Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp')
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp462
1 files changed, 432 insertions, 30 deletions
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
index 4128f504bf1..50d06960379 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
@@ -68,7 +68,9 @@ void btSliderConstraint::initParams()
btSliderConstraint::btSliderConstraint()
:btTypedConstraint(SLIDER_CONSTRAINT_TYPE),
- m_useLinearReferenceFrameA(true)
+ m_useLinearReferenceFrameA(true),
+ m_useSolveConstraintObsolete(false)
+// m_useSolveConstraintObsolete(true)
{
initParams();
} // btSliderConstraint::btSliderConstraint()
@@ -79,7 +81,9 @@ btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const
: btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB),
- m_useLinearReferenceFrameA(useLinearReferenceFrameA)
+ m_useLinearReferenceFrameA(useLinearReferenceFrameA),
+ m_useSolveConstraintObsolete(false)
+// m_useSolveConstraintObsolete(true)
{
initParams();
} // btSliderConstraint::btSliderConstraint()
@@ -88,6 +92,10 @@ btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const
void btSliderConstraint::buildJacobian()
{
+ if (!m_useSolveConstraintObsolete)
+ {
+ return;
+ }
if(m_useLinearReferenceFrameA)
{
buildJacobianInt(m_rbA, m_rbB, m_frameInA, m_frameInB);
@@ -155,27 +163,372 @@ void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, co
//-----------------------------------------------------------------------------
-void btSliderConstraint::solveConstraint(btScalar timeStep)
+void btSliderConstraint::getInfo1(btConstraintInfo1* info)
{
- m_timeStep = timeStep;
- if(m_useLinearReferenceFrameA)
+ if (m_useSolveConstraintObsolete)
{
- solveConstraintInt(m_rbA, m_rbB);
+ info->m_numConstraintRows = 0;
+ info->nub = 0;
}
else
{
- solveConstraintInt(m_rbB, m_rbA);
+ info->m_numConstraintRows = 4; // Fixed 2 linear + 2 angular
+ info->nub = 2;
+ //prepare constraint
+ calculateTransforms();
+ testLinLimits();
+ if(getSolveLinLimit() || getPoweredLinMotor())
+ {
+ info->m_numConstraintRows++; // limit 3rd linear as well
+ info->nub--;
+ }
+ testAngLimits();
+ if(getSolveAngLimit() || getPoweredAngMotor())
+ {
+ info->m_numConstraintRows++; // limit 3rd angular as well
+ info->nub--;
+ }
+ }
+} // btSliderConstraint::getInfo1()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::getInfo2(btConstraintInfo2* info)
+{
+ btAssert(!m_useSolveConstraintObsolete);
+ int i, s = info->rowskip;
+ const btTransform& trA = getCalculatedTransformA();
+ const btTransform& trB = getCalculatedTransformB();
+ btScalar signFact = m_useLinearReferenceFrameA ? btScalar(1.0f) : btScalar(-1.0f);
+ // make rotations around Y and Z equal
+ // the slider axis should be the only unconstrained
+ // rotational axis, the angular velocity of the two bodies perpendicular to
+ // the slider axis should be equal. thus the constraint equations are
+ // p*w1 - p*w2 = 0
+ // q*w1 - q*w2 = 0
+ // where p and q are unit vectors normal to the slider axis, and w1 and w2
+ // are the angular velocity vectors of the two bodies.
+ // get slider axis (X)
+ btVector3 ax1 = trA.getBasis().getColumn(0);
+ // get 2 orthos to slider axis (Y, Z)
+ btVector3 p = trA.getBasis().getColumn(1);
+ btVector3 q = trA.getBasis().getColumn(2);
+ // set the two slider rows
+ info->m_J1angularAxis[0] = p[0];
+ info->m_J1angularAxis[1] = p[1];
+ info->m_J1angularAxis[2] = p[2];
+ info->m_J1angularAxis[s+0] = q[0];
+ info->m_J1angularAxis[s+1] = q[1];
+ info->m_J1angularAxis[s+2] = q[2];
+
+ info->m_J2angularAxis[0] = -p[0];
+ info->m_J2angularAxis[1] = -p[1];
+ info->m_J2angularAxis[2] = -p[2];
+ info->m_J2angularAxis[s+0] = -q[0];
+ info->m_J2angularAxis[s+1] = -q[1];
+ info->m_J2angularAxis[s+2] = -q[2];
+ // compute the right hand side of the constraint equation. set relative
+ // body velocities along p and q to bring the slider back into alignment.
