btScalar swingAngle, swingLimit = 0; btVector3 swingAxis;
+ computeConeLimitInfo(qABCone, swingAngle, swingAxis, swingLimit);
+
+ if (swingAngle > swingLimit * m_limitSoftness)
+ {
+ m_solveSwingLimit = true;
+
+ // compute limit ratio: 0->1, where
+ // 0 == beginning of soft limit
+ // 1 == hard/real limit
+ m_swingLimitRatio = 1.f;
+ if (swingAngle < swingLimit && m_limitSoftness < 1.f - SIMD_EPSILON)
+ {
+ m_swingLimitRatio = (swingAngle - swingLimit * m_limitSoftness)/
+ (swingLimit - swingLimit * m_limitSoftness);
+ }
+
+ // swing correction tries to get back to soft limit
+ m_swingCorrection = swingAngle - (swingLimit * m_limitSoftness);
+
+ // adjustment of swing axis (based on ellipse normal)
+ adjustSwingAxisToUseEllipseNormal(swingAxis);
+
+ // Calculate necessary axis & factors
+ m_swingAxis = quatRotate(qB, -swingAxis);
+
+ m_twistAxisA.setValue(0,0,0);
+
+ m_kSwing = btScalar(1.) /
+ (computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldA) +
+ computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldB));
+ }
+ }
+ else
+ {
+ // you haven't set any limits;
+ // or you're trying to set at least one of the swing limits too small. (if so, do you really want a conetwist constraint?)
+ // anyway, we have either hinge or fixed joint
+ btVector3 ivA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
+ btVector3 jvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
+ btVector3 kvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(2);
+ btVector3 ivB = transB.getBasis() * m_rbBFrame.getBasis().getColumn(0);
+ btVector3 target;
+ btScalar x = ivB.dot(ivA);
+ btScalar y = ivB.dot(jvA);
+ btScalar z = ivB.dot(kvA);
+ if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
+ { // fixed. We'll need to add one more row to constraint
+ if((!btFuzzyZero(y)) || (!(btFuzzyZero(z))))
+ {
+ m_solveSwingLimit = true;
+ m_swingAxis = -ivB.cross(ivA);
+ }
+ }
+ else
+ {
+ if(m_swingSpan1 < m_fixThresh)
+ { // hinge around Y axis
+ if(!(btFuzzyZero(y)))
+ {
+ m_solveSwingLimit = true;
+ if(m_swingSpan2 >= m_fixThresh)
+ {
+ y = btScalar(0.f);
+ btScalar span2 = btAtan2(z, x);
+ if(span2 > m_swingSpan2)
+ {
+ x = btCos(m_swingSpan2);
+ z = btSin(m_swingSpan2);
+ }
+ else if(span2 < -m_swingSpan2)
+ {
+ x = btCos(m_swingSpan2);
+ z = -btSin(m_swingSpan2);
+ }
+ }
+ }
+ }
+ else
+ { // hinge around Z axis
+ if(!btFuzzyZero(z))
+ {
+ m_solveSwingLimit = true;
+ if(m_swingSpan1 >= m_fixThresh)
+ {
+ z = btScalar(0.f);
+ btScalar span1 = btAtan2(y, x);
+ if(span1 > m_swingSpan1)
+ {
+ x = btCos(m_swingSpan1);
+ y = btSin(m_swingSpan1);
+ }
+ else if(span1 < -m_swingSpan1)
+ {
+ x = btCos(m_swingSpan1);
+ y = -btSin(m_swingSpan1);
+ }
+ }
+ }
+ }
+ target[0] = x * ivA[0] + y * jvA[0] + z * kvA[0];
+ target[1] = x * ivA[1] + y * jvA[1] + z * kvA[1];
+ target[2] = x * ivA[2] + y * jvA[2] + z * kvA[2];
+ target.normalize();
+ m_swingAxis = -ivB.cross(target);
+ m_swingCorrection = m_swingAxis.length();
+ m_swingAxis.normalize();
+ }
+ }
+
+ if (m_twistSpan >= btScalar(0.f))
+ {
+ btVector3 twistAxis;
+ computeTwistLimitInfo(qABTwist, m_twistAngle, twistAxis);
+
+ if (m_twistAngle > m_twistSpan*m_limitSoftness)
+ {
+ m_solveTwistLimit = true;
+
+ m_twistLimitRatio = 1.f;
+ if (m_twistAngle < m_twistSpan && m_limitSoftness < 1.f - SIMD_EPSILON)
+ {
+ m_twistLimitRatio = (m_twistAngle - m_twistSpan * m_limitSoftness)/
+ (m_twistSpan - m_twistSpan * m_limitSoftness);
+ }
+
+ // twist correction tries to get back to soft limit
+ m_twistCorrection = m_twistAngle - (m_twistSpan * m_limitSoftness);
+
+ m_twistAxis = quatRotate(qB, -twistAxis);
+
+ m_kTwist = btScalar(1.) /
+ (computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldA) +
+ computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldB));
+ }
+
+ if (m_solveSwingLimit)
+ m_twistAxisA = quatRotate(qA, -twistAxis);
+ }
+ else
+ {
+ m_twistAngle = btScalar(0.f);
+ }
+ }
+}
+
+
+
+// given a cone rotation in constraint space, (pre: twist must already be removed)
+// this method computes its corresponding swing angle and axis.
