Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.cpp')
-rw-r--r--extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.cpp317
1 files changed, 157 insertions, 160 deletions
diff --git a/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.cpp b/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.cpp
index a7882684bf1..27fdead7617 100644
--- a/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.cpp
+++ b/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.cpp
@@ -22,36 +22,34 @@ subject to the following restrictions:
#include "LinearMath/btSerializer.h"
//'temporarily' global variables
-btScalar gDeactivationTime = btScalar(2.);
-bool gDisableDeactivation = false;
+btScalar gDeactivationTime = btScalar(2.);
+bool gDisableDeactivation = false;
static int uniqueId = 0;
-
btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
{
setupRigidBody(constructionInfo);
}
-btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia)
+btRigidBody::btRigidBody(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia)
{
- btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia);
+ btRigidBodyConstructionInfo cinfo(mass, motionState, collisionShape, localInertia);
setupRigidBody(cinfo);
}
-void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
+void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
{
-
- m_internalType=CO_RIGID_BODY;
+ m_internalType = CO_RIGID_BODY;
m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
- m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
- m_angularFactor.setValue(1,1,1);
- m_linearFactor.setValue(1,1,1);
+ m_angularVelocity.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
+ m_angularFactor.setValue(1, 1, 1);
+ m_linearFactor.setValue(1, 1, 1);
m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)),
- setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping);
+ setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping);
m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold;
m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold;
@@ -67,46 +65,44 @@ void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo&
if (m_optionalMotionState)
{
m_optionalMotionState->getWorldTransform(m_worldTransform);
- } else
+ }
+ else
{
m_worldTransform = constructionInfo.m_startWorldTransform;
}
m_interpolationWorldTransform = m_worldTransform;
- m_interpolationLinearVelocity.setValue(0,0,0);
- m_interpolationAngularVelocity.setValue(0,0,0);
-
+ m_interpolationLinearVelocity.setValue(0, 0, 0);
+ m_interpolationAngularVelocity.setValue(0, 0, 0);
+
//moved to btCollisionObject
m_friction = constructionInfo.m_friction;
m_rollingFriction = constructionInfo.m_rollingFriction;
+ m_spinningFriction = constructionInfo.m_spinningFriction;
+
m_restitution = constructionInfo.m_restitution;
- setCollisionShape( constructionInfo.m_collisionShape );
+ setCollisionShape(constructionInfo.m_collisionShape);
m_debugBodyId = uniqueId++;
-
+
setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia);
updateInertiaTensor();
m_rigidbodyFlags = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY;
-
m_deltaLinearVelocity.setZero();
m_deltaAngularVelocity.setZero();
- m_invMass = m_inverseMass*m_linearFactor;
+ m_invMass = m_inverseMass * m_linearFactor;
m_pushVelocity.setZero();
m_turnVelocity.setZero();
-
-
-
}
-
-void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform)
+void btRigidBody::predictIntegratedTransform(btScalar timeStep, btTransform& predictedTransform)
{
- btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform);
+ btTransformUtil::integrateTransform(m_worldTransform, m_linearVelocity, m_angularVelocity, timeStep, predictedTransform);
}
-void btRigidBody::saveKinematicState(btScalar timeStep)
+void btRigidBody::saveKinematicState(btScalar timeStep)
{
//todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities
if (timeStep != btScalar(0.))