+ // if ax1,ax2 are the unit length slider axes as computed from body1 and
+ // body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
+ // if "theta" is the angle between ax1 and ax2, we need an angular velocity
+ // along u to cover angle erp*theta in one step :
+ // |angular_velocity| = angle/time = erp*theta / stepsize
+ // = (erp*fps) * theta
+ // angular_velocity = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
+ // = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
+ // ...as ax1 and ax2 are unit length. if theta is smallish,
+ // theta ~= sin(theta), so
+ // angular_velocity = (erp*fps) * (ax1 x ax2)
+ // ax1 x ax2 is in the plane space of ax1, so we project the angular
+ // velocity to p and q to find the right hand side.
+ btScalar k = info->fps * info->erp * getSoftnessOrthoAng();
+ btVector3 ax2 = trB.getBasis().getColumn(0);
+ btVector3 u = ax1.cross(ax2);
+ info->m_constraintError[0] = k * u.dot(p);
+ info->m_constraintError[s] = k * u.dot(q);
+ // pull out pos and R for both bodies. also get the connection
+ // vector c = pos2-pos1.
+ // next two rows. we want: vel2 = vel1 + w1 x c ... but this would
+ // result in three equations, so we project along the planespace vectors
+ // so that sliding along the slider axis is disregarded. for symmetry we
+ // also consider rotation around center of mass of two bodies (factA and factB).
+ btTransform bodyA_trans = m_rbA.getCenterOfMassTransform();
+ btTransform bodyB_trans = m_rbB.getCenterOfMassTransform();
+ int s2 = 2 * s, s3 = 3 * s;
+ btVector3 c;
+ btScalar miA = m_rbA.getInvMass();
+ btScalar miB = m_rbB.getInvMass();
+ btScalar miS = miA + miB;
+ btScalar factA, factB;
+ if(miS > btScalar(0.f))
+ {
+ factA = miB / miS;
+ }
+ else
+ {
+ factA = btScalar(0.5f);
+ }
+ if(factA > 0.99f) factA = 0.99f;
+ if(factA < 0.01f) factA = 0.01f;
+ factB = btScalar(1.0f) - factA;
+ c = bodyB_trans.getOrigin() - bodyA_trans.getOrigin();
+ btVector3 tmp = c.cross(p);
+ for (i=0; i<3; i++) info->m_J1angularAxis[s2+i] = factA*tmp[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s2+i] = factB*tmp[i];
+ tmp = c.cross(q);
+ for (i=0; i<3; i++) info->m_J1angularAxis[s3+i] = factA*tmp[i];
+ for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = factB*tmp[i];
+
+ for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
+ for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
+ // compute two elements of right hand side. we want to align the offset
+ // point (in body 2's frame) with the center of body 1.
+ btVector3 ofs; // offset point in global coordinates
+ ofs = trB.getOrigin() - trA.getOrigin();
+ k = info->fps * info->erp * getSoftnessOrthoLin();
+ info->m_constraintError[s2] = k * p.dot(ofs);
+ info->m_constraintError[s3] = k * q.dot(ofs);
+ int nrow = 3; // last filled row
+ int srow;
+ // check linear limits linear
+ btScalar limit_err = btScalar(0.0);
+ int limit = 0;
+ if(getSolveLinLimit())
+ {
+ limit_err = getLinDepth() * signFact;
+ limit = (limit_err > btScalar(0.0)) ? 2 : 1;
+ }
+ int powered = 0;
+ if(getPoweredLinMotor())
+ {
+ powered = 1;
+ }
+ // if the slider has joint limits or motor, add in the extra row
+ if (limit || powered)
+ {
+ nrow++;
+ srow = nrow * info->rowskip;
+ info->m_J1linearAxis[srow+0] = ax1[0];
+ info->m_J1linearAxis[srow+1] = ax1[1];
+ info->m_J1linearAxis[srow+2] = ax1[2];
+ // linear torque decoupling step:
+ //
+ // we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies
+ // do not create a torque couple. in other words, the points that the
+ // constraint force is applied at must lie along the same ax1 axis.
+ // a torque couple will result in limited slider-jointed free
+ // bodies from gaining angular momentum.