+// more interestingly, it computes the cone/swing limit (angle) for this cone "pose".
+void btConeTwistConstraint::computeConeLimitInfo(const btQuaternion& qCone,
+ btScalar& swingAngle, // out
+ btVector3& vSwingAxis, // out
+ btScalar& swingLimit) // out
+{
+ swingAngle = qCone.getAngle();
+ if (swingAngle > SIMD_EPSILON)
+ {
+ vSwingAxis = btVector3(qCone.x(), qCone.y(), qCone.z());
+ vSwingAxis.normalize();
+ if (fabs(vSwingAxis.x()) > SIMD_EPSILON)
+ {
+ // non-zero twist?! this should never happen.
+ int wtf = 0; wtf = wtf;
+ }
+
+ // Compute limit for given swing. tricky:
+ // Given a swing axis, we're looking for the intersection with the bounding cone ellipse.
+ // (Since we're dealing with angles, this ellipse is embedded on the surface of a sphere.)
+
+ // For starters, compute the direction from center to surface of ellipse.
+ // This is just the perpendicular (ie. rotate 2D vector by PI/2) of the swing axis.
+ // (vSwingAxis is the cone rotation (in z,y); change vars and rotate to (x,y) coords.)
+ btScalar xEllipse = vSwingAxis.y();
+ btScalar yEllipse = -vSwingAxis.z();
+
+ // Now, we use the slope of the vector (using x/yEllipse) and find the length
+ // of the line that intersects the ellipse:
+ // x^2 y^2
+ // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits)
+ // a^2 b^2
+ // Do the math and it should be clear.
+
+ swingLimit = m_swingSpan1; // if xEllipse == 0, we have a pure vSwingAxis.z rotation: just use swingspan1
+ if (fabs(xEllipse) > SIMD_EPSILON)
+ {
+ btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse);
+ btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
+ norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
+ btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
+ swingLimit = sqrt(swingLimit2);
+ }
+
+ // test!
+ /*swingLimit = m_swingSpan2;
+ if (fabs(vSwingAxis.z()) > SIMD_EPSILON)
+ {
+ btScalar mag_2 = m_swingSpan1*m_swingSpan1 + m_swingSpan2*m_swingSpan2;
+ btScalar sinphi = m_swingSpan2 / sqrt(mag_2);
+ btScalar phi = asin(sinphi);
+ btScalar theta = atan2(fabs(vSwingAxis.y()),fabs(vSwingAxis.z()));
+ btScalar alpha = 3.14159f - theta - phi;
+ btScalar sinalpha = sin(alpha);
+ swingLimit = m_swingSpan1 * sinphi/sinalpha;
+ }*/
+ }
+ else if (swingAngle < 0)
+ {
+ // this should never happen!
