Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.cpp')
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.cpp966
1 files changed, 966 insertions, 0 deletions
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.cpp
new file mode 100644
index 00000000000..f2186a93e9d
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.cpp
@@ -0,0 +1,966 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2018 Google Inc. http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
+
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
+#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
+#include "BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h"
+
+#define DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+
+static bool interleaveContactAndFriction1 = false;
+
+struct btJointNode1
+{
+ int jointIndex; // pointer to enclosing dxJoint object
+ int otherBodyIndex; // *other* body this joint is connected to
+ int nextJointNodeIndex; //-1 for null
+ int constraintRowIndex;
+};
+
+// Helper function to compute a delta velocity in the constraint space.
+static btScalar computeDeltaVelocityInConstraintSpace(
+ const btVector3& angularDeltaVelocity,
+ const btVector3& contactNormal,
+ btScalar invMass,
+ const btVector3& angularJacobian,
+ const btVector3& linearJacobian)
+{
+ return angularDeltaVelocity.dot(angularJacobian) + contactNormal.dot(linearJacobian) * invMass;
+}
+
+// Faster version of computeDeltaVelocityInConstraintSpace that can be used when contactNormal and linearJacobian are
+// identical.
+static btScalar computeDeltaVelocityInConstraintSpace(
+ const btVector3& angularDeltaVelocity,
+ btScalar invMass,
+ const btVector3& angularJacobian)
+{
+ return angularDeltaVelocity.dot(angularJacobian) + invMass;
+}
+
+// Helper function to compute a delta velocity in the constraint space.
+static btScalar computeDeltaVelocityInConstraintSpace(const btScalar* deltaVelocity, const btScalar* jacobian, int size)
+{
+ btScalar result = 0;
+ for (int i = 0; i < size; ++i)
+ result += deltaVelocity[i] * jacobian[i];
+
+ return result;
+}
+
+static btScalar computeConstraintMatrixDiagElementMultiBody(
+ const btAlignedObjectArray<btSolverBody>& solverBodyPool,
+ const btMultiBodyJacobianData& data,
+ const btMultiBodySolverConstraint& constraint)
+{
+ btScalar ret = 0;
+
+ const btMultiBody* multiBodyA = constraint.m_multiBodyA;
+ const btMultiBody* multiBodyB = constraint.m_multiBodyB;
+
+ if (multiBodyA)
+ {
+ const btScalar* jacA = &data.m_jacobians[constraint.m_jacAindex];
+ const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+ ret += computeDeltaVelocityInConstraintSpace(deltaA, jacA, ndofA);
+ }
+ else
+ {
+ const int solverBodyIdA = constraint.m_solverBodyIdA;
+ btAssert(solverBodyIdA != -1);
+ const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
+ const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
+ ret += computeDeltaVelocityInConstraintSpace(
+ constraint.m_relpos1CrossNormal,
+ invMassA,
+ constraint.m_angularComponentA);
+ }
+
+ if (multiBodyB)
+ {
+ const btScalar* jacB = &data.m_jacobians[constraint.m_jacBindex];
+ const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ ret += computeDeltaVelocityInConstraintSpace(deltaB, jacB, ndofB);
+ }
+ else
+ {
+ const int solverBodyIdB = constraint.m_solverBodyIdB;
+ btAssert(solverBodyIdB != -1);
+ const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
+ const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
+ ret += computeDeltaVelocityInConstraintSpace(
+ constraint.m_relpos2CrossNormal,
+ invMassB,
+ constraint.m_angularComponentB);
+ }
+
+ return ret;
+}
+
+static btScalar computeConstraintMatrixOffDiagElementMultiBody(
+ const btAlignedObjectArray<btSolverBody>& solverBodyPool,
+ const btMultiBodyJacobianData& data,
