Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp')
-rw-r--r--extern/bullet2/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp992
1 files changed, 0 insertions, 992 deletions
diff --git a/extern/bullet2/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp b/extern/bullet2/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
deleted file mode 100644
index 2bfa55a2933..00000000000
--- a/extern/bullet2/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
+++ /dev/null
@@ -1,992 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-
-#include "btHingeConstraint.h"
-#include "BulletDynamics/Dynamics/btRigidBody.h"
-#include "LinearMath/btTransformUtil.h"
-#include "LinearMath/btMinMax.h"
-#include <new>
-#include "btSolverBody.h"
-
-
-
-//#define HINGE_USE_OBSOLETE_SOLVER false
-#define HINGE_USE_OBSOLETE_SOLVER false
-
-#define HINGE_USE_FRAME_OFFSET true
-
-#ifndef __SPU__
-
-
-
-
-
-btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB, const btVector3& pivotInA,const btVector3& pivotInB,
- btVector3& axisInA,btVector3& axisInB, bool useReferenceFrameA)
- :btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),
- m_angularOnly(false),
- m_enableAngularMotor(false),
- m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
- m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
- m_useReferenceFrameA(useReferenceFrameA),
- m_flags(0)
-{
- m_rbAFrame.getOrigin() = pivotInA;
-
- // since no frame is given, assume this to be zero angle and just pick rb transform axis
- btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);
-
- btVector3 rbAxisA2;
- btScalar projection = axisInA.dot(rbAxisA1);
- if (projection >= 1.0f - SIMD_EPSILON) {
- rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
- rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
- } else if (projection <= -1.0f + SIMD_EPSILON) {
- rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
- rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
- } else {
- rbAxisA2 = axisInA.cross(rbAxisA1);
- rbAxisA1 = rbAxisA2.cross(axisInA);
- }
-
- m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
- rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
- rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
-
- btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
- btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
- btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
-
- m_rbBFrame.getOrigin() = pivotInB;
- m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
- rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
- rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
-
- //start with free
- m_lowerLimit = btScalar(1.0f);
- m_upperLimit = btScalar(-1.0f);
- m_biasFactor = 0.3f;
- m_relaxationFactor = 1.0f;
- m_limitSoftness = 0.9f;
- m_solveLimit = false;
- m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
-}
-
-
-
-btHingeConstraint::btHingeConstraint(btRigidBody& rbA,const btVector3& pivotInA,btVector3& axisInA, bool useReferenceFrameA)
-:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_angularOnly(false), m_enableAngularMotor(false),
-m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
-m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
-m_useReferenceFrameA(useReferenceFrameA),
-m_flags(0)
-{
-
- // since no frame is given, assume this to be zero angle and just pick rb transform axis
- // fixed axis in worldspace
- btVector3 rbAxisA1, rbAxisA2;
- btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);
-
- m_rbAFrame.getOrigin() = pivotInA;
- m_rbAFrame.getBasis().setValue( rbAxisA1.getX(),rbAxisA2.getX(),axisInA.getX(),
- rbAxisA1.getY(),rbAxisA2.getY(),axisInA.getY(),
- rbAxisA1.getZ(),rbAxisA2.getZ(),axisInA.getZ() );
-
- btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA;
-
- btQuaternion rotationArc = shortestArcQuat(axisInA,axisInB);
- btVector3 rbAxisB1 = quatRotate(rotationArc,rbAxisA1);
- btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);