+ int wtf = 0; wtf = wtf;
+ }
+}
+
+btVector3 btConeTwistConstraint::GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const
+{
+ // compute x/y in ellipse using cone angle (0 -> 2*PI along surface of cone)
+ btScalar xEllipse = btCos(fAngleInRadians);
+ btScalar yEllipse = btSin(fAngleInRadians);
+
+ // Use the slope of the vector (using x/yEllipse) and find the length
+ // of the line that intersects the ellipse:
+ // x^2 y^2
+ // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits)
+ // a^2 b^2
+ // Do the math and it should be clear.
+
+ float swingLimit = m_swingSpan1; // if xEllipse == 0, just use axis b (1)
+ if (fabs(xEllipse) > SIMD_EPSILON)
+ {
+ btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse);
+ btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
+ norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
+ btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
+ swingLimit = sqrt(swingLimit2);
+ }
+
+ // convert into point in constraint space:
+ // note: twist is x-axis, swing 1 and 2 are along the z and y axes respectively
+ btVector3 vSwingAxis(0, xEllipse, -yEllipse);
+ btQuaternion qSwing(vSwingAxis, swingLimit);
+ btVector3 vPointInConstraintSpace(fLength,0,0);
+ return quatRotate(qSwing, vPointInConstraintSpace);
+}
+
+// given a twist rotation in constraint space, (pre: cone must already be removed)
+// this method computes its corresponding angle and axis.
+void btConeTwistConstraint::computeTwistLimitInfo(const btQuaternion& qTwist,
+ btScalar& twistAngle, // out
+ btVector3& vTwistAxis) // out
+{
+ btQuaternion qMinTwist = qTwist;
+ twistAngle = qTwist.getAngle();
+
+ if (twistAngle > SIMD_PI) // long way around. flip quat and recalculate.
+ {
+ qMinTwist = operator-(qTwist);
+ twistAngle = qMinTwist.getAngle();
+ }
+ if (twistAngle < 0)
+ {
+ // this should never happen
+ int wtf = 0; wtf = wtf;
+ }
+
+ vTwistAxis = btVector3(qMinTwist.x(), qMinTwist.y(), qMinTwist.z());
+ if (twistAngle > SIMD_EPSILON)
+ vTwistAxis.normalize();
+}
+
+
+void btConeTwistConstraint::adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const
+{
+ // the swing axis is computed as the "twist-free" cone rotation,
+ // but the cone limit is not circular, but elliptical (if swingspan1 != swingspan2).
+ // so, if we're outside the limits, the closest way back inside the cone isn't
+ // along the vector back to the center. better (and more stable) to use the ellipse normal.
+
+ // convert swing axis to direction from center to surface of ellipse
+ // (ie. rotate 2D vector by PI/2)
+ btScalar y = -vSwingAxis.z();
+ btScalar z = vSwingAxis.y();
+
+ // do the math...
+ if (fabs(z) > SIMD_EPSILON) // avoid division by 0. and we don't need an update if z == 0.
+ {
+ // compute gradient/normal of ellipse surface at current "point"
+ btScalar grad = y/z;
+ grad *= m_swingSpan2 / m_swingSpan1;
+
+ // adjust y/z to represent normal at point (instead of vector to point)
+ if (y > 0)
+ y = fabs(grad * z);
+ else
+ y = -fabs(grad * z);
+
+ // convert ellipse direction back to swing axis
+ vSwingAxis.setZ(-y);
+ vSwingAxis.setY( z);
+ vSwingAxis.normalize();
+ }
+}
+
+
+
+void btConeTwistConstraint::setMotorTarget(const btQuaternion &q)
+{
+ btTransform trACur = m_rbA.getCenterOfMassTransform();
+ btTransform trBCur = m_rbB.getCenterOfMassTransform();
+ btTransform trABCur = trBCur.inverse() * trACur;
+ btQuaternion qABCur = trABCur.getRotation();