+ // the solution used here is to apply the constraint forces at the center of mass of the two bodies
+ btVector3 ltd; // Linear Torque Decoupling vector (a torque)
+// c = btScalar(0.5) * c;
+ ltd = c.cross(ax1);
+ info->m_J1angularAxis[srow+0] = factA*ltd[0];
+ info->m_J1angularAxis[srow+1] = factA*ltd[1];
+ info->m_J1angularAxis[srow+2] = factA*ltd[2];
+ info->m_J2angularAxis[srow+0] = factB*ltd[0];
+ info->m_J2angularAxis[srow+1] = factB*ltd[1];
+ info->m_J2angularAxis[srow+2] = factB*ltd[2];
+ // right-hand part
+ btScalar lostop = getLowerLinLimit();
+ btScalar histop = getUpperLinLimit();
+ if(limit && (lostop == histop))
+ { // the joint motor is ineffective
+ powered = 0;
+ }
+ info->m_constraintError[srow] = 0.;
+ info->m_lowerLimit[srow] = 0.;
+ info->m_upperLimit[srow] = 0.;
+ if(powered)
+ {
+ info->cfm[nrow] = btScalar(0.0);
+ btScalar tag_vel = getTargetLinMotorVelocity();
+ btScalar mot_fact = getMotorFactor(m_linPos, m_lowerLinLimit, m_upperLinLimit, tag_vel, info->fps * info->erp);
+// info->m_constraintError[srow] += mot_fact * getTargetLinMotorVelocity();
+ info->m_constraintError[srow] -= signFact * mot_fact * getTargetLinMotorVelocity();
+ info->m_lowerLimit[srow] += -getMaxLinMotorForce() * info->fps;
+ info->m_upperLimit[srow] += getMaxLinMotorForce() * info->fps;
+ }
+ if(limit)
+ {
+ k = info->fps * info->erp;
+ info->m_constraintError[srow] += k * limit_err;
+ info->cfm[srow] = btScalar(0.0); // stop_cfm;
+ if(lostop == histop)
+ { // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else if(limit == 1)
+ { // low limit
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ else
+ { // high limit
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ // bounce (we'll use slider parameter abs(1.0 - m_dampingLimLin) for that)
+ btScalar bounce = btFabs(btScalar(1.0) - getDampingLimLin());
+ if(bounce > btScalar(0.0))
+ {
+ btScalar vel = m_rbA.getLinearVelocity().dot(ax1);
+ vel -= m_rbB.getLinearVelocity().dot(ax1);
+ vel *= signFact;
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if(limit == 1)
+ { // low limit
+ if(vel < 0)
+ {
+ btScalar newc = -bounce * vel;
+ if (newc > info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ else
+ { // high limit - all those computations are reversed
+ if(vel > 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc < info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+ info->m_constraintError[srow] *= getSoftnessLimLin();
+ } // if(limit)
+ } // if linear limit
+ // check angular limits
+ limit_err = btScalar(0.0);
+ limit = 0;
+ if(getSolveAngLimit())
+ {
+ limit_err = getAngDepth();
+ limit = (limit_err > btScalar(0.0)) ? 1 : 2;
+ }
+ // if the slider has joint limits, add in the extra row
+ powered = 0;
+ if(getPoweredAngMotor())
+ {
+ powered = 1;
+ }
+ if(limit || powered)
+ {
+ nrow++;
+ srow = nrow * info->rowskip;
+ info->m_J1angularAxis[srow+0] = ax1[0];
+ info->m_J1angularAxis[srow+1] = ax1[1];
+ info->m_J1angularAxis[srow+2] = ax1[2];
+
+ info->m_J2angularAxis[srow+0] = -ax1[0];
+ info->m_J2angularAxis[srow+1] = -ax1[1];
+ info->m_J2angularAxis[srow+2] = -ax1[2];
+
+ btScalar lostop = getLowerAngLimit();
+ btScalar histop = getUpperAngLimit();
+ if(limit && (lostop == histop))
+ { // the joint motor is ineffective
+ powered = 0;
+ }
+ if(powered)
+ {
+ info->cfm[srow] = btScalar(0.0);
+ btScalar mot_fact = getMotorFactor(m_angPos, m_lowerAngLimit, m_upperAngLimit, getTargetAngMotorVelocity(), info->fps * info->erp);
+ info->m_constraintError[srow] = mot_fact * getTargetAngMotorVelocity();
+ info->m_lowerLimit[srow] = -getMaxAngMotorForce() * info->fps;
+ info->m_upperLimit[srow] = getMaxAngMotorForce() * info->fps;
+ }
+ if(limit)
+ {
+ k = info->fps * info->erp;
+ info->m_constraintError[srow] += k * limit_err;
+ info->cfm[srow] = btScalar(0.0); // stop_cfm;
+ if(lostop == histop)
+ {
+ // limited low and high simultaneously
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else if(limit == 1)
+ { // low limit
+ info->m_lowerLimit[srow] = 0;
+ info->m_upperLimit[srow] = SIMD_INFINITY;
+ }
+ else
+ { // high limit
+ info->m_lowerLimit[srow] = -SIMD_INFINITY;
+ info->m_upperLimit[srow] = 0;
+ }
+ // bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
+ btScalar bounce = btFabs(btScalar(1.0) - getDampingLimAng());
+ if(bounce > btScalar(0.0))
+ {
+ btScalar vel = m_rbA.getAngularVelocity().dot(ax1);
+ vel -= m_rbB.getAngularVelocity().dot(ax1);
+ // only apply bounce if the velocity is incoming, and if the
+ // resulting c[] exceeds what we already have.