-
-
- m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
- m_rbBFrame.getBasis().setValue( rbAxisB1.getX(),rbAxisB2.getX(),axisInB.getX(),
- rbAxisB1.getY(),rbAxisB2.getY(),axisInB.getY(),
- rbAxisB1.getZ(),rbAxisB2.getZ(),axisInB.getZ() );
-
- //start with free
- m_lowerLimit = btScalar(1.0f);
- m_upperLimit = btScalar(-1.0f);
- m_biasFactor = 0.3f;
- m_relaxationFactor = 1.0f;
- m_limitSoftness = 0.9f;
- m_solveLimit = false;
- m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
-}
-
-
-
-btHingeConstraint::btHingeConstraint(btRigidBody& rbA,btRigidBody& rbB,
- const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA)
-:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
-m_angularOnly(false),
-m_enableAngularMotor(false),
-m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
-m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
-m_useReferenceFrameA(useReferenceFrameA),
-m_flags(0)
-{
- //start with free
- m_lowerLimit = btScalar(1.0f);
- m_upperLimit = btScalar(-1.0f);
- m_biasFactor = 0.3f;
- m_relaxationFactor = 1.0f;
- m_limitSoftness = 0.9f;
- m_solveLimit = false;
- m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
-}
-
-
-
-btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA)
-:btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),m_rbAFrame(rbAFrame),m_rbBFrame(rbAFrame),
-m_angularOnly(false),
-m_enableAngularMotor(false),
-m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
-m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
-m_useReferenceFrameA(useReferenceFrameA),
-m_flags(0)
-{
- ///not providing rigidbody B means implicitly using worldspace for body B
-
- m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin());
-
- //start with free
- m_lowerLimit = btScalar(1.0f);
- m_upperLimit = btScalar(-1.0f);
- m_biasFactor = 0.3f;
- m_relaxationFactor = 1.0f;
- m_limitSoftness = 0.9f;
- m_solveLimit = false;
- m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
-}
-
-
-
-void btHingeConstraint::buildJacobian()
-{
- if (m_useSolveConstraintObsolete)
- {
- m_appliedImpulse = btScalar(0.);
- m_accMotorImpulse = btScalar(0.);
-
- if (!m_angularOnly)
- {
- btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
- btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
- btVector3 relPos = pivotBInW - pivotAInW;
-
- btVector3 normal[3];
- if (relPos.length2() > SIMD_EPSILON)
- {
- normal[0] = relPos.normalized();
- }
- else
- {
- normal[0].setValue(btScalar(1.0),0,0);
- }
-
- btPlaneSpace1(normal[0], normal[1], normal[2]);
-
- for (int i=0;i<3;i++)
- {
- new (&m_jac[i]) btJacobianEntry(
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- pivotAInW - m_rbA.getCenterOfMassPosition(),
- pivotBInW - m_rbB.getCenterOfMassPosition(),
- normal[i],
- m_rbA.getInvInertiaDiagLocal(),
- m_rbA.getInvMass(),
- m_rbB.getInvInertiaDiagLocal(),
- m_rbB.getInvMass());
- }
- }
-
- //calculate two perpendicular jointAxis, orthogonal to hingeAxis
- //these two jointAxis require equal angular velocities for both bodies
-
- //this is unused for now, it's a todo
- btVector3 jointAxis0local;
- btVector3 jointAxis1local;
-
- btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2),jointAxis0local,jointAxis1local);
-
- btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
- btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
- btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
-
- new (&m_jacAng[0]) btJacobianEntry(jointAxis0,
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- m_rbA.getInvInertiaDiagLocal(),
- m_rbB.getInvInertiaDiagLocal());
-
- new (&m_jacAng[1]) btJacobianEntry(jointAxis1,
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- m_rbA.getInvInertiaDiagLocal(),
- m_rbB.getInvInertiaDiagLocal());
-
- new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld,
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- m_rbA.getInvInertiaDiagLocal(),
- m_rbB.getInvInertiaDiagLocal());
-
- // clear accumulator
