Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp')
-rw-r--r--extern/bullet2/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp1174
1 files changed, 1174 insertions, 0 deletions
diff --git a/extern/bullet2/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp b/extern/bullet2/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
new file mode 100644
index 00000000000..4e1048823c0
--- /dev/null
+++ b/extern/bullet2/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
@@ -0,0 +1,1174 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+//#define COMPUTE_IMPULSE_DENOM 1
+//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
+
+#include "btSequentialImpulseConstraintSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "btContactConstraint.h"
+#include "btSolve2LinearConstraint.h"
+#include "btContactSolverInfo.h"
+#include "LinearMath/btIDebugDraw.h"
+#include "btJacobianEntry.h"
+#include "LinearMath/btMinMax.h"
+#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
+#include <new>
+#include "LinearMath/btStackAlloc.h"
+#include "LinearMath/btQuickprof.h"
+#include "btSolverBody.h"
+#include "btSolverConstraint.h"
+#include "LinearMath/btAlignedObjectArray.h"
+#include <string.h> //for memset
+
+int gNumSplitImpulseRecoveries = 0;
+
+btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver()
+:m_btSeed2(0)
+{
+
+}
+
+btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver()
+{
+}
+
+#ifdef USE_SIMD
+#include <emmintrin.h>
+#define vec_splat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e))
+static inline __m128 _vmathVfDot3( __m128 vec0, __m128 vec1 )
+{
+ __m128 result = _mm_mul_ps( vec0, vec1);
+ return _mm_add_ps( vec_splat( result, 0 ), _mm_add_ps( vec_splat( result, 1 ), vec_splat( result, 2 ) ) );
+}
+#endif//USE_SIMD
+
+// Project Gauss Seidel or the equivalent Sequential Impulse
+void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
+{
+#ifdef USE_SIMD
+ __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
+ btSimdScalar resultLowerLess,resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
+ deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
+ c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
+ __m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp);
+ deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) );
+ c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) );
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
+ __m128 impulseMagnitude = deltaImpulse;
+ body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
+ body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
+ body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
+ body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+#else
+ resolveSingleConstraintRowGeneric(body1,body2,c);
+#endif
+}
+
+// Project Gauss Seidel or the equivalent Sequential Impulse
+ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
+{
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
+ const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
+
+// const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
+ deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+ body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+ body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+}
+
+ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
+{
+#ifdef USE_SIMD
+ __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
+ btSimdScalar resultLowerLess,resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
+ deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
+ c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
+ __m128 impulseMagnitude = deltaImpulse;
+ body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
+ body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
+ body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
+ body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+#else
+ resolveSingleConstraintRowLowerLimit(body1,body2,c);
+#endif
+}
+
+// Project Gauss Seidel or the equivalent Sequential Impulse
+ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
+{
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
+ const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
+
+ deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+ body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+ body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+}
+
+
+void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFriendly(
+ btRigidBody& body1,
+ btRigidBody& body2,
+ const btSolverConstraint& c)
+{
+ if (c.m_rhsPenetration)
+ {
+ gNumSplitImpulseRecoveries++;
+ btScalar deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
+ const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
+
+ deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse;
+ c.m_appliedPushImpulse = c.m_lowerLimit;
+ }
+ else
+ {
+ c.m_appliedPushImpulse = sum;
+ }
+ body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+ body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ }
+}
+
+ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c)
+{
+#ifdef USE_SIMD
+ if (!c.m_rhsPenetration)
+ return;
+
+ gNumSplitImpulseRecoveries++;
+
+ __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(_vmathVfDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), _vmathVfDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_sub_ps(_vmathVfDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),_vmathVfDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
+ btSimdScalar resultLowerLess,resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
+ deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
+ c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
+ __m128 impulseMagnitude = deltaImpulse;
+ body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
+ body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
+ body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
+ body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+#else
+ resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c);
+#endif
+}
+
+
+
+unsigned long btSequentialImpulseConstraintSolver::btRand2()
+{
+ m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff;
+ return m_btSeed2;
+}
+
+
+
+//See ODE: adam's all-int straightforward(?) dRandInt (0..n-1)
+int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
+{
+ // seems good; xor-fold and modulus
+ const unsigned long un = static_cast<unsigned long>(n);
+ unsigned long r = btRand2();
+
+ // note: probably more aggressive than it needs to be -- might be
+ // able to get away without one or two of the innermost branches.