@@ -114,25 +110,22 @@ void btRigidBody::saveKinematicState(btScalar timeStep)
//if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform
if (getMotionState())
getMotionState()->getWorldTransform(m_worldTransform);
- btVector3 linVel,angVel;
-
- btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity);
+ btVector3 linVel, angVel;
+
+ btTransformUtil::calculateVelocity(m_interpolationWorldTransform, m_worldTransform, timeStep, m_linearVelocity, m_angularVelocity);
m_interpolationLinearVelocity = m_linearVelocity;
m_interpolationAngularVelocity = m_angularVelocity;
m_interpolationWorldTransform = m_worldTransform;
//printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ());
}
}
-
-void btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const
+
+void btRigidBody::getAabb(btVector3& aabbMin, btVector3& aabbMax) const
{
- getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax);
+ getCollisionShape()->getAabb(m_worldTransform, aabbMin, aabbMax);
}
-
-
-
-void btRigidBody::setGravity(const btVector3& acceleration)
+void btRigidBody::setGravity(const btVector3& acceleration)
{
if (m_inverseMass != btScalar(0.0))
{
@@ -141,33 +134,29 @@ void btRigidBody::setGravity(const btVector3& acceleration)
m_gravity_acceleration = acceleration;
}
-
-
-
-
-
void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping)
{
- m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
- m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
+#ifdef BT_USE_OLD_DAMPING_METHOD
+ m_linearDamping = btMax(lin_damping, btScalar(0.0));
+ m_angularDamping = btMax(ang_damping, btScalar(0.0));
+#else
+ m_linearDamping = btClamped(lin_damping, btScalar(0.0), btScalar(1.0));
+ m_angularDamping = btClamped(ang_damping, btScalar(0.0), btScalar(1.0));
+#endif
}
-
-
-
///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping
-void btRigidBody::applyDamping(btScalar timeStep)
+void btRigidBody::applyDamping(btScalar timeStep)
{
//On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74
//todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway
-//#define USE_OLD_DAMPING_METHOD 1
-#ifdef USE_OLD_DAMPING_METHOD
- m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
- m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
+#ifdef BT_USE_OLD_DAMPING_METHOD
+ m_linearVelocity *= btMax((btScalar(1.0) - timeStep * m_linearDamping), btScalar(0.0));
+ m_angularVelocity *= btMax((btScalar(1.0) - timeStep * m_angularDamping), btScalar(0.0));
#else
- m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep);
- m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep);
+ m_linearVelocity *= btPow(btScalar(1) - m_linearDamping, timeStep);
+ m_angularVelocity *= btPow(btScalar(1) - m_angularDamping, timeStep);
#endif
if (m_additionalDamping)
@@ -180,7 +169,6 @@ void btRigidBody::applyDamping(btScalar timeStep)
m_angularVelocity *= m_additionalDampingFactor;
m_linearVelocity *= m_additionalDampingFactor;
}
-
btScalar speed = m_linearVelocity.length();
if (speed < m_linearDamping)
@@ -189,10 +177,11 @@ void btRigidBody::applyDamping(btScalar timeStep)
if (speed > dampVel)
{
btVector3 dir = m_linearVelocity.normalized();
- m_linearVelocity -= dir * dampVel;
- } else
+ m_linearVelocity -= dir * dampVel;
+ }
+ else
{
- m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+ m_linearVelocity.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
}
}
@@ -203,30 +192,36 @@ void btRigidBody::applyDamping(btScalar timeStep)
if (angSpeed > angDampVel)
{
btVector3 dir = m_angularVelocity.normalized();
- m_angularVelocity -= dir * angDampVel;
- } else
+ m_angularVelocity -= dir * angDampVel;
+ }
+ else
{
- m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+ m_angularVelocity.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
}
}
}
}
-
void btRigidBody::applyGravity()
{
if (isStaticOrKinematicObject())
return;
-
- applyCentralForce(m_gravity);
+ applyCentralForce(m_gravity);
+}
+
+void btRigidBody::clearGravity()
+{
+ if (isStaticOrKinematicObject())
+ return;
+
+ applyCentralForce(-m_gravity);
}
void btRigidBody::proceedToTransform(const btTransform& newTrans)
{
- setCenterOfMassTransform( newTrans );
+ setCenterOfMassTransform(newTrans);
}
-
void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
{
@@ -234,7 +229,8 @@ void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
{
m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT;
m_inverseMass = btScalar(0.);
- } else