- m_accLimitImpulse = btScalar(0.);
-
- // test angular limit
- testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
-
- //Compute K = J*W*J' for hinge axis
- btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
- m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
- getRigidBodyB().computeAngularImpulseDenominator(axisA));
-
- }
-}
-
-
-#endif //__SPU__
-
-
-void btHingeConstraint::getInfo1(btConstraintInfo1* info)
-{
- if (m_useSolveConstraintObsolete)
- {
- info->m_numConstraintRows = 0;
- info->nub = 0;
- }
- else
- {
- info->m_numConstraintRows = 5; // Fixed 3 linear + 2 angular
- info->nub = 1;
- //always add the row, to avoid computation (data is not available yet)
- //prepare constraint
- testLimit(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
- if(getSolveLimit() || getEnableAngularMotor())
- {
- info->m_numConstraintRows++; // limit 3rd anguar as well
- info->nub--;
- }
-
- }
-}
-
-void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
-{
- if (m_useSolveConstraintObsolete)
- {
- info->m_numConstraintRows = 0;
- info->nub = 0;
- }
- else
- {
- //always add the 'limit' row, to avoid computation (data is not available yet)
- info->m_numConstraintRows = 6; // Fixed 3 linear + 2 angular
- info->nub = 0;
- }
-}
-
-void btHingeConstraint::getInfo2 (btConstraintInfo2* info)
-{
- if(m_useOffsetForConstraintFrame)
- {
- getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity());
- }
- else
- {
- getInfo2Internal(info, m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getAngularVelocity(),m_rbB.getAngularVelocity());
- }
-}
-
-
-void btHingeConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
-{
- ///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now
- testLimit(transA,transB);
-
- getInfo2Internal(info,transA,transB,angVelA,angVelB);
-}
-
-
-void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
-{
-
- btAssert(!m_useSolveConstraintObsolete);
- int i, skip = info->rowskip;
- // transforms in world space
- btTransform trA = transA*m_rbAFrame;
- btTransform trB = transB*m_rbBFrame;
- // pivot point
- btVector3 pivotAInW = trA.getOrigin();
- btVector3 pivotBInW = trB.getOrigin();
-#if 0
- if (0)
- {
- for (i=0;i<6;i++)
- {
- info->m_J1linearAxis[i*skip]=0;
- info->m_J1linearAxis[i*skip+1]=0;
- info->m_J1linearAxis[i*skip+2]=0;
-
- info->m_J1angularAxis[i*skip]=0;
- info->m_J1angularAxis[i*skip+1]=0;
- info->m_J1angularAxis[i*skip+2]=0;
-
- info->m_J2angularAxis[i*skip]=0;
- info->m_J2angularAxis[i*skip+1]=0;
- info->m_J2angularAxis[i*skip+2]=0;
-
- info->m_constraintError[i*skip]=0.f;
- }
- }
-#endif //#if 0
- // linear (all fixed)
- info->m_J1linearAxis[0] = 1;
- info->m_J1linearAxis[skip + 1] = 1;
- info->m_J1linearAxis[2 * skip + 2] = 1;
-
-
-
-
-
- btVector3 a1 = pivotAInW - transA.getOrigin();
- {
- btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
- btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip);
- btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip);
- btVector3 a1neg = -a1;
- a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
- }
- btVector3 a2 = pivotBInW - transB.getOrigin();
- {
- btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
- btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip);
- btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip);
- a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
- }
- // linear RHS
- btScalar k = info->fps * info->erp;
- for(i = 0; i < 3; i++)
- {
- info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]);
- }
- // make rotations around X and Y equal
- // the hinge axis should be the only unconstrained
- // rotational axis, the angular velocity of the two bodies perpendicular to
- // the hinge axis should be equal. thus the constraint equations are
- // p*w1 - p*w2 = 0
- // q*w1 - q*w2 = 0
- // where p and q are unit vectors normal to the hinge axis, and w1 and w2
- // are the angular velocity vectors of the two bodies.