+ if (un <= 0x00010000UL) {
+ r ^= (r >> 16);
+ if (un <= 0x00000100UL) {
+ r ^= (r >> 8);
+ if (un <= 0x00000010UL) {
+ r ^= (r >> 4);
+ if (un <= 0x00000004UL) {
+ r ^= (r >> 2);
+ if (un <= 0x00000002UL) {
+ r ^= (r >> 1);
+ }
+ }
+ }
+ }
+ }
+
+ return (int) (r % un);
+}
+
+
+#if 0
+void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject)
+{
+ btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0;
+
+ solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
+
+ if (rb)
+ {
+ solverBody->internalGetInvMass() = btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor();
+ solverBody->m_originalBody = rb;
+ solverBody->m_angularFactor = rb->getAngularFactor();
+ } else
+ {
+ solverBody->internalGetInvMass().setValue(0,0,0);
+ solverBody->m_originalBody = 0;
+ solverBody->m_angularFactor.setValue(1,1,1);
+ }
+}
+#endif
+
+
+
+
+
+btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel, btScalar restitution)
+{
+ btScalar rest = restitution * -rel_vel;
+ return rest;
+}
+
+
+
+void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection);
+void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection)
+{
+ if (colObj && colObj->hasAnisotropicFriction())
+ {
+ // transform to local coordinates
+ btVector3 loc_lateral = frictionDirection * colObj->getWorldTransform().getBasis();
+ const btVector3& friction_scaling = colObj->getAnisotropicFriction();
+ //apply anisotropic friction
+ loc_lateral *= friction_scaling;
+ // ... and transform it back to global coordinates
+ frictionDirection = colObj->getWorldTransform().getBasis() * loc_lateral;
+ }
+}
+
+
+void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+
+ btRigidBody* body0=btRigidBody::upcast(colObj0);
+ btRigidBody* body1=btRigidBody::upcast(colObj1);
+
+ solverConstraint.m_contactNormal = normalAxis;
+
+ solverConstraint.m_solverBodyA = body0 ? body0 : &getFixedBody();
+ solverConstraint.m_solverBodyB = body1 ? body1 : &getFixedBody();
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+ solverConstraint.m_originalContactPoint = 0;
+
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+ btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal);
+ solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
+ solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0);
+ }
+ {
+ btVector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal);
+ solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
+ solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0);
+ }
+
+#ifdef COMPUTE_IMPULSE_DENOM
+ btScalar denom0 = rb0->computeImpulseDenominator(pos1,solverConstraint.m_contactNormal);
+ btScalar denom1 = rb1->computeImpulseDenominator(pos2,solverConstraint.m_contactNormal);
+#else
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ if (body0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = body0->getInvMass() + normalAxis.dot(vec);
+ }
+ if (body1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = body1->getInvMass() + normalAxis.dot(vec);
+ }
+
+
+#endif //COMPUTE_IMPULSE_DENOM
+ btScalar denom = relaxation/(denom0+denom1);
+ solverConstraint.m_jacDiagABInv = denom;
+
+#ifdef _USE_JACOBIAN
+ solverConstraint.m_jac = btJacobianEntry (
+ rel_pos1,rel_pos2,solverConstraint.m_contactNormal,
+ body0->getInvInertiaDiagLocal(),
+ body0->getInvMass(),
+ body1->getInvInertiaDiagLocal(),
+ body1->getInvMass());
+#endif //_USE_JACOBIAN
+
+
+ {
+ btScalar rel_vel;
+ btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?body0->getLinearVelocity():btVector3(0,0,0))
+ + solverConstraint.m_relpos1CrossNormal.dot(body0?body0->getAngularVelocity():btVector3(0,0,0));
+ btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?body1->getLinearVelocity():btVector3(0,0,0))
+ + solverConstraint.m_relpos2CrossNormal.dot(body1?body1->getAngularVelocity():btVector3(0,0,0));
+
+ rel_vel = vel1Dotn+vel2Dotn;
+
+// btScalar positionalError = 0.f;
+
+ btSimdScalar velocityError = desiredVelocity - rel_vel;
+ btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_cfm = cfmSlip;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
+}
+
+
+
+btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
+ solverConstraint.m_frictionIndex = frictionIndex;
+ setupFrictionConstraint(solverConstraint, normalAxis, solverBodyA, solverBodyB, cp, rel_pos1, rel_pos2,
+ colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body)
+{
+#if 0
+ int solverBodyIdA = -1;
+
+ if (body.getCompanionId() >= 0)
+ {
+ //body has already been converted
+ solverBodyIdA = body.getCompanionId();
+ } else
+ {