+ if(limit == 1)
+ { // low limit
+ if(vel < 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc > info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ else
+ { // high limit - all those computations are reversed
+ if(vel > 0)
+ {
+ btScalar newc = -bounce * vel;
+ if(newc < info->m_constraintError[srow])
+ {
+ info->m_constraintError[srow] = newc;
+ }
+ }
+ }
+ }
+ info->m_constraintError[srow] *= getSoftnessLimAng();
+ } // if(limit)
+ } // if angular limit or powered
+} // btSliderConstraint::getInfo2()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
+{
+ if (m_useSolveConstraintObsolete)
+ {
+ m_timeStep = timeStep;
+ if(m_useLinearReferenceFrameA)
+ {
+ solveConstraintInt(m_rbA,bodyA, m_rbB,bodyB);
+ }
+ else
+ {
+ solveConstraintInt(m_rbB,bodyB, m_rbA,bodyA);
+ }
}
} // btSliderConstraint::solveConstraint()
//-----------------------------------------------------------------------------
-void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
+void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btSolverBody& bodyA,btRigidBody& rbB, btSolverBody& bodyB)
{
int i;
// linear
- btVector3 velA = rbA.getVelocityInLocalPoint(m_relPosA);
- btVector3 velB = rbB.getVelocityInLocalPoint(m_relPosB);
+ btVector3 velA;
+ bodyA.getVelocityInLocalPointObsolete(m_relPosA,velA);
+ btVector3 velB;
+ bodyB.getVelocityInLocalPointObsolete(m_relPosB,velB);
btVector3 vel = velA - velB;
for(i = 0; i < 3; i++)
{
@@ -190,8 +543,18 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
// calcutate and apply impulse
btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i];
btVector3 impulse_vector = normal * normalImpulse;
- rbA.applyImpulse( impulse_vector, m_relPosA);
- rbB.applyImpulse(-impulse_vector, m_relPosB);
+
+ //rbA.applyImpulse( impulse_vector, m_relPosA);
+ //rbB.applyImpulse(-impulse_vector, m_relPosB);
+ {
+ btVector3 ftorqueAxis1 = m_relPosA.cross(normal);
+ btVector3 ftorqueAxis2 = m_relPosB.cross(normal);
+ bodyA.applyImpulse(normal*rbA.getInvMass(), rbA.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse);
+ bodyB.applyImpulse(normal*rbB.getInvMass(), rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse);
+ }
+
+
+
if(m_poweredLinMotor && (!i))
{ // apply linear motor
if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce)
@@ -217,8 +580,18 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
m_accumulatedLinMotorImpulse = new_acc;
// apply clamped impulse
impulse_vector = normal * normalImpulse;
- rbA.applyImpulse( impulse_vector, m_relPosA);
- rbB.applyImpulse(-impulse_vector, m_relPosB);
+ //rbA.applyImpulse( impulse_vector, m_relPosA);
+ //rbB.applyImpulse(-impulse_vector, m_relPosB);
+
+ {
+ btVector3 ftorqueAxis1 = m_relPosA.cross(normal);
+ btVector3 ftorqueAxis2 = m_relPosB.cross(normal);
+ bodyA.applyImpulse(normal*rbA.getInvMass(), rbA.getInvInertiaTensorWorld()*ftorqueAxis1,normalImpulse);
+ bodyB.applyImpulse(normal*rbB.getInvMass(), rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-normalImpulse);
+ }
+
+
+
}
}
}
@@ -227,8 +600,10 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
btVector3 axisB = m_calculatedTransformB.getBasis().getColumn(0);
- const btVector3& angVelA = rbA.getAngularVelocity();
- const btVector3& angVelB = rbB.getAngularVelocity();
+ btVector3 angVelA;
+ bodyA.getAngularVelocity(angVelA);
+ btVector3 angVelB;
+ bodyB.getAngularVelocity(angVelB);
btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);
@@ -238,24 +613,38 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
btVector3 velrelOrthog = angAorthog-angBorthog;
//solve orthogonal angular velocity correction
btScalar len = velrelOrthog.length();
+ btScalar orthorImpulseMag = 0.f;
+
if (len > btScalar(0.00001))
{
btVector3 normal = velrelOrthog.normalized();
btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal);
- velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
+ //velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
+ orthorImpulseMag = (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