+ const btMultiBodySolverConstraint& constraint,
+ const btMultiBodySolverConstraint& offDiagConstraint)
+{
+ btScalar offDiagA = btScalar(0);
+
+ const btMultiBody* multiBodyA = constraint.m_multiBodyA;
+ const btMultiBody* multiBodyB = constraint.m_multiBodyB;
+ const btMultiBody* offDiagMultiBodyA = offDiagConstraint.m_multiBodyA;
+ const btMultiBody* offDiagMultiBodyB = offDiagConstraint.m_multiBodyB;
+
+ // Assumed at least one system is multibody
+ btAssert(multiBodyA || multiBodyB);
+ btAssert(offDiagMultiBodyA || offDiagMultiBodyB);
+
+ if (offDiagMultiBodyA)
+ {
+ const btScalar* offDiagJacA = &data.m_jacobians[offDiagConstraint.m_jacAindex];
+
+ if (offDiagMultiBodyA == multiBodyA)
+ {
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+ const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
+ offDiagA += computeDeltaVelocityInConstraintSpace(deltaA, offDiagJacA, ndofA);
+ }
+ else if (offDiagMultiBodyA == multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
+ offDiagA += computeDeltaVelocityInConstraintSpace(deltaB, offDiagJacA, ndofB);
+ }
+ }
+ else
+ {
+ const int solverBodyIdA = constraint.m_solverBodyIdA;
+ const int solverBodyIdB = constraint.m_solverBodyIdB;
+
+ const int offDiagSolverBodyIdA = offDiagConstraint.m_solverBodyIdA;
+ btAssert(offDiagSolverBodyIdA != -1);
+
+ if (offDiagSolverBodyIdA == solverBodyIdA)
+ {
+ btAssert(solverBodyIdA != -1);
+ const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
+ const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
+ offDiagA += computeDeltaVelocityInConstraintSpace(
+ offDiagConstraint.m_relpos1CrossNormal,
+ offDiagConstraint.m_contactNormal1,
+ invMassA, constraint.m_angularComponentA,
+ constraint.m_contactNormal1);
+ }
+ else if (offDiagSolverBodyIdA == solverBodyIdB)
+ {
+ btAssert(solverBodyIdB != -1);
+ const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
+ const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
+ offDiagA += computeDeltaVelocityInConstraintSpace(
+ offDiagConstraint.m_relpos1CrossNormal,
+ offDiagConstraint.m_contactNormal1,
+ invMassB,
+ constraint.m_angularComponentB,
+ constraint.m_contactNormal2);
+ }
+ }
+
+ if (offDiagMultiBodyB)
+ {
+ const btScalar* offDiagJacB = &data.m_jacobians[offDiagConstraint.m_jacBindex];
+
+ if (offDiagMultiBodyB == multiBodyA)
+ {
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+ const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
+ offDiagA += computeDeltaVelocityInConstraintSpace(deltaA, offDiagJacB, ndofA);
+ }
+ else if (offDiagMultiBodyB == multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
+ offDiagA += computeDeltaVelocityInConstraintSpace(deltaB, offDiagJacB, ndofB);
+ }
+ }
+ else
+ {
+ const int solverBodyIdA = constraint.m_solverBodyIdA;
+ const int solverBodyIdB = constraint.m_solverBodyIdB;
+
+ const int offDiagSolverBodyIdB = offDiagConstraint.m_solverBodyIdB;
+ btAssert(offDiagSolverBodyIdB != -1);
+
+ if (offDiagSolverBodyIdB == solverBodyIdA)
+ {
+ btAssert(solverBodyIdA != -1);
+ const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
+ const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
+ offDiagA += computeDeltaVelocityInConstraintSpace(
+ offDiagConstraint.m_relpos2CrossNormal,
+ offDiagConstraint.m_contactNormal2,
+ invMassA, constraint.m_angularComponentA,
+ constraint.m_contactNormal1);
+ }
+ else if (offDiagSolverBodyIdB == solverBodyIdB)
+ {
+ btAssert(solverBodyIdB != -1);
+ const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
+ const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
+ offDiagA += computeDeltaVelocityInConstraintSpace(
+ offDiagConstraint.m_relpos2CrossNormal,
+ offDiagConstraint.m_contactNormal2,
+ invMassB, constraint.m_angularComponentB,
+ constraint.m_contactNormal2);
+ }
+ }
+
+ return offDiagA;
+}
+
+void btMultiBodyMLCPConstraintSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
+{
+ createMLCPFastRigidBody(infoGlobal);
+ createMLCPFastMultiBody(infoGlobal);
+}
+
+void btMultiBodyMLCPConstraintSolver::createMLCPFastRigidBody(const btContactSolverInfo& infoGlobal)
+{
+ int numContactRows = interleaveContactAndFriction1 ? 3 : 1;
+
+ int numConstraintRows = m_allConstraintPtrArray.size();
+
+ if (numConstraintRows == 0)
+ return;
+
+ int n = numConstraintRows;
+ {
+ BT_PROFILE("init b (rhs)");
+ m_b.resize(numConstraintRows);
+ m_bSplit.resize(numConstraintRows);
+ m_b.setZero();
+ m_bSplit.setZero();
+ for (int i = 0; i < numConstraintRows; i++)
+ {
+ btScalar jacDiag = m_allConstraintPtrArray[i]->m_jacDiagABInv;
+ if (!btFuzzyZero(jacDiag))
+ {
+ btScalar rhs = m_allConstraintPtrArray[i]->m_rhs;
+ btScalar rhsPenetration = m_allConstraintPtrArray[i]->m_rhsPenetration;
+ m_b[i] = rhs / jacDiag;
+ m_bSplit[i] = rhsPenetration / jacDiag;
+ }
+ }
+ }
+
+ // btScalar* w = 0;
+ // int nub = 0;
+
+ m_lo.resize(numConstraintRows);
+ m_hi.resize(numConstraintRows);
+
+ {
+ BT_PROFILE("init lo/ho");
+
+ for (int i = 0; i < numConstraintRows; i++)
+ {
+ if (0) //m_limitDependencies[i]>=0)
+ {
+ m_lo[i] = -BT_INFINITY;
+ m_hi[i] = BT_INFINITY;
+ }
+ else
+ {
+ m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
+ m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
+ }
+ }
+ }
+
+ //
+ int m = m_allConstraintPtrArray.size();
+
+ int numBodies = m_tmpSolverBodyPool.size();
+ btAlignedObjectArray<int> bodyJointNodeArray;
+ {
+ BT_PROFILE("bodyJointNodeArray.resize");
+ bodyJointNodeArray.resize(numBodies, -1);
+ }
+ btAlignedObjectArray<btJointNode1> jointNodeArray;
+ {
+ BT_PROFILE("jointNodeArray.reserve");
+ jointNodeArray.reserve(2 * m_allConstraintPtrArray.size());
+ }
+
+ btMatrixXu& J3 = m_scratchJ3;
+ {
+ BT_PROFILE("J3.resize");
+ J3.resize(2 * m, 8);
+ }
+ btMatrixXu& JinvM3 = m_scratchJInvM3;
+ {
+ BT_PROFILE("JinvM3.resize/setZero");
+
+ JinvM3.resize(2 * m, 8);
+ JinvM3.setZero();
+ J3.setZero();
+ }
+ int cur = 0;
+ int rowOffset = 0;
+ btAlignedObjectArray<int>& ofs = m_scratchOfs;
+ {
+ BT_PROFILE("ofs resize");
+ ofs.resize(0);
+ ofs.resizeNoInitialize(m_allConstraintPtrArray.size());
+ }
+ {
+ BT_PROFILE("Compute J and JinvM");
+ int c = 0;
+
+ int numRows = 0;
+
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
+ {
+ ofs[c] = rowOffset;
+ int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
+ int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
+ btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
+ if (orgBodyA)
+ {
+ {
+ int slotA = -1;
+ //find free jointNode slot for sbA
+ slotA = jointNodeArray.size();
+ jointNodeArray.expand(); //NonInitializing();
+ int prevSlot = bodyJointNodeArray[sbA];
+ bodyJointNodeArray[sbA] = slotA;
+ jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
+ jointNodeArray[slotA].jointIndex = c;
+ jointNodeArray[slotA].constraintRowIndex = i;
+ jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
+ }
+ for (int row = 0; row < numRows; row++, cur++)
+ {
+ btVector3 normalInvMass = m_allConstraintPtrArray[i + row]->m_contactNormal1 * orgBodyA->getInvMass();
+ btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
+
+ for (int r = 0; r < 3; r++)
+ {
+ J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal1[r]);
+ J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal[r]);
+ JinvM3.setElem(cur, r, normalInvMass[r]);
+ JinvM3.setElem(cur, r + 4, relPosCrossNormalInvInertia[r]);
+ }
+ J3.setElem(cur, 3, 0);
+ JinvM3.setElem(cur, 3, 0);
+ J3.setElem(cur, 7, 0);
+ JinvM3.setElem(cur, 7, 0);
+ }
+ }
+ else
+ {
+ cur += numRows;
+ }
+ if (orgBodyB)
+ {
+ {
+ int slotB = -1;
+ //find free jointNode slot for sbA
+ slotB = jointNodeArray.size();
+ jointNodeArray.expand(); //NonInitializing();