+ btRigidBody* rb = btRigidBody::upcast(&body);
+ if (rb && rb->getInvMass())
+ {
+ solverBodyIdA = m_tmpSolverBodyPool.size();
+ btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&solverBody,&body);
+ body.setCompanionId(solverBodyIdA);
+ } else
+ {
+ return 0;//assume first one is a fixed solver body
+ }
+ }
+ return solverBodyIdA;
+#endif
+ return 0;
+}
+#include <stdio.h>
+
+
+void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint,
+ btCollisionObject* colObj0, btCollisionObject* colObj1,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btVector3& vel, btScalar& rel_vel, btScalar& relaxation,
+ btVector3& rel_pos1, btVector3& rel_pos2)
+{
+ btRigidBody* rb0 = btRigidBody::upcast(colObj0);
+ btRigidBody* rb1 = btRigidBody::upcast(colObj1);
+
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+// btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+// btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+ rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+ rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+
+ relaxation = 1.f;
+
+ btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+
+ {
+#ifdef COMPUTE_IMPULSE_DENOM
+ btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
+ btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
+#else
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ if (rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
+ }
+ if (rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
+ }
+#endif //COMPUTE_IMPULSE_DENOM
+
+ btScalar denom = relaxation/(denom0+denom1);
+ solverConstraint.m_jacDiagABInv = denom;
+ }
+
+ solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
+ solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB);
+
+
+
+
+ btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
+ btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+ vel = vel1 - vel2;
+ rel_vel = cp.m_normalWorldOnB.dot(vel);
+
+ btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
+
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+
+ btScalar restitution = 0.f;
+
+ if (cp.m_lifeTime>infoGlobal.m_restingContactRestitutionThreshold)
+ {
+ restitution = 0.f;
+ } else
+ {
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
+
+
+ ///warm starting (or zero if disabled)
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ rb0->internalApplyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ if (rb1)
+ rb1->internalApplyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
+ } else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
+
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+ btScalar rel_vel;
+ btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?rb0->getLinearVelocity():btVector3(0,0,0))
+ + solverConstraint.m_relpos1CrossNormal.dot(rb0?rb0->getAngularVelocity():btVector3(0,0,0));
+ btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0))
+ + solverConstraint.m_relpos2CrossNormal.dot(rb1?rb1->getAngularVelocity():btVector3(0,0,0));
+
+ rel_vel = vel1Dotn+vel2Dotn;
+
+ btScalar positionalError = 0.f;
+ positionalError = -penetration * infoGlobal.m_erp/infoGlobal.m_timeStep;
+ btScalar velocityError = restitution - rel_vel;// * damping;
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
+
+
+
+
+}
+
+
+
+void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint,
+ btRigidBody* rb0, btRigidBody* rb1,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal)
+{
+ if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING)
+ {
+ {
+ btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ rb0->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
+ if (rb1)
+ rb1->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
+ } else
+ {
+ frictionConstraint1.m_appliedImpulse = 0.f;
+ }
+ }
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ rb0->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
+ if (rb1)
+ rb1->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
+ } else
+ {
+ frictionConstraint2.m_appliedImpulse = 0.f;
+ }
+ }
+ } else
+ {
+ btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
+ frictionConstraint1.m_appliedImpulse = 0.f;
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
+ frictionConstraint2.m_appliedImpulse = 0.f;
+ }
+ }
+}
+
+
+
+
+void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
+{
+ btCollisionObject* colObj0=0,*colObj1=0;
+
+ colObj0 = (btCollisionObject*)manifold->getBody0();
+ colObj1 = (btCollisionObject*)manifold->getBody1();
+
+
+ btRigidBody* solverBodyA = btRigidBody::upcast(colObj0);
