Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp')
-rw-r--r--extern/bullet2/src/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp683
1 files changed, 683 insertions, 0 deletions
diff --git a/extern/bullet2/src/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp b/extern/bullet2/src/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
new file mode 100644
index 00000000000..45ebff5dc45
--- /dev/null
+++ b/extern/bullet2/src/BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp
@@ -0,0 +1,683 @@
+
+/*
+ * Box-Box collision detection re-distributed under the ZLib license with permission from Russell L. Smith
+ * Original version is from Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.
+ * All rights reserved. Email: russ@q12.org Web: www.q12.org
+ Bullet Continuous Collision Detection and Physics Library
+ Bullet is Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///ODE box-box collision detection is adapted to work with Bullet
+
+#include "btBoxBoxDetector.h"
+#include "BulletCollision/CollisionShapes/btBoxShape.h"
+
+#include <float.h>
+#include <string.h>
+
+btBoxBoxDetector::btBoxBoxDetector(btBoxShape* box1,btBoxShape* box2)
+: m_box1(box1),
+m_box2(box2)
+{
+
+}
+
+
+// given two boxes (p1,R1,side1) and (p2,R2,side2), collide them together and
+// generate contact points. this returns 0 if there is no contact otherwise
+// it returns the number of contacts generated.
+// `normal' returns the contact normal.
+// `depth' returns the maximum penetration depth along that normal.
+// `return_code' returns a number indicating the type of contact that was
+// detected:
+// 1,2,3 = box 2 intersects with a face of box 1
+// 4,5,6 = box 1 intersects with a face of box 2
+// 7..15 = edge-edge contact
+// `maxc' is the maximum number of contacts allowed to be generated, i.e.
+// the size of the `contact' array.
+// `contact' and `skip' are the contact array information provided to the
+// collision functions. this function only fills in the position and depth
+// fields.
+struct dContactGeom;
+#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
+#define dInfinity FLT_MAX
+
+
+/*PURE_INLINE btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
+PURE_INLINE btScalar dDOT13 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,3); }
+PURE_INLINE btScalar dDOT31 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,1); }
+PURE_INLINE btScalar dDOT33 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,3,3); }
+*/
+static btScalar dDOT (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,1); }
+static btScalar dDOT44 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,4); }
+static btScalar dDOT41 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,4,1); }
+static btScalar dDOT14 (const btScalar *a, const btScalar *b) { return dDOTpq(a,b,1,4); }
+#define dMULTIPLYOP1_331(A,op,B,C) \
+{\
+ (A)[0] op dDOT41((B),(C)); \
+ (A)[1] op dDOT41((B+1),(C)); \
+ (A)[2] op dDOT41((B+2),(C)); \
+}
+
+#define dMULTIPLYOP0_331(A,op,B,C) \
+{ \
+ (A)[0] op dDOT((B),(C)); \
+ (A)[1] op dDOT((B+4),(C)); \
+ (A)[2] op dDOT((B+8),(C)); \
+}
+
+#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
+#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
+
+typedef btScalar dMatrix3[4*3];
+
+void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
+ const btVector3& pb, const btVector3& ub,
+ btScalar *alpha, btScalar *beta);
+void dLineClosestApproach (const btVector3& pa, const btVector3& ua,
+ const btVector3& pb, const btVector3& ub,
+ btScalar *alpha, btScalar *beta)
+{
+ btVector3 p;
+ p[0] = pb[0] - pa[0];
+ p[1] = pb[1] - pa[1];
+ p[2] = pb[2] - pa[2];
+ btScalar uaub = dDOT(ua,ub);
+ btScalar q1 = dDOT(ua,p);
+ btScalar q2 = -dDOT(ub,p);
+ btScalar d = 1-uaub*uaub;
+ if (d <= btScalar(0.0001f)) {
+ // @@@ this needs to be made more robust
+ *alpha = 0;
+ *beta = 0;
+ }
+ else {
+ d = 1.f/d;
+ *alpha = (q1 + uaub*q2)*d;
+ *beta = (uaub*q1 + q2)*d;
+ }
+}
+
+
+
+// find all the intersection points between the 2D rectangle with vertices
+// at (+/-h[0],+/-h[1]) and the 2D quadrilateral with vertices (p[0],p[1]),
+// (p[2],p[3]),(p[4],p[5]),(p[6],p[7]).