- // get hinge axis (Z)
- btVector3 ax1 = trA.getBasis().getColumn(2);
- // get 2 orthos to hinge axis (X, Y)
- btVector3 p = trA.getBasis().getColumn(0);
- btVector3 q = trA.getBasis().getColumn(1);
- // set the two hinge angular rows
- int s3 = 3 * info->rowskip;
- int s4 = 4 * info->rowskip;
-
- info->m_J1angularAxis[s3 + 0] = p[0];
- info->m_J1angularAxis[s3 + 1] = p[1];
- info->m_J1angularAxis[s3 + 2] = p[2];
- info->m_J1angularAxis[s4 + 0] = q[0];
- info->m_J1angularAxis[s4 + 1] = q[1];
- info->m_J1angularAxis[s4 + 2] = q[2];
-
- info->m_J2angularAxis[s3 + 0] = -p[0];
- info->m_J2angularAxis[s3 + 1] = -p[1];
- info->m_J2angularAxis[s3 + 2] = -p[2];
- info->m_J2angularAxis[s4 + 0] = -q[0];
- info->m_J2angularAxis[s4 + 1] = -q[1];
- info->m_J2angularAxis[s4 + 2] = -q[2];
- // compute the right hand side of the constraint equation. set relative
- // body velocities along p and q to bring the hinge back into alignment.
- // if ax1,ax2 are the unit length hinge axes as computed from body1 and
- // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
- // if `theta' is the angle between ax1 and ax2, we need an angular velocity
- // along u to cover angle erp*theta in one step :
- // |angular_velocity| = angle/time = erp*theta / stepsize
- // = (erp*fps) * theta
- // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
- // = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
- // ...as ax1 and ax2 are unit length. if theta is smallish,
- // theta ~= sin(theta), so
- // angular_velocity = (erp*fps) * (ax1 x ax2)
- // ax1 x ax2 is in the plane space of ax1, so we project the angular
- // velocity to p and q to find the right hand side.
- btVector3 ax2 = trB.getBasis().getColumn(2);
- btVector3 u = ax1.cross(ax2);
- info->m_constraintError[s3] = k * u.dot(p);
- info->m_constraintError[s4] = k * u.dot(q);
- // check angular limits
- int nrow = 4; // last filled row
- int srow;
- btScalar limit_err = btScalar(0.0);
- int limit = 0;
- if(getSolveLimit())
- {
- limit_err = m_correction * m_referenceSign;
- limit = (limit_err > btScalar(0.0)) ? 1 : 2;
- }
- // if the hinge has joint limits or motor, add in the extra row
- int powered = 0;
- if(getEnableAngularMotor())
- {
- powered = 1;
- }
- if(limit || powered)
- {
- nrow++;
- srow = nrow * info->rowskip;
- info->m_J1angularAxis[srow+0] = ax1[0];
- info->m_J1angularAxis[srow+1] = ax1[1];
- info->m_J1angularAxis[srow+2] = ax1[2];
-
- info->m_J2angularAxis[srow+0] = -ax1[0];
- info->m_J2angularAxis[srow+1] = -ax1[1];
- info->m_J2angularAxis[srow+2] = -ax1[2];
-
- btScalar lostop = getLowerLimit();
- btScalar histop = getUpperLimit();
- if(limit && (lostop == histop))
- { // the joint motor is ineffective
- powered = 0;
- }
- info->m_constraintError[srow] = btScalar(0.0f);
- btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : info->erp;
- if(powered)
- {
- if(m_flags & BT_HINGE_FLAGS_CFM_NORM)
- {
- info->cfm[srow] = m_normalCFM;
- }
- btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
- info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
- info->m_lowerLimit[srow] = - m_maxMotorImpulse;
- info->m_upperLimit[srow] = m_maxMotorImpulse;
- }
- if(limit)
- {
- k = info->fps * currERP;
- info->m_constraintError[srow] += k * limit_err;
- if(m_flags & BT_HINGE_FLAGS_CFM_STOP)
- {
- info->cfm[srow] = m_stopCFM;
- }
- if(lostop == histop)
- {
- // limited low and high simultaneously
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else if(limit == 1)
- { // low limit
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- { // high limit
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
- btScalar bounce = m_relaxationFactor;
- if(bounce > btScalar(0.0))
- {
- btScalar vel = angVelA.dot(ax1);
- vel -= angVelB.dot(ax1);
- // only apply bounce if the velocity is incoming, and if the
- // resulting c[] exceeds what we already have.