+ btRigidBody* solverBodyB = btRigidBody::upcast(colObj1);
+
+ ///avoid collision response between two static objects
+ if ((!solverBodyA || !solverBodyA->getInvMass()) && (!solverBodyB || !solverBodyB->getInvMass()))
+ return;
+
+ for (int j=0;j<manifold->getNumContacts();j++)
+ {
+
+ btManifoldPoint& cp = manifold->getContactPoint(j);
+
+ if (cp.getDistance() <= manifold->getContactProcessingThreshold())
+ {
+ btVector3 rel_pos1;
+ btVector3 rel_pos2;
+ btScalar relaxation;
+ btScalar rel_vel;
+ btVector3 vel;
+
+ int frictionIndex = m_tmpSolverContactConstraintPool.size();
+ btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
+ btRigidBody* rb0 = btRigidBody::upcast(colObj0);
+ btRigidBody* rb1 = btRigidBody::upcast(colObj1);
+ solverConstraint.m_solverBodyA = rb0? rb0 : &getFixedBody();
+ solverConstraint.m_solverBodyB = rb1? rb1 : &getFixedBody();
+ solverConstraint.m_originalContactPoint = &cp;
+
+ setupContactConstraint(solverConstraint, colObj0, colObj1, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2);
+
+// const btVector3& pos1 = cp.getPositionWorldOnA();
+// const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ /////setup the friction constraints
+
+ solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
+
+ if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
+ {
+ cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
+ btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
+ if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
+ {
+ cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel);
+ if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
+ cp.m_lateralFrictionDir2.normalize();//??
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
+ addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ cp.m_lateralFrictionInitialized = true;
+ } else
+ {
+ //re-calculate friction direction every frame, todo: check if this is really needed
+ btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
+ addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ cp.m_lateralFrictionInitialized = true;
+ }
+
+ } else
+ {
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1);
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
+ }
+
+ setFrictionConstraintImpulse( solverConstraint, rb0, rb1, cp, infoGlobal);
+
+ }
+ }
+}
+
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** /*bodies */,int /*numBodies */,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
+{
+ BT_PROFILE("solveGroupCacheFriendlySetup");
+ (void)stackAlloc;
+ (void)debugDrawer;
+
+
+ if (!(numConstraints + numManifolds))
+ {
+ // printf("empty\n");
+ return 0.f;
+ }
+
+ if (1)
+ {
+ int j;
+ for (j=0;j<numConstraints;j++)
+ {
+ btTypedConstraint* constraint = constraints[j];
+ constraint->buildJacobian();
+ }
+ }
+ //btRigidBody* rb0=0,*rb1=0;
+
+ //if (1)
+ {
+ {
+
+ int totalNumRows = 0;
+ int i;
+
+ m_tmpConstraintSizesPool.resize(numConstraints);
+ //calculate the total number of contraint rows
+ for (i=0;i<numConstraints;i++)
+ {
+ btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
+ constraints[i]->getInfo1(&info1);
+ totalNumRows += info1.m_numConstraintRows;
+ }
+ m_tmpSolverNonContactConstraintPool.resize(totalNumRows);
+
+
+ ///setup the btSolverConstraints
+ int currentRow = 0;
+
+ for (i=0;i<numConstraints;i++)
+ {
+ const btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
+
+ if (info1.m_numConstraintRows)
+ {
+ btAssert(currentRow<totalNumRows);
+
+ btSolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow];
+ btTypedConstraint* constraint = constraints[i];
+
+
+
+ btRigidBody& rbA = constraint->getRigidBodyA();
+ btRigidBody& rbB = constraint->getRigidBodyB();
+
+
+ int j;
+ for ( j=0;j<info1.m_numConstraintRows;j++)
+ {
+ memset(&currentConstraintRow[j],0,sizeof(btSolverConstraint));
+ currentConstraintRow[j].m_lowerLimit = -FLT_MAX;
+ currentConstraintRow[j].m_upperLimit = FLT_MAX;
+ currentConstraintRow[j].m_appliedImpulse = 0.f;
+ currentConstraintRow[j].m_appliedPushImpulse = 0.f;
+ currentConstraintRow[j].m_solverBodyA = &rbA;
+ currentConstraintRow[j].m_solverBodyB = &rbB;
+ }
+
+ rbA.internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
+ rbA.internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
+ rbB.internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
+ rbB.internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
+
+
+
+ btTypedConstraint::btConstraintInfo2 info2;
+ info2.fps = 1.f/infoGlobal.m_timeStep;
+ info2.erp = infoGlobal.m_erp;
+ info2.m_J1linearAxis = currentConstraintRow->m_contactNormal;