+ }
+ else
{
m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
m_inverseMass = btScalar(1.0) / mass;
@@ -242,50 +238,45 @@ void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
//Fg = m * a
m_gravity = mass * m_gravity_acceleration;
-
- m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0),
- inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0),
- inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0));
- m_invMass = m_linearFactor*m_inverseMass;
+ m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x() : btScalar(0.0),
+ inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0),
+ inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0));
+
+ m_invMass = m_linearFactor * m_inverseMass;
}
-
-void btRigidBody::updateInertiaTensor()
+void btRigidBody::updateInertiaTensor()
{
m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose();
}
-
-
btVector3 btRigidBody::getLocalInertia() const
{
-
btVector3 inertiaLocal;
const btVector3 inertia = m_invInertiaLocal;
inertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x() : btScalar(0.0),
- inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0),
- inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0));
+ inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0),
+ inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0));
return inertiaLocal;
}
inline btVector3 evalEulerEqn(const btVector3& w1, const btVector3& w0, const btVector3& T, const btScalar dt,
- const btMatrix3x3 &I)
+ const btMatrix3x3& I)
{
- const btVector3 w2 = I*w1 + w1.cross(I*w1)*dt - (T*dt + I*w0);
+ const btVector3 w2 = I * w1 + w1.cross(I * w1) * dt - (T * dt + I * w0);
return w2;
}
inline btMatrix3x3 evalEulerEqnDeriv(const btVector3& w1, const btVector3& w0, const btScalar dt,
- const btMatrix3x3 &I)
+ const btMatrix3x3& I)
{
-
btMatrix3x3 w1x, Iw1x;
- const btVector3 Iwi = (I*w1);
+ const btVector3 Iwi = (I * w1);
w1.getSkewSymmetricMatrix(&w1x[0], &w1x[1], &w1x[2]);
Iwi.getSkewSymmetricMatrix(&Iw1x[0], &Iw1x[1], &Iw1x[2]);
- const btMatrix3x3 dfw1 = I + (w1x*I - Iw1x)*dt;
+ const btMatrix3x3 dfw1 = I + (w1x * I - Iw1x) * dt;
return dfw1;
}
@@ -293,58 +284,55 @@ btVector3 btRigidBody::computeGyroscopicForceExplicit(btScalar maxGyroscopicForc
{
btVector3 inertiaLocal = getLocalInertia();
btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
- btVector3 tmp = inertiaTensorWorld*getAngularVelocity();
+ btVector3 tmp = inertiaTensorWorld * getAngularVelocity();
btVector3 gf = getAngularVelocity().cross(tmp);
btScalar l2 = gf.length2();
- if (l2>maxGyroscopicForce*maxGyroscopicForce)
+ if (l2 > maxGyroscopicForce * maxGyroscopicForce)
{
- gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce;
+ gf *= btScalar(1.) / btSqrt(l2) * maxGyroscopicForce;
}
return gf;
}
-
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Body(btScalar step) const
-{
+{
btVector3 idl = getLocalInertia();
btVector3 omega1 = getAngularVelocity();
btQuaternion q = getWorldTransform().getRotation();
-
+
// Convert to body coordinates
btVector3 omegab = quatRotate(q.inverse(), omega1);
btMatrix3x3 Ib;
- Ib.setValue(idl.x(),0,0,
- 0,idl.y(),0,
- 0,0,idl.z());
-
- btVector3 ibo = Ib*omegab;
+ Ib.setValue(idl.x(), 0, 0,
+ 0, idl.y(), 0,
+ 0, 0, idl.z());
+
+ btVector3 ibo = Ib * omegab;
// Residual vector
btVector3 f = step * omegab.cross(ibo);
-
+
btMatrix3x3 skew0;
omegab.getSkewSymmetricMatrix(&skew0[0], &skew0[1], &skew0[2]);
- btVector3 om = Ib*omegab;
+ btVector3 om = Ib * omegab;
btMatrix3x3 skew1;
- om.getSkewSymmetricMatrix(&skew1[0],&skew1[1],&skew1[2]);
-
+ om.getSkewSymmetricMatrix(&skew1[0], &skew1[1], &skew1[2]);
+
// Jacobian
- btMatrix3x3 J = Ib + (skew0*Ib - skew1)*step;
-
-// btMatrix3x3 Jinv = J.inverse();
-// btVector3 omega_div = Jinv*f;
+ btMatrix3x3 J = Ib + (skew0 * Ib - skew1) * step;
+
+ // btMatrix3x3 Jinv = J.inverse();
+ // btVector3 omega_div = Jinv*f;
btVector3 omega_div = J.solve33(f);
-
+
// Single Newton-Raphson update
- omegab = omegab - omega_div;//Solve33(J, f);
+ omegab = omegab - omega_div; //Solve33(J, f);
// Back to world coordinates
- btVector3 omega2 = quatRotate(q,omegab);
- btVector3 gf = omega2-omega1;
+ btVector3 omega2 = quatRotate(q, omegab);
+ btVector3 gf = omega2 - omega1;
return gf;
}
-
-
btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) const
{
// use full newton-euler equations. common practice to drop the wxIw term. want it for better tumbling behavior.