- if(limit == 1)
- { // low limit
- if(vel < 0)
- {
- btScalar newc = -bounce * vel;
- if(newc > info->m_constraintError[srow])
- {
- info->m_constraintError[srow] = newc;
- }
- }
- }
- else
- { // high limit - all those computations are reversed
- if(vel > 0)
- {
- btScalar newc = -bounce * vel;
- if(newc < info->m_constraintError[srow])
- {
- info->m_constraintError[srow] = newc;
- }
- }
- }
- }
- info->m_constraintError[srow] *= m_biasFactor;
- } // if(limit)
- } // if angular limit or powered
-}
-
-
-
-
-
-
-void btHingeConstraint::updateRHS(btScalar timeStep)
-{
- (void)timeStep;
-
-}
-
-
-btScalar btHingeConstraint::getHingeAngle()
-{
- return getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
-}
-
-btScalar btHingeConstraint::getHingeAngle(const btTransform& transA,const btTransform& transB)
-{
- const btVector3 refAxis0 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
- const btVector3 refAxis1 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
- const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1);
-// btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
- btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
- return m_referenceSign * angle;
-}
-
-
-#if 0
-void btHingeConstraint::testLimit()
-{
- // Compute limit information
- m_hingeAngle = getHingeAngle();
- m_correction = btScalar(0.);
- m_limitSign = btScalar(0.);
- m_solveLimit = false;
- if (m_lowerLimit <= m_upperLimit)
- {
- if (m_hingeAngle <= m_lowerLimit)
- {
- m_correction = (m_lowerLimit - m_hingeAngle);
- m_limitSign = 1.0f;
- m_solveLimit = true;
- }
- else if (m_hingeAngle >= m_upperLimit)
- {
- m_correction = m_upperLimit - m_hingeAngle;
- m_limitSign = -1.0f;
- m_solveLimit = true;
- }
- }
- return;
-}
-#else
-
-
-void btHingeConstraint::testLimit(const btTransform& transA,const btTransform& transB)
-{
- // Compute limit information
- m_hingeAngle = getHingeAngle(transA,transB);
- m_correction = btScalar(0.);
- m_limitSign = btScalar(0.);
- m_solveLimit = false;
- if (m_lowerLimit <= m_upperLimit)
- {
- m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit);
- if (m_hingeAngle <= m_lowerLimit)
- {
- m_correction = (m_lowerLimit - m_hingeAngle);
- m_limitSign = 1.0f;
- m_solveLimit = true;
- }
- else if (m_hingeAngle >= m_upperLimit)
- {
- m_correction = m_upperLimit - m_hingeAngle;
- m_limitSign = -1.0f;
- m_solveLimit = true;
- }
- }
- return;
-}
-#endif
-
-static btVector3 vHinge(0, 0, btScalar(1));
-
-void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt)
-{
- // convert target from body to constraint space
- btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation();
- qConstraint.normalize();
-
- // extract "pure" hinge component
- btVector3 vNoHinge = quatRotate(qConstraint, vHinge); vNoHinge.normalize();
- btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge);
- btQuaternion qHinge = qNoHinge.inverse() * qConstraint;
- qHinge.normalize();
-
- // compute angular target, clamped to limits
- btScalar targetAngle = qHinge.getAngle();
- if (targetAngle > SIMD_PI) // long way around. flip quat and recalculate.