+ info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
+ info2.m_J2linearAxis = 0;
+ info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
+ info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this
+ ///the size of btSolverConstraint needs be a multiple of btScalar
+ btAssert(info2.rowskip*sizeof(btScalar)== sizeof(btSolverConstraint));
+ info2.m_constraintError = &currentConstraintRow->m_rhs;
+ currentConstraintRow->m_cfm = infoGlobal.m_globalCfm;
+ info2.cfm = &currentConstraintRow->m_cfm;
+ info2.m_lowerLimit = &currentConstraintRow->m_lowerLimit;
+ info2.m_upperLimit = &currentConstraintRow->m_upperLimit;
+ info2.m_numIterations = infoGlobal.m_numIterations;
+ constraints[i]->getInfo2(&info2);
+
+ ///finalize the constraint setup
+ for ( j=0;j<info1.m_numConstraintRows;j++)
+ {
+ btSolverConstraint& solverConstraint = currentConstraintRow[j];
+ solverConstraint.m_originalContactPoint = constraint;
+
+ {
+ const btVector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
+ solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor();
+ }
+ {
+ const btVector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
+ solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor();
+ }
+
+ {
+ btVector3 iMJlA = solverConstraint.m_contactNormal*rbA.getInvMass();
+ btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
+ btVector3 iMJlB = solverConstraint.m_contactNormal*rbB.getInvMass();//sign of normal?
+ btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
+
+ btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal);
+ sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
+ sum += iMJlB.dot(solverConstraint.m_contactNormal);
+ sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
+
+ solverConstraint.m_jacDiagABInv = btScalar(1.)/sum;
+ }
+
+
+ ///fix rhs
+ ///todo: add force/torque accelerators
+ {
+ btScalar rel_vel;
+ btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
+ btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
+
+ rel_vel = vel1Dotn+vel2Dotn;
+
+ btScalar restitution = 0.f;
+ btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
+ btScalar velocityError = restitution - rel_vel;// * damping;
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_appliedImpulse = 0.f;
+
+ }
+ }
+ }
+ currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows;
+ }
+ }
+
+ {
+ int i;
+ btPersistentManifold* manifold = 0;
+// btCollisionObject* colObj0=0,*colObj1=0;
+
+
+ for (i=0;i<numManifolds;i++)
+ {
+ manifold = manifoldPtr[i];
+ convertContact(manifold,infoGlobal);
+ }
+ }
+ }
+
+ btContactSolverInfo info = infoGlobal;
+
+
+
+ int numConstraintPool = m_tmpSolverContactConstraintPool.size();
+ int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
+
+ ///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
+ m_orderTmpConstraintPool.resize(numConstraintPool);
+ m_orderFrictionConstraintPool.resize(numFrictionPool);
+ {
+ int i;
+ for (i=0;i<numConstraintPool;i++)
+ {
+ m_orderTmpConstraintPool[i] = i;
+ }
+ for (i=0;i<numFrictionPool;i++)
+ {
+ m_orderFrictionConstraintPool[i] = i;
+ }
+ }
+
+ return 0.f;
+
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/)
+{
+
+ int numConstraintPool = m_tmpSolverContactConstraintPool.size();
+ int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
+
+ int j;
+
+ if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
+ {
+ if ((iteration & 7) == 0) {
+ for (j=0; j<numConstraintPool; ++j) {
+ int tmp = m_orderTmpConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
+ m_orderTmpConstraintPool[swapi] = tmp;
+ }
+
+ for (j=0; j<numFrictionPool; ++j) {
+ int tmp = m_orderFrictionConstraintPool[j];
+ int swapi = btRandInt2(j+1);
+ m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
+ m_orderFrictionConstraintPool[swapi] = tmp;
+ }
+ }
+ }
+
+ if (infoGlobal.m_solverMode & SOLVER_SIMD)
+ {
+ ///solve all joint constraints, using SIMD, if available
+ for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
+ resolveSingleConstraintRowGenericSIMD(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
+ }
+
+ for (j=0;j<numConstraints;j++)
+ {
+ constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
+ }
+
+ ///solve all contact constraints using SIMD, if available
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+ resolveSingleConstraintRowLowerLimitSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
+
+ }
+ ///solve all friction constraints, using SIMD, if available
+ int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
