Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp')
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp795
1 files changed, 795 insertions, 0 deletions
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
new file mode 100644
index 00000000000..577f846225b
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
@@ -0,0 +1,795 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btMultiBodyConstraintSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+#include "btMultiBodyLinkCollider.h"
+
+#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
+#include "btMultiBodyConstraint.h"
+#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
+
+#include "LinearMath/btQuickprof.h"
+
+btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ btScalar val = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ //solve featherstone non-contact constraints
+
+ //printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
+ for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
+ {
+ btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[j];
+ //if (iteration < constraint.m_overrideNumSolverIterations)
+ //resolveSingleConstraintRowGenericMultiBody(constraint);
+ resolveSingleConstraintRowGeneric(constraint);
+ }
+
+ //solve featherstone normal contact
+ for (int j=0;j<m_multiBodyNormalContactConstraints.size();j++)
+ {
+ btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[j];
+ if (iteration < infoGlobal.m_numIterations)
+ resolveSingleConstraintRowGeneric(constraint);
+ }
+
+ //solve featherstone frictional contact
+
+ for (int j=0;j<this->m_multiBodyFrictionContactConstraints.size();j++)
+ {
+ if (iteration < infoGlobal.m_numIterations)
+ {
+ btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[j];
+ btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
+ //adjust friction limits here
+ if (totalImpulse>btScalar(0))
+ {
+ frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
+ frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
+ resolveSingleConstraintRowGeneric(frictionConstraint);
+ }
+ }
+ }
+ return val;
+}
+
+btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ m_multiBodyNonContactConstraints.resize(0);
+ m_multiBodyNormalContactConstraints.resize(0);
+ m_multiBodyFrictionContactConstraints.resize(0);
+ m_data.m_jacobians.resize(0);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(0);
+ m_data.m_deltaVelocities.resize(0);
+
+ for (int i=0;i<numBodies;i++)
+ {
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
+ if (fcA)
+ {
+ fcA->m_multiBody->setCompanionId(-1);
+ }
+ }
+
+ btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
+
+ return val;
+}
+
+void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
+{
+ for (int i = 0; i < ndof; ++i)
+ m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
+}
+
+void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
+{
+
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaVelADotn=0;
+ btScalar deltaVelBDotn=0;
+ btSolverBody* bodyA = 0;
+ btSolverBody* bodyB = 0;
+ int ndofA=0;
+ int ndofB=0;
+
+ if (c.m_multiBodyA)
+ {
+ ndofA = c.m_multiBodyA->getNumLinks() + 6;
+ for (int i = 0; i < ndofA; ++i)
+ deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
+ } else
+ {
+ bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
+ deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
+ }
+
+ if (c.m_multiBodyB)
+ {
+ ndofB = c.m_multiBodyB->getNumLinks() + 6;
+ for (int i = 0; i < ndofB; ++i)
+ deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
+ } else
+ {
+ bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
+ deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
+ }
+
+
+ deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
+ deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+
+ if (c.m_multiBodyA)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
+ c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
+ } else
+ {
+ bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+
+ }
+ if (c.m_multiBodyB)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
+ c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
+ } else
+ {
+ bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ }
+
+}
+
+
+void btMultiBodyConstraintSolver::resolveSingleConstraintRowGenericMultiBody(const btMultiBodySolverConstraint& c)
+{
+
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaVelADotn=0;
+ btScalar deltaVelBDotn=0;
+ int ndofA=0;
+ int ndofB=0;
+
+ if (c.m_multiBodyA)
+ {
+ ndofA = c.m_multiBodyA->getNumLinks() + 6;
+ for (int i = 0; i < ndofA; ++i)
+ deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
+ }
+
+ if (c.m_multiBodyB)
+ {
+ ndofB = c.m_multiBodyB->getNumLinks() + 6;
+ for (int i = 0; i < ndofB; ++i)
+ deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
+ }
+
+
+ deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
+ deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+
+ if (c.m_multiBodyA)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
+ c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
+ }
+ if (c.m_multiBodyB)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
+ c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
+ }
+}
+
+
+void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& contactNormal,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+ BT_PROFILE("setupMultiBodyContactConstraint");
+ btVector3 rel_pos1;
+ btVector3 rel_pos2;
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
+ btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ if (bodyA)
+ rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+
+ relaxation = 1.f;
+
+ if (multiBodyA)
+ {
+ const int ndofA = multiBodyA->getNumLinks() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex <0)
+ {
+ solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
+ }
+
+ solverConstraint.m_jacAindex = m_data.m_jacobians.size();
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
+ multiBodyA->fillContactJacobian(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
+ } else
+ {
+ btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = contactNormal;
+ }
+
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex <0)
+ {
+ solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
+ }
+
+ solverConstraint.m_jacBindex = m_data.m_jacobians.size();
+
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ multiBodyB->fillContactJacobian(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ multiBodyB->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
+ } else
+ {
+ btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -contactNormal;
+ }
+
+ {
+
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* lambdaA =0;
+ btScalar* lambdaB =0;
+ int ndofA = 0;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l =lambdaA[i];
+ denom0 += j*l;
+ }
+ } else
+ {
+ if (rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + contactNormal.dot(vec);
+ }
+ }
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+ jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l =lambdaB[i];
+ denom1 += j*l;
+ }
+
+ } else
+ {
+ if (rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + contactNormal.dot(vec);
+ }
+ }
+
+ if (multiBodyA && (multiBodyA==multiBodyB))
+ {
+ // ndof1 == ndof2 in this case
+ for (int i = 0; i < ndofA; ++i)
+ {
+ denom1 += jacB[i] * lambdaA[i];
+ denom1 += jacA[i] * lambdaB[i];
+ }
+ }
+
+ btScalar d = denom0+denom1;
+ if (btFabs(d)>SIMD_EPSILON)
+ {
+