+//
+// the intersection points are returned as x,y pairs in the 'ret' array.
+// the number of intersection points is returned by the function (this will
+// be in the range 0 to 8).
+
+static int intersectRectQuad2 (btScalar h[2], btScalar p[8], btScalar ret[16])
+{
+ // q (and r) contain nq (and nr) coordinate points for the current (and
+ // chopped) polygons
+ int nq=4,nr=0;
+ btScalar buffer[16];
+ btScalar *q = p;
+ btScalar *r = ret;
+ for (int dir=0; dir <= 1; dir++) {
+ // direction notation: xy[0] = x axis, xy[1] = y axis
+ for (int sign=-1; sign <= 1; sign += 2) {
+ // chop q along the line xy[dir] = sign*h[dir]
+ btScalar *pq = q;
+ btScalar *pr = r;
+ nr = 0;
+ for (int i=nq; i > 0; i--) {
+ // go through all points in q and all lines between adjacent points
+ if (sign*pq[dir] < h[dir]) {
+ // this point is inside the chopping line
+ pr[0] = pq[0];
+ pr[1] = pq[1];
+ pr += 2;
+ nr++;
+ if (nr & 8) {
+ q = r;
+ goto done;
+ }
+ }
+ btScalar *nextq = (i > 1) ? pq+2 : q;
+ if ((sign*pq[dir] < h[dir]) ^ (sign*nextq[dir] < h[dir])) {
+ // this line crosses the chopping line
+ pr[1-dir] = pq[1-dir] + (nextq[1-dir]-pq[1-dir]) /
+ (nextq[dir]-pq[dir]) * (sign*h[dir]-pq[dir]);
+ pr[dir] = sign*h[dir];
+ pr += 2;
+ nr++;
+ if (nr & 8) {
+ q = r;
+ goto done;
+ }
+ }
+ pq += 2;
+ }
+ q = r;
+ r = (q==ret) ? buffer : ret;
+ nq = nr;
+ }
+ }
+ done:
+ if (q != ret) memcpy (ret,q,nr*2*sizeof(btScalar));
+ return nr;
+}
+
+
+#define M__PI 3.14159265f
+
+// given n points in the plane (array p, of size 2*n), generate m points that
+// best represent the whole set. the definition of 'best' here is not
+// predetermined - the idea is to select points that give good box-box
+// collision detection behavior. the chosen point indexes are returned in the
+// array iret (of size m). 'i0' is always the first entry in the array.
+// n must be in the range [1..8]. m must be in the range [1..n]. i0 must be
+// in the range [0..n-1].
+
+void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[]);
+void cullPoints2 (int n, btScalar p[], int m, int i0, int iret[])
+{
+ // compute the centroid of the polygon in cx,cy
+ int i,j;
+ btScalar a,cx,cy,q;
+ if (n==1) {
+ cx = p[0];
+ cy = p[1];
+ }
+ else if (n==2) {
+ cx = btScalar(0.5)*(p[0] + p[2]);
+ cy = btScalar(0.5)*(p[1] + p[3]);
+ }
+ else {
+ a = 0;
+ cx = 0;
+ cy = 0;
+ for (i=0; i<(n-1); i++) {
+ q = p[i*2]*p[i*2+3] - p[i*2+2]*p[i*2+1];
+ a += q;
+ cx += q*(p[i*2]+p[i*2+2]);
+ cy += q*(p[i*2+1]+p[i*2+3]);
+ }
+ q = p[n*2-2]*p[1] - p[0]*p[n*2-1];
+ a = 1.f/(btScalar(3.0)*(a+q));
+ cx = a*(cx + q*(p[n*2-2]+p[0]));
+ cy = a*(cy + q*(p[n*2-1]+p[1]));
+ }
+
+ // compute the angle of each point w.r.t. the centroid
+ btScalar A[8];
+ for (i=0; i<n; i++) A[i] = btAtan2(p[i*2+1]-cy,p[i*2]-cx);
+
+ // search for points that have angles closest to A[i0] + i*(2*pi/m).