}
//solve angular positional correction
btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep);
+ btVector3 angularAxis = angularError;
+ btScalar angularImpulseMag = 0;
+
btScalar len2 = angularError.length();
if (len2>btScalar(0.00001))
{
btVector3 normal2 = angularError.normalized();
btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2);
- angularError *= (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
+ angularImpulseMag = (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
+ angularError *= angularImpulseMag;
}
// apply impulse
- rbA.applyTorqueImpulse(-velrelOrthog+angularError);
- rbB.applyTorqueImpulse(velrelOrthog-angularError);
+ //rbA.applyTorqueImpulse(-velrelOrthog+angularError);
+ //rbB.applyTorqueImpulse(velrelOrthog-angularError);
+
+ bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*velrelOrthog,-orthorImpulseMag);
+ bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*velrelOrthog,orthorImpulseMag);
+ bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*angularAxis,angularImpulseMag);
+ bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*angularAxis,-angularImpulseMag);
+
+
btScalar impulseMag;
//solve angular limits
if(m_solveAngLim)
@@ -269,8 +658,14 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
impulseMag *= m_kAngle * m_softnessDirAng;
}
btVector3 impulse = axisA * impulseMag;
- rbA.applyTorqueImpulse(impulse);
- rbB.applyTorqueImpulse(-impulse);
+ //rbA.applyTorqueImpulse(impulse);
+ //rbB.applyTorqueImpulse(-impulse);
+
+ bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*axisA,impulseMag);
+ bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*axisA,-impulseMag);
+
+
+
//apply angular motor
if(m_poweredAngMotor)
{
@@ -301,8 +696,11 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
m_accumulatedAngMotorImpulse = new_acc;
// apply clamped impulse
btVector3 motorImp = angImpulse * axisA;
- m_rbA.applyTorqueImpulse(motorImp);
- m_rbB.applyTorqueImpulse(-motorImp);
+ //rbA.applyTorqueImpulse(motorImp);
+ //rbB.applyTorqueImpulse(-motorImp);
+
+ bodyA.applyImpulse(btVector3(0,0,0), rbA.getInvInertiaTensorWorld()*axisA,angImpulse);
+ bodyB.applyImpulse(btVector3(0,0,0), rbB.getInvInertiaTensorWorld()*axisA,-angImpulse);
}
}
} // btSliderConstraint::solveConstraint()
@@ -312,7 +710,7 @@ void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
//-----------------------------------------------------------------------------
void btSliderConstraint::calculateTransforms(void){
- if(m_useLinearReferenceFrameA)
+ if(m_useLinearReferenceFrameA || (!m_useSolveConstraintObsolete))
{
m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA;
m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB;
@@ -325,7 +723,14 @@ void btSliderConstraint::calculateTransforms(void){
m_realPivotAInW = m_calculatedTransformA.getOrigin();
m_realPivotBInW = m_calculatedTransformB.getOrigin();
m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
- m_delta = m_realPivotBInW - m_realPivotAInW;
+ if(m_useLinearReferenceFrameA || m_useSolveConstraintObsolete)
+ {
+ m_delta = m_realPivotBInW - m_realPivotAInW;
+ }
+ else
+ {
+ m_delta = m_realPivotAInW - m_realPivotBInW;
+ }
m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
btVector3 normalWorld;
int i;
@@ -367,7 +772,6 @@ void btSliderConstraint::testLinLimits(void)
} // btSliderConstraint::testLinLimits()
//-----------------------------------------------------------------------------
-
void btSliderConstraint::testAngLimits(void)
{
@@ -379,6 +783,7 @@ void btSliderConstraint::testAngLimits(void)
const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));
+ m_angPos = rot;
if(rot < m_lowerAngLimit)
{
m_angDepth = rot - m_lowerAngLimit;
@@ -391,12 +796,9 @@ void btSliderConstraint::testAngLimits(void)
}
}
} // btSliderConstraint::testAngLimits()
-
//-----------------------------------------------------------------------------
-
-
btVector3 btSliderConstraint::getAncorInA(void)
{
btVector3 ancorInA;