+ solverConstraint.m_jacDiagABInv = relaxation/(d);
+ } else
+ {
+ solverConstraint.m_jacDiagABInv = 1.f;
+ }
+
+ }
+
+
+ //compute rhs and remaining solverConstraint fields
+
+
+
+ btScalar restitution = 0.f;
+ btScalar penetration = isFriction? 0 : cp.getDistance()+infoGlobal.m_linearSlop;
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ } else
+ {
+ if (rb0)
+ {
+ rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
+ }
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumLinks() + 6;
+ btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ } else
+ {
+ if (rb1)
+ {
+ rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
+ }
+ }
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+
+
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
+
+
+ ///warm starting (or zero if disabled)
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+
+ if (solverConstraint.m_appliedImpulse)
+ {
+ if (multiBodyA)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
+ } else
+ {
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ }
+ if (multiBodyB)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ multiBodyB->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
+ } else
+ {
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
+ }
+ }
+ } else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
+
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = restitution - rel_vel;// * damping;
+
+
+ btScalar erp = infoGlobal.m_erp2;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+
+ if (penetration>0)
+ {
+ positionalError = 0;
+ velocityError = -penetration / infoGlobal.m_timeStep;
+
+ } else
+ {
+ positionalError = -penetration * erp/infoGlobal.m_timeStep;
+ }
+
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
+
+}
+
+
+
+
+btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ BT_PROFILE("addMultiBodyFrictionConstraint");
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
+ solverConstraint.m_frictionIndex = frictionIndex;
+ bool isFriction = true;
+
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
+{
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ btCollisionObject* colObj0=0,*colObj1=0;
+
+ colObj0 = (btCollisionObject*)manifold->getBody0();
+ colObj1 = (btCollisionObject*)manifold->getBody1();
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+ btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
+
+
+ ///avoid collision response between two static objects
+// if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
+ // return;
+
+ int rollingFriction=1;
+
+ for (int j=0;j<manifold->getNumContacts();j++)
+ {
+
+ btManifoldPoint& cp = manifold->getContactPoint(j);
+
+ if (cp.getDistance() <= manifold->getContactProcessingThreshold())
+ {
+
+ btScalar relaxation;
+
+ int frictionIndex = m_multiBodyNormalContactConstraints.size();
+
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
+
+ btRigidBody* rb0 = btRigidBody::upcast(colObj0);
+ btRigidBody* rb1 = btRigidBody::upcast(colObj1);
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ bool isFriction = false;
+ setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
+
+// const btVector3& pos1 = cp.getPositionWorldOnA();
+// const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ /////setup the friction constraints
+#define ENABLE_FRICTION
+#ifdef ENABLE_FRICTION
+ solverConstraint.m_frictionIndex = frictionIndex;
+#if ROLLING_FRICTION
+ btVector3 angVelA(0,0,0),angVelB(0,0,0);
+ if (rb0)
+ angVelA = rb0->getAngularVelocity();
+ if (rb1)
+ angVelB = rb1->getAngularVelocity();
+ btVector3 relAngVel = angVelB-angVelA;
+
+ if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
+ {
+ //only a single rollingFriction per manifold
+ rollingFriction--;
+ if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold)
+ {
+ relAngVel.normalize();
+ applyAnisotropicFriction(colObj0,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ if (relAngVel.length()>0.001)
+ addRollingFrictionConstraint(relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ } else
+ {
+ addRollingFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ btVector3 axis0,axis1;
+ btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
+ applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ if (axis0.length()>0.001)
+ addRollingFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ if (axis1.length()>0.001)
+ addRollingFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ }
+ }
+#endif //ROLLING_FRICTION
+
+ ///Bullet has several options to set the friction directions
+ ///By default, each contact has only a single friction direction that is recomputed automatically very frame
+ ///based on the relative linear velocity.
+ ///If the relative velocity it zero, it will automatically compute a friction direction.
+
+ ///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
+ ///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
+ ///
+ ///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
+ ///
+ ///The user can manually override the friction directions for certain contacts using a contact callback,
+ ///and set the cp.m_lateralFrictionInitialized to true
+ ///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
+ ///this will give a conveyor belt effect
+ ///
+ if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
+ {/*
+ cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
+ btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
+ if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
+ {
+ cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
+ if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
+ cp.m_lateralFrictionDir2.normalize();//??
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ } else
+ */
+ {
+ btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
+ {
+ cp.m_lateralFrictionInitialized = true;
+ }
+ }
+
+ } else
+ {
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_contactCFM1);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_contactCFM2);
+
+ //setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
+ //todo:
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+ }
+
+
+#endif //ENABLE_FRICTION
+
+ }
+ }
+}
+
+void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
+{
+ btPersistentManifold* manifold = 0;
+
+ for (int i=0;i<numManifolds;i++)
+ {
+ btPersistentManifold* manifold= manifoldPtr[i];
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+ if (!fcA && !fcB)
+ {
+ //the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
+ convertContact(manifold,infoGlobal);
+ } else
+ {
+ convertMultiBodyContact(manifold,infoGlobal);
+ }
+ }
+
+ //also convert the multibody constraints, if any
+
+
+ for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
+ {
+ btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
+ m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
+ m_data.m_fixedBodyId = m_fixedBodyId;
+
+ c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
+ }
+
+}
+
+
+
+btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
+{
+ return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
+}
+
+
+void btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
+{
+ //printf("solveMultiBodyGroup start\n");
+ m_tmpMultiBodyConstraints = multiBodyConstraints;
+ m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
+
+ btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
+
+ m_tmpMultiBodyConstraints = 0;
+ m_tmpNumMultiBodyConstraints = 0;
+
+
+}