+ int avail[8];
+ for (i=0; i<n; i++) avail[i] = 1;
+ avail[i0] = 0;
+ iret[0] = i0;
+ iret++;
+ for (j=1; j<m; j++) {
+ a = btScalar(j)*(2*M__PI/m) + A[i0];
+ if (a > M__PI) a -= 2*M__PI;
+ btScalar maxdiff=1e9,diff;
+#if defined(DEBUG) || defined (_DEBUG)
+ *iret = i0; // iret is not allowed to keep this value
+#endif
+ for (i=0; i<n; i++) {
+ if (avail[i]) {
+ diff = btFabs (A[i]-a);
+ if (diff > M__PI) diff = 2*M__PI - diff;
+ if (diff < maxdiff) {
+ maxdiff = diff;
+ *iret = i;
+ }
+ }
+ }
+#if defined(DEBUG) || defined (_DEBUG)
+ btAssert (*iret != i0); // ensure iret got set
+#endif
+ avail[*iret] = 0;
+ iret++;
+ }
+}
+
+
+
+int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
+ const btVector3& side1, const btVector3& p2,
+ const dMatrix3 R2, const btVector3& side2,
+ btVector3& normal, btScalar *depth, int *return_code,
+ int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output);
+int dBoxBox2 (const btVector3& p1, const dMatrix3 R1,
+ const btVector3& side1, const btVector3& p2,
+ const dMatrix3 R2, const btVector3& side2,
+ btVector3& normal, btScalar *depth, int *return_code,
+ int maxc, dContactGeom * /*contact*/, int /*skip*/,btDiscreteCollisionDetectorInterface::Result& output)
+{
+ const btScalar fudge_factor = btScalar(1.05);
+ btVector3 p,pp,normalC;
+ const btScalar *normalR = 0;
+ btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
+ Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
+ int i,j,invert_normal,code;
+
+ // get vector from centers of box 1 to box 2, relative to box 1
+ p = p2 - p1;
+ dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1
+
+ // get side lengths / 2
+ A[0] = side1[0]*btScalar(0.5);
+ A[1] = side1[1]*btScalar(0.5);
+ A[2] = side1[2]*btScalar(0.5);
+ B[0] = side2[0]*btScalar(0.5);
+ B[1] = side2[1]*btScalar(0.5);
+ B[2] = side2[2]*btScalar(0.5);
+
+ // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
+ R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
+ R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
+ R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);
+
+ Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
+ Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
+ Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);
+
+ // for all 15 possible separating axes:
+ // * see if the axis separates the boxes. if so, return 0.
+ // * find the depth of the penetration along the separating axis (s2)
+ // * if this is the largest depth so far, record it.
+ // the normal vector will be set to the separating axis with the smallest
+ // depth. note: normalR is set to point to a column of R1 or R2 if that is
+ // the smallest depth normal so far. otherwise normalR is 0 and normalC is
+ // set to a vector relative to body 1. invert_normal is 1 if the sign of
+ // the normal should be flipped.
+
+#define TST(expr1,expr2,norm,cc) \
+ s2 = btFabs(expr1) - (expr2); \
+ if (s2 > 0) return 0; \
+ if (s2 > s) { \
+ s = s2; \
+ normalR = norm; \
+ invert_normal = ((expr1) < 0); \
+ code = (cc); \
+ }
+
+ s = -dInfinity;
+ invert_normal = 0;
+ code = 0;
+
+ // separating axis = u1,u2,u3
+ TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
+ TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
+ TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);
+
+ // separating axis = v1,v2,v3
+ TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
+ TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
+ TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);
+
+ // note: cross product axes need to be scaled when s is computed.
