Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp')
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp415
1 files changed, 415 insertions, 0 deletions
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
new file mode 100644
index 00000000000..4128f504bf1
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.cpp
@@ -0,0 +1,415 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+/*
+Added by Roman Ponomarev (rponom@gmail.com)
+April 04, 2008
+*/
+
+//-----------------------------------------------------------------------------
+
+#include "btSliderConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include <new>
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::initParams()
+{
+ m_lowerLinLimit = btScalar(1.0);
+ m_upperLinLimit = btScalar(-1.0);
+ m_lowerAngLimit = btScalar(0.);
+ m_upperAngLimit = btScalar(0.);
+ m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingDirLin = btScalar(0.);
+ m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingDirAng = btScalar(0.);
+ m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
+ m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
+ m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
+ m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;
+
+ m_poweredLinMotor = false;
+ m_targetLinMotorVelocity = btScalar(0.);
+ m_maxLinMotorForce = btScalar(0.);
+ m_accumulatedLinMotorImpulse = btScalar(0.0);
+
+ m_poweredAngMotor = false;
+ m_targetAngMotorVelocity = btScalar(0.);
+ m_maxAngMotorForce = btScalar(0.);
+ m_accumulatedAngMotorImpulse = btScalar(0.0);
+
+} // btSliderConstraint::initParams()
+
+//-----------------------------------------------------------------------------
+
+btSliderConstraint::btSliderConstraint()
+ :btTypedConstraint(SLIDER_CONSTRAINT_TYPE),
+ m_useLinearReferenceFrameA(true)
+{
+ initParams();
+} // btSliderConstraint::btSliderConstraint()
+
+//-----------------------------------------------------------------------------
+
+btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
+ : btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB)
+ , m_frameInA(frameInA)
+ , m_frameInB(frameInB),
+ m_useLinearReferenceFrameA(useLinearReferenceFrameA)
+{
+ initParams();
+} // btSliderConstraint::btSliderConstraint()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::buildJacobian()
+{
+ if(m_useLinearReferenceFrameA)
+ {
+ buildJacobianInt(m_rbA, m_rbB, m_frameInA, m_frameInB);
+ }
+ else
+ {
+ buildJacobianInt(m_rbB, m_rbA, m_frameInB, m_frameInA);
+ }
+} // btSliderConstraint::buildJacobian()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
+{
+ //calculate transforms
+ m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA;
+ m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB;
+ m_realPivotAInW = m_calculatedTransformA.getOrigin();
+ m_realPivotBInW = m_calculatedTransformB.getOrigin();
+ m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
+ m_delta = m_realPivotBInW - m_realPivotAInW;
+ m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
+ m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition();
+ m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition();
+ btVector3 normalWorld;
+ int i;
+ //linear part
+ for(i = 0; i < 3; i++)
+ {
+ normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
+ new (&m_jacLin[i]) btJacobianEntry(
+ rbA.getCenterOfMassTransform().getBasis().transpose(),
+ rbB.getCenterOfMassTransform().getBasis().transpose(),
+ m_relPosA,
+ m_relPosB,
+ normalWorld,
+ rbA.getInvInertiaDiagLocal(),
+ rbA.getInvMass(),
+ rbB.getInvInertiaDiagLocal(),
+ rbB.getInvMass()
+ );
+ m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal();
+ m_depth[i] = m_delta.dot(normalWorld);
+ }
+ testLinLimits();
+ // angular part
+ for(i = 0; i < 3; i++)
+ {
+ normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
+ new (&m_jacAng[i]) btJacobianEntry(
+ normalWorld,
+ rbA.getCenterOfMassTransform().getBasis().transpose(),
+ rbB.getCenterOfMassTransform().getBasis().transpose(),
+ rbA.getInvInertiaDiagLocal(),