+ for (j=0;j<numFrictionPoolConstraints;j++)
+ {
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+
+ resolveSingleConstraintRowGenericSIMD(*solveManifold.m_solverBodyA, *solveManifold.m_solverBodyB,solveManifold);
+ }
+ }
+ } else
+ {
+
+ ///solve all joint constraints
+ for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
+ resolveSingleConstraintRowGeneric(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
+ }
+
+ for (j=0;j<numConstraints;j++)
+ {
+ constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
+ }
+ ///solve all contact constraints
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+ resolveSingleConstraintRowLowerLimit(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
+ }
+ ///solve all friction constraints
+ int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
+ for (j=0;j<numFrictionPoolConstraints;j++)
+ {
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+
+ if (totalImpulse>btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+
+ resolveSingleConstraintRowGeneric(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
+ }
+ }
+ }
+ return 0.f;
+}
+
+
+void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
+{
+ int iteration;
+ if (infoGlobal.m_splitImpulse)
+ {
+ if (infoGlobal.m_solverMode & SOLVER_SIMD)
+ {
+ for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ {
+ {
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int j;
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+
+ resolveSplitPenetrationSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
+ }
+ }
+ }
+ }
+ else
+ {
+ for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ {
+ {
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int j;
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+
+ resolveSplitPenetrationImpulseCacheFriendly(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
+ }
+ }
+ }
+ }
+ }
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
+{
+ BT_PROFILE("solveGroupCacheFriendlyIterations");
+
+
+ //should traverse the contacts random order...
+ int iteration;
+ {
+ for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ {
+ solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
+ }
+
+ solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
+ }
+ return 0.f;
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies ,int numBodies,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** /*constraints*/,int /* numConstraints*/,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/)
+{
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int i,j;
+
+ for (j=0;j<numPoolConstraints;j++)
+ {
+
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j];
+ btManifoldPoint* pt = (btManifoldPoint*) solveManifold.m_originalContactPoint;
+ btAssert(pt);
+ pt->m_appliedImpulse = solveManifold.m_appliedImpulse;
+ if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING)
+ {
+ pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+ pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse;
+ }
+
+ //do a callback here?
+ }
+
+ numPoolConstraints = m_tmpSolverNonContactConstraintPool.size();
+ for (j=0;j<numPoolConstraints;j++)
+ {
+ const btSolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j];
+ btTypedConstraint* constr = (btTypedConstraint*)solverConstr.m_originalContactPoint;
+ btScalar sum = constr->internalGetAppliedImpulse();
+ sum += solverConstr.m_appliedImpulse;
+ constr->internalSetAppliedImpulse(sum);
+ }
+
+
+ if (infoGlobal.m_splitImpulse)
+ {
+ for ( i=0;i<numBodies;i++)
+ {
+ btRigidBody* body = btRigidBody::upcast(bodies[i]);
+ if (body)
+ body->internalWritebackVelocity(infoGlobal.m_timeStep);
+ }
+ } else
+ {
+ for ( i=0;i<numBodies;i++)
+ {
+ btRigidBody* body = btRigidBody::upcast(bodies[i]);
+ if (body)
+ body->internalWritebackVelocity();
+ }
+ }
+
+
+ m_tmpSolverContactConstraintPool.resize(0);
+ m_tmpSolverNonContactConstraintPool.resize(0);
+ m_tmpSolverContactFrictionConstraintPool.resize(0);
+
+ return 0.f;
+}
+
+
+
+/// btSequentialImpulseConstraintSolver Sequentially applies impulses
+btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* /*dispatcher*/)
+{
+
+ BT_PROFILE("solveGroup");
+ //you need to provide at least some bodies
+ btAssert(bodies);
+ btAssert(numBodies);
+
+ solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
+
+ solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
+
+ solveGroupCacheFriendlyFinish(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
+
+ return 0.f;
+}
+
+void btSequentialImpulseConstraintSolver::reset()
+{
+ m_btSeed2 = 0;
+}
+
+