@@ -359,7 +347,7 @@ btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) con
m_worldTransform.getBasis().transpose();
// use newtons method to find implicit solution for new angular velocity (w')
- // f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0
+ // f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0
// df/dw' = I + 1xIw'*step + w'xI*step
btVector3 w1 = w0;
@@ -381,8 +369,7 @@ btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) con
return gf;
}
-
-void btRigidBody::integrateVelocities(btScalar step)
+void btRigidBody::integrateVelocities(btScalar step)
{
if (isStaticOrKinematicObject())
return;
@@ -391,30 +378,31 @@ void btRigidBody::integrateVelocities(btScalar step)
m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;
#define MAX_ANGVEL SIMD_HALF_PI
- /// clamp angular velocity. collision calculations will fail on higher angular velocities
+ /// clamp angular velocity. collision calculations will fail on higher angular velocities
btScalar angvel = m_angularVelocity.length();
- if (angvel*step > MAX_ANGVEL)
+ if (angvel * step > MAX_ANGVEL)
{
- m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
+ m_angularVelocity *= (MAX_ANGVEL / step) / angvel;
}
-
+ #if defined(BT_CLAMP_VELOCITY_TO) && BT_CLAMP_VELOCITY_TO > 0
+ clampVelocity(m_angularVelocity);
+ #endif
}
btQuaternion btRigidBody::getOrientation() const
{
- btQuaternion orn;
- m_worldTransform.getBasis().getRotation(orn);
- return orn;
+ btQuaternion orn;
+ m_worldTransform.getBasis().getRotation(orn);
+ return orn;
}
-
-
+
void btRigidBody::setCenterOfMassTransform(const btTransform& xform)
{
-
if (isKinematicObject())
{
m_interpolationWorldTransform = m_worldTransform;
- } else
+ }
+ else
{
m_interpolationWorldTransform = xform;
}
@@ -424,51 +412,59 @@ void btRigidBody::setCenterOfMassTransform(const btTransform& xform)
updateInertiaTensor();
}
-
-bool btRigidBody::checkCollideWithOverride(const btCollisionObject* co) const
-{
- const btRigidBody* otherRb = btRigidBody::upcast(co);
- if (!otherRb)
- return true;
-
- for (int i = 0; i < m_constraintRefs.size(); ++i)
- {
- const btTypedConstraint* c = m_constraintRefs[i];
- if (c->isEnabled())
- if (&c->getRigidBodyA() == otherRb || &c->getRigidBodyB() == otherRb)
- return false;
- }
-
- return true;
-}
-
-
-
void btRigidBody::addConstraintRef(btTypedConstraint* c)
{
+ ///disable collision with the 'other' body
+
int index = m_constraintRefs.findLinearSearch(c);
+ //don't add constraints that are already referenced
+ //btAssert(index == m_constraintRefs.size());
if (index == m_constraintRefs.size())
- m_constraintRefs.push_back(c);
-
- m_checkCollideWith = true;
+ {
+ m_constraintRefs.push_back(c);
+ btCollisionObject* colObjA = &c->getRigidBodyA();
+ btCollisionObject* colObjB = &c->getRigidBodyB();
+ if (colObjA == this)
+ {
+ colObjA->setIgnoreCollisionCheck(colObjB, true);
+ }
+ else
+ {
+ colObjB->setIgnoreCollisionCheck(colObjA, true);
+ }
+ }
}
void btRigidBody::removeConstraintRef(btTypedConstraint* c)
{
- m_constraintRefs.remove(c);
- m_checkCollideWith = m_constraintRefs.size() > 0;
+ int index = m_constraintRefs.findLinearSearch(c);
+ //don't remove constraints that are not referenced
+ if (index < m_constraintRefs.size())
+ {
+ m_constraintRefs.remove(c);
+ btCollisionObject* colObjA = &c->getRigidBodyA();
+ btCollisionObject* colObjB = &c->getRigidBodyB();
+ if (colObjA == this)
+ {
+ colObjA->setIgnoreCollisionCheck(colObjB, false);
+ }
+ else
+ {
+ colObjB->setIgnoreCollisionCheck(colObjA, false);
+ }
+ }
}
-int btRigidBody::calculateSerializeBufferSize() const
+int btRigidBody::calculateSerializeBufferSize() const
{
int sz = sizeof(btRigidBodyData);
return sz;
}
- ///fills the dataBuffer and returns the struct name (and 0 on failure)
-const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const
+///fills the dataBuffer and returns the struct name (and 0 on failure)
+const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const
{
- btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer;
+ btRigidBodyData* rbd = (btRigidBodyData*)dataBuffer;
btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer);
@@ -490,19 +486,20 @@ const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* seriali
rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr;
rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr;
rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor;
- rbd->m_linearSleepingThreshold=m_linearSleepingThreshold;
+ rbd->m_linearSleepingThreshold = m_linearSleepingThreshold;
rbd->m_angularSleepingThreshold = m_angularSleepingThreshold;
+ // Fill padding with zeros to appease msan.
+#ifdef BT_USE_DOUBLE_PRECISION
+ memset(rbd->m_padding, 0, sizeof(rbd->m_padding));
+#endif
+
return btRigidBodyDataName;
}
-
-
void btRigidBody::serializeSingleObject(class btSerializer* serializer) const
{
- btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1);
+ btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(), 1);
const char* structType = serialize(chunk->m_oldPtr, serializer);
- serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this);
+ serializer->finalizeChunk(chunk, structType, BT_RIGIDBODY_CODE, (void*)this);
}
-
-