+ btTransform trConstraintCur = (trBCur * m_rbBFrame).inverse() * (trACur * m_rbAFrame);
+ btQuaternion qConstraintCur = trConstraintCur.getRotation();
+
+ btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * q * m_rbAFrame.getRotation();
+ setMotorTargetInConstraintSpace(qConstraint);
+}
+
+
+void btConeTwistConstraint::setMotorTargetInConstraintSpace(const btQuaternion &q)
+{
+ m_qTarget = q;
+
+ // clamp motor target to within limits
+ {
+ btScalar softness = 1.f;//m_limitSoftness;
+
+ // split into twist and cone
+ btVector3 vTwisted = quatRotate(m_qTarget, vTwist);
+ btQuaternion qTargetCone = shortestArcQuat(vTwist, vTwisted); qTargetCone.normalize();
+ btQuaternion qTargetTwist = qTargetCone.inverse() * m_qTarget; qTargetTwist.normalize();
+
+ // clamp cone
+ if (m_swingSpan1 >= btScalar(0.05f) && m_swingSpan2 >= btScalar(0.05f))
+ {
+ btScalar swingAngle, swingLimit; btVector3 swingAxis;
+ computeConeLimitInfo(qTargetCone, swingAngle, swingAxis, swingLimit);
+
+ if (fabs(swingAngle) > SIMD_EPSILON)
+ {
+ if (swingAngle > swingLimit*softness)
+ swingAngle = swingLimit*softness;
+ else if (swingAngle < -swingLimit*softness)
+ swingAngle = -swingLimit*softness;
+ qTargetCone = btQuaternion(swingAxis, swingAngle);
+ }
+ }
+
+ // clamp twist
+ if (m_twistSpan >= btScalar(0.05f))
+ {
+ btScalar twistAngle; btVector3 twistAxis;
+ computeTwistLimitInfo(qTargetTwist, twistAngle, twistAxis);
+
+ if (fabs(twistAngle) > SIMD_EPSILON)
+ {
+ // eddy todo: limitSoftness used here???
+ if (twistAngle > m_twistSpan*softness)
+ twistAngle = m_twistSpan*softness;
+ else if (twistAngle < -m_twistSpan*softness)
+ twistAngle = -m_twistSpan*softness;
+ qTargetTwist = btQuaternion(twistAxis, twistAngle);
+ }
+ }
+
+ m_qTarget = qTargetCone * qTargetTwist;
+ }
+}
+
+///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
+///If no axis is provided, it uses the default axis for this constraint.
+void btConeTwistConstraint::setParam(int num, btScalar value, int axis)
+{
+ switch(num)
+ {
+ case BT_CONSTRAINT_ERP :
+ case BT_CONSTRAINT_STOP_ERP :
+ if((axis >= 0) && (axis < 3))
+ {
+ m_linERP = value;
+ m_flags |= BT_CONETWIST_FLAGS_LIN_ERP;
+ }
+ else
+ {
+ m_biasFactor = value;
+ }
+ break;
+ case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_STOP_CFM :
+ if((axis >= 0) && (axis < 3))
+ {
+ m_linCFM = value;
+ m_flags |= BT_CONETWIST_FLAGS_LIN_CFM;
+ }
+ else
+ {
+ m_angCFM = value;
+ m_flags |= BT_CONETWIST_FLAGS_ANG_CFM;
+ }
+ break;
+ default:
+ btAssertConstrParams(0);
+ break;
+ }
+}
+
+///return the local value of parameter
+btScalar btConeTwistConstraint::getParam(int num, int axis) const
+{
+ btScalar retVal = 0;
+ switch(num)
+ {
+ case BT_CONSTRAINT_ERP :
+ case BT_CONSTRAINT_STOP_ERP :
+ if((axis >= 0) && (axis < 3))
+ {
+ btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_ERP);
+ retVal = m_linERP;
+ }
+ else if((axis >= 3) && (axis < 6))
+ {
+ retVal = m_biasFactor;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ case BT_CONSTRAINT_CFM :
+ case BT_CONSTRAINT_STOP_CFM :
+ if((axis >= 0) && (axis < 3))
+ {
+ btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_CFM);
+ retVal = m_linCFM;
+ }
+ else if((axis >= 3) && (axis < 6))
+ {
+ btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_ANG_CFM);
+ retVal = m_angCFM;
+ }
+ else
+ {
+ btAssertConstrParams(0);
+ }
+ break;
+ default :
+ btAssertConstrParams(0);
+ }
+ return retVal;
+}
+
+
+