+ // normal (n1,n2,n3) is relative to box 1.
+#undef TST
+#define TST(expr1,expr2,n1,n2,n3,cc) \
+ s2 = btFabs(expr1) - (expr2); \
+ if (s2 > 0) return 0; \
+ l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
+ if (l > 0) { \
+ s2 /= l; \
+ if (s2*fudge_factor > s) { \
+ s = s2; \
+ normalR = 0; \
+ normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
+ invert_normal = ((expr1) < 0); \
+ code = (cc); \
+ } \
+ }
+
+ // separating axis = u1 x (v1,v2,v3)
+ TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
+ TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
+ TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);
+
+ // separating axis = u2 x (v1,v2,v3)
+ TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
+ TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
+ TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);
+
+ // separating axis = u3 x (v1,v2,v3)
+ TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
+ TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
+ TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
+
+#undef TST
+
+ if (!code) return 0;
+
+ // if we get to this point, the boxes interpenetrate. compute the normal
+ // in global coordinates.
+ if (normalR) {
+ normal[0] = normalR[0];
+ normal[1] = normalR[4];
+ normal[2] = normalR[8];
+ }
+ else {
+ dMULTIPLY0_331 (normal,R1,normalC);
+ }
+ if (invert_normal) {
+ normal[0] = -normal[0];
+ normal[1] = -normal[1];
+ normal[2] = -normal[2];
+ }
+ *depth = -s;
+
+ // compute contact point(s)
+
+ if (code > 6) {
+ // an edge from box 1 touches an edge from box 2.
+ // find a point pa on the intersecting edge of box 1
+ btVector3 pa;
+ btScalar sign;
+ for (i=0; i<3; i++) pa[i] = p1[i];
+ for (j=0; j<3; j++) {
+ sign = (dDOT14(normal,R1+j) > 0) ? btScalar(1.0) : btScalar(-1.0);
+ for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
+ }
+
+ // find a point pb on the intersecting edge of box 2
+ btVector3 pb;
+ for (i=0; i<3; i++) pb[i] = p2[i];
+ for (j=0; j<3; j++) {
+ sign = (dDOT14(normal,R2+j) > 0) ? btScalar(-1.0) : btScalar(1.0);
+ for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
+ }
+
+ btScalar alpha,beta;
+ btVector3 ua,ub;
+ for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
+ for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
+
+ dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
+ for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
+ for (i=0; i<3; i++) pb[i] += ub[i]*beta;
+
+ {
+
+ //contact[0].pos[i] = btScalar(0.5)*(pa[i]+pb[i]);
+ //contact[0].depth = *depth;
+ btVector3 pointInWorld;
+
+#ifdef USE_CENTER_POINT
+ for (i=0; i<3; i++)
+ pointInWorld[i] = (pa[i]+pb[i])*btScalar(0.5);
+ output.addContactPoint(-normal,pointInWorld,-*depth);
+#else
+ output.addContactPoint(-normal,pb,-*depth);
+#endif //
+ *return_code = code;
+ }
+ return 1;
+ }
+
+ // okay, we have a face-something intersection (because the separating
+ // axis is perpendicular to a face). define face 'a' to be the reference
+ // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
+ // the incident face (the closest face of the other box).
+
+ const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
+ if (code <= 3) {
+ Ra = R1;
+ Rb = R2;
+ pa = p1;
+ pb = p2;
+ Sa = A;
+ Sb = B;
+ }
+ else {
+ Ra = R2;
+ Rb = R1;
+ pa = p2;
+ pb = p1;
+ Sa = B;
+ Sb = A;
+ }
+
+ // nr = normal vector of reference face dotted with axes of incident box.