+ rbB.getInvInertiaDiagLocal()
+ );
+ }
+ testAngLimits();
+ btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
+ m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA));
+ // clear accumulator for motors
+ m_accumulatedLinMotorImpulse = btScalar(0.0);
+ m_accumulatedAngMotorImpulse = btScalar(0.0);
+} // btSliderConstraint::buildJacobianInt()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::solveConstraint(btScalar timeStep)
+{
+ m_timeStep = timeStep;
+ if(m_useLinearReferenceFrameA)
+ {
+ solveConstraintInt(m_rbA, m_rbB);
+ }
+ else
+ {
+ solveConstraintInt(m_rbB, m_rbA);
+ }
+} // btSliderConstraint::solveConstraint()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
+{
+ int i;
+ // linear
+ btVector3 velA = rbA.getVelocityInLocalPoint(m_relPosA);
+ btVector3 velB = rbB.getVelocityInLocalPoint(m_relPosB);
+ btVector3 vel = velA - velB;
+ for(i = 0; i < 3; i++)
+ {
+ const btVector3& normal = m_jacLin[i].m_linearJointAxis;
+ btScalar rel_vel = normal.dot(vel);
+ // calculate positional error
+ btScalar depth = m_depth[i];
+ // get parameters
+ btScalar softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin);
+ btScalar restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin);
+ btScalar damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin);
+ // calcutate and apply impulse
+ btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i];
+ btVector3 impulse_vector = normal * normalImpulse;
+ rbA.applyImpulse( impulse_vector, m_relPosA);
+ rbB.applyImpulse(-impulse_vector, m_relPosB);
+ if(m_poweredLinMotor && (!i))
+ { // apply linear motor
+ if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce)
+ {
+ btScalar desiredMotorVel = m_targetLinMotorVelocity;
+ btScalar motor_relvel = desiredMotorVel + rel_vel;
+ normalImpulse = -motor_relvel * m_jacLinDiagABInv[i];
+ // clamp accumulated impulse
+ btScalar new_acc = m_accumulatedLinMotorImpulse + btFabs(normalImpulse);
+ if(new_acc > m_maxLinMotorForce)
+ {
+ new_acc = m_maxLinMotorForce;
+ }
+ btScalar del = new_acc - m_accumulatedLinMotorImpulse;
+ if(normalImpulse < btScalar(0.0))
+ {
+ normalImpulse = -del;
+ }
+ else
+ {
+ normalImpulse = del;
+ }
+ m_accumulatedLinMotorImpulse = new_acc;
+ // apply clamped impulse
+ impulse_vector = normal * normalImpulse;
+ rbA.applyImpulse( impulse_vector, m_relPosA);
+ rbB.applyImpulse(-impulse_vector, m_relPosB);
+ }
+ }
+ }
+ // angular
+ // get axes in world space
+ btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
+ btVector3 axisB = m_calculatedTransformB.getBasis().getColumn(0);
+
+ const btVector3& angVelA = rbA.getAngularVelocity();
+ const btVector3& angVelB = rbB.getAngularVelocity();
+
+ btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
+ btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);
+
+ btVector3 angAorthog = angVelA - angVelAroundAxisA;
+ btVector3 angBorthog = angVelB - angVelAroundAxisB;
+ btVector3 velrelOrthog = angAorthog-angBorthog;
+ //solve orthogonal angular velocity correction
+ btScalar len = velrelOrthog.length();
+ if (len > btScalar(0.00001))
+ {
+ btVector3 normal = velrelOrthog.normalized();
+ btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal);
+ velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
+ }
+ //solve angular positional correction
+ btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep);
+ btScalar len2 = angularError.length();
+ if (len2>btScalar(0.00001))
+ {
+ btVector3 normal2 = angularError.normalized();
+ btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2);
+ angularError *= (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
+ }
+ // apply impulse
+ rbA.applyTorqueImpulse(-velrelOrthog+angularError);
+ rbB.applyTorqueImpulse(velrelOrthog-angularError);
+ btScalar impulseMag;
+ //solve angular limits
+ if(m_solveAngLim)
+ {
+ impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / m_timeStep;
+ impulseMag *= m_kAngle * m_softnessLimAng;
+ }
+ else
+ {
+ impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / m_timeStep;