- {
- qHinge = operator-(qHinge);
- targetAngle = qHinge.getAngle();
- }
- if (qHinge.getZ() < 0)
- targetAngle = -targetAngle;
-
- setMotorTarget(targetAngle, dt);
-}
-
-void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt)
-{
- if (m_lowerLimit < m_upperLimit)
- {
- if (targetAngle < m_lowerLimit)
- targetAngle = m_lowerLimit;
- else if (targetAngle > m_upperLimit)
- targetAngle = m_upperLimit;
- }
-
- // compute angular velocity
- btScalar curAngle = getHingeAngle(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform());
- btScalar dAngle = targetAngle - curAngle;
- m_motorTargetVelocity = dAngle / dt;
-}
-
-
-
-void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA,const btTransform& transB,const btVector3& angVelA,const btVector3& angVelB)
-{
- btAssert(!m_useSolveConstraintObsolete);
- int i, s = info->rowskip;
- // transforms in world space
- btTransform trA = transA*m_rbAFrame;
- btTransform trB = transB*m_rbBFrame;
- // pivot point
- btVector3 pivotAInW = trA.getOrigin();
- btVector3 pivotBInW = trB.getOrigin();
-#if 1
- // difference between frames in WCS
- btVector3 ofs = trB.getOrigin() - trA.getOrigin();
- // now get weight factors depending on masses
- btScalar miA = getRigidBodyA().getInvMass();
- btScalar miB = getRigidBodyB().getInvMass();
- bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
- btScalar miS = miA + miB;
- btScalar factA, factB;
- if(miS > btScalar(0.f))
- {
- factA = miB / miS;
- }
- else
- {
- factA = btScalar(0.5f);
- }
- factB = btScalar(1.0f) - factA;
- // get the desired direction of hinge axis
- // as weighted sum of Z-orthos of frameA and frameB in WCS
- btVector3 ax1A = trA.getBasis().getColumn(2);
- btVector3 ax1B = trB.getBasis().getColumn(2);
- btVector3 ax1 = ax1A * factA + ax1B * factB;
- ax1.normalize();
- // fill first 3 rows
- // we want: velA + wA x relA == velB + wB x relB
- btTransform bodyA_trans = transA;
- btTransform bodyB_trans = transB;
- int s0 = 0;
- int s1 = s;
- int s2 = s * 2;
- int nrow = 2; // last filled row
- btVector3 tmpA, tmpB, relA, relB, p, q;
- // get vector from bodyB to frameB in WCS
- relB = trB.getOrigin() - bodyB_trans.getOrigin();
- // get its projection to hinge axis
- btVector3 projB = ax1 * relB.dot(ax1);
- // get vector directed from bodyB to hinge axis (and orthogonal to it)
- btVector3 orthoB = relB - projB;
- // same for bodyA
- relA = trA.getOrigin() - bodyA_trans.getOrigin();
- btVector3 projA = ax1 * relA.dot(ax1);
- btVector3 orthoA = relA - projA;
- btVector3 totalDist = projA - projB;
- // get offset vectors relA and relB
- relA = orthoA + totalDist * factA;
- relB = orthoB - totalDist * factB;
- // now choose average ortho to hinge axis
- p = orthoB * factA + orthoA * factB;
- btScalar len2 = p.length2();
- if(len2 > SIMD_EPSILON)
- {
- p /= btSqrt(len2);
- }
- else
- {
- p = trA.getBasis().getColumn(1);
- }
- // make one more ortho
- q = ax1.cross(p);
- // fill three rows
- tmpA = relA.cross(p);
- tmpB = relB.cross(p);
- for (i=0; i<3; i++) info->m_J1angularAxis[s0+i] = tmpA[i];