+ // anr = absolute values of nr.
+ btVector3 normal2,nr,anr;
+ if (code <= 3) {
+ normal2[0] = normal[0];
+ normal2[1] = normal[1];
+ normal2[2] = normal[2];
+ }
+ else {
+ normal2[0] = -normal[0];
+ normal2[1] = -normal[1];
+ normal2[2] = -normal[2];
+ }
+ dMULTIPLY1_331 (nr,Rb,normal2);
+ anr[0] = btFabs (nr[0]);
+ anr[1] = btFabs (nr[1]);
+ anr[2] = btFabs (nr[2]);
+
+ // find the largest compontent of anr: this corresponds to the normal
+ // for the indident face. the other axis numbers of the indicent face
+ // are stored in a1,a2.
+ int lanr,a1,a2;
+ if (anr[1] > anr[0]) {
+ if (anr[1] > anr[2]) {
+ a1 = 0;
+ lanr = 1;
+ a2 = 2;
+ }
+ else {
+ a1 = 0;
+ a2 = 1;
+ lanr = 2;
+ }
+ }
+ else {
+ if (anr[0] > anr[2]) {
+ lanr = 0;
+ a1 = 1;
+ a2 = 2;
+ }
+ else {
+ a1 = 0;
+ a2 = 1;
+ lanr = 2;
+ }
+ }
+
+ // compute center point of incident face, in reference-face coordinates
+ btVector3 center;
+ if (nr[lanr] < 0) {
+ for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
+ }
+ else {
+ for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
+ }
+
+ // find the normal and non-normal axis numbers of the reference box
+ int codeN,code1,code2;
+ if (code <= 3) codeN = code-1; else codeN = code-4;
+ if (codeN==0) {
+ code1 = 1;
+ code2 = 2;
+ }
+ else if (codeN==1) {
+ code1 = 0;
+ code2 = 2;
+ }
+ else {
+ code1 = 0;
+ code2 = 1;
+ }
+
+ // find the four corners of the incident face, in reference-face coordinates
+ btScalar quad[8]; // 2D coordinate of incident face (x,y pairs)
+ btScalar c1,c2,m11,m12,m21,m22;
+ c1 = dDOT14 (center,Ra+code1);
+ c2 = dDOT14 (center,Ra+code2);
+ // optimize this? - we have already computed this data above, but it is not
+ // stored in an easy-to-index format. for now it's quicker just to recompute
+ // the four dot products.
+ m11 = dDOT44 (Ra+code1,Rb+a1);
+ m12 = dDOT44 (Ra+code1,Rb+a2);
+ m21 = dDOT44 (Ra+code2,Rb+a1);
+ m22 = dDOT44 (Ra+code2,Rb+a2);
+ {
+ btScalar k1 = m11*Sb[a1];
+ btScalar k2 = m21*Sb[a1];
+ btScalar k3 = m12*Sb[a2];
+ btScalar k4 = m22*Sb[a2];
+ quad[0] = c1 - k1 - k3;
+ quad[1] = c2 - k2 - k4;
+ quad[2] = c1 - k1 + k3;
+ quad[3] = c2 - k2 + k4;
+ quad[4] = c1 + k1 + k3;
+ quad[5] = c2 + k2 + k4;
+ quad[6] = c1 + k1 - k3;
+ quad[7] = c2 + k2 - k4;
+ }
+
+ // find the size of the reference face
+ btScalar rect[2];
+ rect[0] = Sa[code1];
+ rect[1] = Sa[code2];
+
+ // intersect the incident and reference faces
+ btScalar ret[16];
+ int n = intersectRectQuad2 (rect,quad,ret);
+ if (n < 1) return 0; // this should never happen
+
+ // convert the intersection points into reference-face coordinates,
+ // and compute the contact position and depth for each point. only keep
+ // those points that have a positive (penetrating) depth. delete points in
+ // the 'ret' array as necessary so that 'point' and 'ret' correspond.