+ impulseMag *= m_kAngle * m_softnessDirAng;
+ }
+ btVector3 impulse = axisA * impulseMag;
+ rbA.applyTorqueImpulse(impulse);
+ rbB.applyTorqueImpulse(-impulse);
+ //apply angular motor
+ if(m_poweredAngMotor)
+ {
+ if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce)
+ {
+ btVector3 velrel = angVelAroundAxisA - angVelAroundAxisB;
+ btScalar projRelVel = velrel.dot(axisA);
+
+ btScalar desiredMotorVel = m_targetAngMotorVelocity;
+ btScalar motor_relvel = desiredMotorVel - projRelVel;
+
+ btScalar angImpulse = m_kAngle * motor_relvel;
+ // clamp accumulated impulse
+ btScalar new_acc = m_accumulatedAngMotorImpulse + btFabs(angImpulse);
+ if(new_acc > m_maxAngMotorForce)
+ {
+ new_acc = m_maxAngMotorForce;
+ }
+ btScalar del = new_acc - m_accumulatedAngMotorImpulse;
+ if(angImpulse < btScalar(0.0))
+ {
+ angImpulse = -del;
+ }
+ else
+ {
+ angImpulse = del;
+ }
+ m_accumulatedAngMotorImpulse = new_acc;
+ // apply clamped impulse
+ btVector3 motorImp = angImpulse * axisA;
+ m_rbA.applyTorqueImpulse(motorImp);
+ m_rbB.applyTorqueImpulse(-motorImp);
+ }
+ }
+} // btSliderConstraint::solveConstraint()
+
+//-----------------------------------------------------------------------------
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::calculateTransforms(void){
+ if(m_useLinearReferenceFrameA)
+ {
+ m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA;
+ m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB;
+ }
+ else
+ {
+ m_calculatedTransformA = m_rbB.getCenterOfMassTransform() * m_frameInB;
+ m_calculatedTransformB = m_rbA.getCenterOfMassTransform() * m_frameInA;
+ }
+ m_realPivotAInW = m_calculatedTransformA.getOrigin();
+ m_realPivotBInW = m_calculatedTransformB.getOrigin();
+ m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
+ m_delta = m_realPivotBInW - m_realPivotAInW;
+ m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
+ btVector3 normalWorld;
+ int i;
+ //linear part
+ for(i = 0; i < 3; i++)
+ {
+ normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
+ m_depth[i] = m_delta.dot(normalWorld);
+ }
+} // btSliderConstraint::calculateTransforms()
+
+//-----------------------------------------------------------------------------
+
+void btSliderConstraint::testLinLimits(void)
+{
+ m_solveLinLim = false;
+ m_linPos = m_depth[0];
+ if(m_lowerLinLimit <= m_upperLinLimit)
+ {
+ if(m_depth[0] > m_upperLinLimit)
+ {
+ m_depth[0] -= m_upperLinLimit;
+ m_solveLinLim = true;
+ }
+ else if(m_depth[0] < m_lowerLinLimit)
+ {
+ m_depth[0] -= m_lowerLinLimit;
+ m_solveLinLim = true;
+ }
+ else
+ {
+ m_depth[0] = btScalar(0.);
+ }
+ }
+ else
+ {
+ m_depth[0] = btScalar(0.);
+ }
+} // btSliderConstraint::testLinLimits()
+
+//-----------------------------------------------------------------------------
+
+
+void btSliderConstraint::testAngLimits(void)
+{
+ m_angDepth = btScalar(0.);
+ m_solveAngLim = false;
+ if(m_lowerAngLimit <= m_upperAngLimit)
+ {
+ const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1);
+ const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
+ const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
+ btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));
+ if(rot < m_lowerAngLimit)
+ {
+ m_angDepth = rot - m_lowerAngLimit;
+ m_solveAngLim = true;
+ }
+ else if(rot > m_upperAngLimit)
+ {
+ m_angDepth = rot - m_upperAngLimit;
+ m_solveAngLim = true;
+ }
+ }
+} // btSliderConstraint::testAngLimits()
+
+
+//-----------------------------------------------------------------------------
+
+
+
+btVector3 btSliderConstraint::getAncorInA(void)
+{
+ btVector3 ancorInA;
+ ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis;
+ ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA;
+ return ancorInA;
+} // btSliderConstraint::getAncorInA()
+
+//-----------------------------------------------------------------------------
+
+btVector3 btSliderConstraint::getAncorInB(void)
+{
+ btVector3 ancorInB;
+ ancorInB = m_frameInB.getOrigin();
+ return ancorInB;
+} // btSliderConstraint::getAncorInB();