- for (i=0; i<3; i++) info->m_J2angularAxis[s0+i] = -tmpB[i];
- tmpA = relA.cross(q);
- tmpB = relB.cross(q);
- if(hasStaticBody && getSolveLimit())
- { // to make constraint between static and dynamic objects more rigid
- // remove wA (or wB) from equation if angular limit is hit
- tmpB *= factB;
- tmpA *= factA;
- }
- for (i=0; i<3; i++) info->m_J1angularAxis[s1+i] = tmpA[i];
- for (i=0; i<3; i++) info->m_J2angularAxis[s1+i] = -tmpB[i];
- tmpA = relA.cross(ax1);
- tmpB = relB.cross(ax1);
- if(hasStaticBody)
- { // to make constraint between static and dynamic objects more rigid
- // remove wA (or wB) from equation
- tmpB *= factB;
- tmpA *= factA;
- }
- for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = tmpA[i];
- for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = -tmpB[i];
-
- for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i];
- for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i];
- for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i];
- // compute three elements of right hand side
- btScalar k = info->fps * info->erp;
- btScalar rhs = k * p.dot(ofs);
- info->m_constraintError[s0] = rhs;
- rhs = k * q.dot(ofs);
- info->m_constraintError[s1] = rhs;
- rhs = k * ax1.dot(ofs);
- info->m_constraintError[s2] = rhs;
- // the hinge axis should be the only unconstrained
- // rotational axis, the angular velocity of the two bodies perpendicular to
- // the hinge axis should be equal. thus the constraint equations are
- // p*w1 - p*w2 = 0
- // q*w1 - q*w2 = 0
- // where p and q are unit vectors normal to the hinge axis, and w1 and w2
- // are the angular velocity vectors of the two bodies.
- int s3 = 3 * s;
- int s4 = 4 * s;
- info->m_J1angularAxis[s3 + 0] = p[0];
- info->m_J1angularAxis[s3 + 1] = p[1];
- info->m_J1angularAxis[s3 + 2] = p[2];
- info->m_J1angularAxis[s4 + 0] = q[0];
- info->m_J1angularAxis[s4 + 1] = q[1];
- info->m_J1angularAxis[s4 + 2] = q[2];
-
- info->m_J2angularAxis[s3 + 0] = -p[0];
- info->m_J2angularAxis[s3 + 1] = -p[1];
- info->m_J2angularAxis[s3 + 2] = -p[2];
- info->m_J2angularAxis[s4 + 0] = -q[0];
- info->m_J2angularAxis[s4 + 1] = -q[1];
- info->m_J2angularAxis[s4 + 2] = -q[2];
- // compute the right hand side of the constraint equation. set relative
- // body velocities along p and q to bring the hinge back into alignment.
- // if ax1A,ax1B are the unit length hinge axes as computed from bodyA and
- // bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
- // if "theta" is the angle between ax1 and ax2, we need an angular velocity
- // along u to cover angle erp*theta in one step :
- // |angular_velocity| = angle/time = erp*theta / stepsize
- // = (erp*fps) * theta
- // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
- // = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
- // ...as ax1 and ax2 are unit length. if theta is smallish,
- // theta ~= sin(theta), so
- // angular_velocity = (erp*fps) * (ax1 x ax2)
- // ax1 x ax2 is in the plane space of ax1, so we project the angular
- // velocity to p and q to find the right hand side.