+ btScalar point[3*8]; // penetrating contact points
+ btScalar dep[8]; // depths for those points
+ btScalar det1 = 1.f/(m11*m22 - m12*m21);
+ m11 *= det1;
+ m12 *= det1;
+ m21 *= det1;
+ m22 *= det1;
+ int cnum = 0; // number of penetrating contact points found
+ for (j=0; j < n; j++) {
+ btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
+ btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
+ for (i=0; i<3; i++) point[cnum*3+i] =
+ center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
+ dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
+ if (dep[cnum] >= 0) {
+ ret[cnum*2] = ret[j*2];
+ ret[cnum*2+1] = ret[j*2+1];
+ cnum++;
+ }
+ }
+ if (cnum < 1) return 0; // this should never happen
+
+ // we can't generate more contacts than we actually have
+ if (maxc > cnum) maxc = cnum;
+ if (maxc < 1) maxc = 1;
+
+ if (cnum <= maxc) {
+ // we have less contacts than we need, so we use them all
+ for (j=0; j < cnum; j++) {
+
+ //AddContactPoint...
+
+ //dContactGeom *con = CONTACT(contact,skip*j);
+ //for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i];
+ //con->depth = dep[j];
+
+ btVector3 pointInWorld;
+ for (i=0; i<3; i++)
+ pointInWorld[i] = point[j*3+i] + pa[i];
+ output.addContactPoint(-normal,pointInWorld,-dep[j]);
+
+ }
+ }
+ else {
+ // we have more contacts than are wanted, some of them must be culled.
+ // find the deepest point, it is always the first contact.
+ int i1 = 0;
+ btScalar maxdepth = dep[0];
+ for (i=1; i<cnum; i++) {
+ if (dep[i] > maxdepth) {
+ maxdepth = dep[i];
+ i1 = i;
+ }
+ }
+
+ int iret[8];
+ cullPoints2 (cnum,ret,maxc,i1,iret);
+
+ for (j=0; j < maxc; j++) {
+// dContactGeom *con = CONTACT(contact,skip*j);
+ // for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
+ // con->depth = dep[iret[j]];
+
+ btVector3 posInWorld;
+ for (i=0; i<3; i++)
+ posInWorld[i] = point[iret[j]*3+i] + pa[i];
+ output.addContactPoint(-normal,posInWorld,-dep[iret[j]]);
+ }
+ cnum = maxc;
+ }
+
+ *return_code = code;
+ return cnum;
+}
+
+void btBoxBoxDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* /*debugDraw*/,bool /*swapResults*/)
+{
+
+ const btTransform& transformA = input.m_transformA;
+ const btTransform& transformB = input.m_transformB;
+
+ int skip = 0;
+ dContactGeom *contact = 0;
+
+ dMatrix3 R1;
+ dMatrix3 R2;
+
+ for (int j=0;j<3;j++)
+ {
+ R1[0+4*j] = transformA.getBasis()[j].x();
+ R2[0+4*j] = transformB.getBasis()[j].x();
+
+ R1[1+4*j] = transformA.getBasis()[j].y();
+ R2[1+4*j] = transformB.getBasis()[j].y();
+
+
+ R1[2+4*j] = transformA.getBasis()[j].z();
+ R2[2+4*j] = transformB.getBasis()[j].z();
+
+ }
+
+
+
+ btVector3 normal;
+ btScalar depth;
+ int return_code;
+ int maxc = 4;
+
+
+ dBoxBox2 (transformA.getOrigin(),
+ R1,
+ 2.f*m_box1->getHalfExtentsWithMargin(),
+ transformB.getOrigin(),
+ R2,
+ 2.f*m_box2->getHalfExtentsWithMargin(),
+ normal, &depth, &return_code,
+ maxc, contact, skip,
+ output
+ );
+
+}