- k = info->fps * info->erp;
- btVector3 u = ax1A.cross(ax1B);
- info->m_constraintError[s3] = k * u.dot(p);
- info->m_constraintError[s4] = k * u.dot(q);
-#endif
- // check angular limits
- nrow = 4; // last filled row
- int srow;
- btScalar limit_err = btScalar(0.0);
- int limit = 0;
- if(getSolveLimit())
- {
- limit_err = m_correction * m_referenceSign;
- limit = (limit_err > btScalar(0.0)) ? 1 : 2;
- }
- // if the hinge has joint limits or motor, add in the extra row
- int powered = 0;
- if(getEnableAngularMotor())
- {
- powered = 1;
- }
- if(limit || powered)
- {
- nrow++;
- srow = nrow * info->rowskip;
- info->m_J1angularAxis[srow+0] = ax1[0];
- info->m_J1angularAxis[srow+1] = ax1[1];
- info->m_J1angularAxis[srow+2] = ax1[2];
-
- info->m_J2angularAxis[srow+0] = -ax1[0];
- info->m_J2angularAxis[srow+1] = -ax1[1];
- info->m_J2angularAxis[srow+2] = -ax1[2];
-
- btScalar lostop = getLowerLimit();
- btScalar histop = getUpperLimit();
- if(limit && (lostop == histop))
- { // the joint motor is ineffective
- powered = 0;
- }
- info->m_constraintError[srow] = btScalar(0.0f);
- btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : info->erp;
- if(powered)
- {
- if(m_flags & BT_HINGE_FLAGS_CFM_NORM)
- {
- info->cfm[srow] = m_normalCFM;
- }
- btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
- info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
- info->m_lowerLimit[srow] = - m_maxMotorImpulse;
- info->m_upperLimit[srow] = m_maxMotorImpulse;
- }
- if(limit)
- {
- k = info->fps * currERP;
- info->m_constraintError[srow] += k * limit_err;
- if(m_flags & BT_HINGE_FLAGS_CFM_STOP)
- {
- info->cfm[srow] = m_stopCFM;
- }
- if(lostop == histop)
- {
- // limited low and high simultaneously
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else if(limit == 1)
- { // low limit
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- { // high limit
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
- btScalar bounce = m_relaxationFactor;
- if(bounce > btScalar(0.0))
- {
- btScalar vel = angVelA.dot(ax1);
- vel -= angVelB.dot(ax1);
- // only apply bounce if the velocity is incoming, and if the
- // resulting c[] exceeds what we already have.
- if(limit == 1)
- { // low limit
- if(vel < 0)
- {
- btScalar newc = -bounce * vel;
- if(newc > info->m_constraintError[srow])
- {
- info->m_constraintError[srow] = newc;
- }
- }
- }
- else
- { // high limit - all those computations are reversed
- if(vel > 0)
- {
- btScalar newc = -bounce * vel;
- if(newc < info->m_constraintError[srow])
- {
- info->m_constraintError[srow] = newc;
- }
- }
- }
- }
- info->m_constraintError[srow] *= m_biasFactor;
- } // if(limit)
- } // if angular limit or powered
-}
-
-
-///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
-///If no axis is provided, it uses the default axis for this constraint.
-void btHingeConstraint::setParam(int num, btScalar value, int axis)
-{
- if((axis == -1) || (axis == 5))
- {
- switch(num)
- {
- case BT_CONSTRAINT_STOP_ERP :
- m_stopERP = value;
- m_flags |= BT_HINGE_FLAGS_ERP_STOP;
- break;
- case BT_CONSTRAINT_STOP_CFM :
- m_stopCFM = value;
- m_flags |= BT_HINGE_FLAGS_CFM_STOP;
- break;
- case BT_CONSTRAINT_CFM :
- m_normalCFM = value;
- m_flags |= BT_HINGE_FLAGS_CFM_NORM;
- break;
- default :
- btAssertConstrParams(0);
- }
- }
- else
- {
- btAssertConstrParams(0);
- }
-}
-
-///return the local value of parameter
-btScalar btHingeConstraint::getParam(int num, int axis) const
-{
- btScalar retVal = 0;
- if((axis == -1) || (axis == 5))
- {
- switch(num)
- {
- case BT_CONSTRAINT_STOP_ERP :
- btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP);
- retVal = m_stopERP;
- break;
- case BT_CONSTRAINT_STOP_CFM :
- btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP);
- retVal = m_stopCFM;
- break;
- case BT_CONSTRAINT_CFM :
- btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM);
- retVal = m_normalCFM;
- break;
- default :
- btAssertConstrParams(0);
- }
- }
- else
- {
- btAssertConstrParams(0);
- }
- return retVal;
-}
-
-