+ int prevSlot = bodyJointNodeArray[sbB];
+ bodyJointNodeArray[sbB] = slotB;
+ jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
+ jointNodeArray[slotB].jointIndex = c;
+ jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
+ jointNodeArray[slotB].constraintRowIndex = i;
+ }
+
+ for (int row = 0; row < numRows; row++, cur++)
+ {
+ btVector3 normalInvMassB = m_allConstraintPtrArray[i + row]->m_contactNormal2 * orgBodyB->getInvMass();
+ btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
+
+ for (int r = 0; r < 3; r++)
+ {
+ J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal2[r]);
+ J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal[r]);
+ JinvM3.setElem(cur, r, normalInvMassB[r]);
+ JinvM3.setElem(cur, r + 4, relPosInvInertiaB[r]);
+ }
+ J3.setElem(cur, 3, 0);
+ JinvM3.setElem(cur, 3, 0);
+ J3.setElem(cur, 7, 0);
+ JinvM3.setElem(cur, 7, 0);
+ }
+ }
+ else
+ {
+ cur += numRows;
+ }
+ rowOffset += numRows;
+ }
+ }
+
+ //compute JinvM = J*invM.
+ const btScalar* JinvM = JinvM3.getBufferPointer();
+
+ const btScalar* Jptr = J3.getBufferPointer();
+ {
+ BT_PROFILE("m_A.resize");
+ m_A.resize(n, n);
+ }
+
+ {
+ BT_PROFILE("m_A.setZero");
+ m_A.setZero();
+ }
+ int c = 0;
+ {
+ int numRows = 0;
+ BT_PROFILE("Compute A");
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
+ {
+ int row__ = ofs[c];
+ int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
+ int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
+ // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
+
+ const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
+
+ {
+ int startJointNodeA = bodyJointNodeArray[sbA];
+ while (startJointNodeA >= 0)
+ {
+ int j0 = jointNodeArray[startJointNodeA].jointIndex;
+ int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
+ if (j0 < c)
+ {
+ int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8 * numRowsOther : 0;
+ //printf("%d joint i %d and j0: %d: ",count++,i,j0);
+ m_A.multiplyAdd2_p8r(JinvMrow,
+ Jptr + 2 * 8 * (size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__, ofs[j0]);
+ }
+ startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
+ }
+ }
+
+ {
+ int startJointNodeB = bodyJointNodeArray[sbB];
+ while (startJointNodeB >= 0)
+ {
+ int j1 = jointNodeArray[startJointNodeB].jointIndex;
+ int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
+
+ if (j1 < c)
+ {
+ int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8 * numRowsOther : 0;
+ m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)numRows,
+ Jptr + 2 * 8 * (size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__, ofs[j1]);
+ }
+ startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
+ }
+ }
+ }
+
+ {
+ BT_PROFILE("compute diagonal");
+ // compute diagonal blocks of m_A
+
+ int row__ = 0;
+ int numJointRows = m_allConstraintPtrArray.size();
+
+ int jj = 0;
+ for (; row__ < numJointRows;)
+ {
+ //int sbA = m_allConstraintPtrArray[row__]->m_solverBodyIdA;
+ int sbB = m_allConstraintPtrArray[row__]->m_solverBodyIdB;
+ // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
+
+ const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
+ const btScalar* Jrow = Jptr + 2 * 8 * (size_t)row__;
+ m_A.multiply2_p8r(JinvMrow, Jrow, infom, infom, row__, row__);
+ if (orgBodyB)
+ {
+ m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)infom, Jrow + 8 * (size_t)infom, infom, infom, row__, row__);
+ }
+ row__ += infom;
+ jj++;
+ }
+ }
+ }
+
+ if (1)
+ {
+ // add cfm to the diagonal of m_A
+ for (int i = 0; i < m_A.rows(); ++i)
+ {
+ m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
+ }
+ }
+
+ ///fill the upper triangle of the matrix, to make it symmetric
+ {
+ BT_PROFILE("fill the upper triangle ");
+ m_A.copyLowerToUpperTriangle();
+ }
+
+ {
+ BT_PROFILE("resize/init x");
+ m_x.resize(numConstraintRows);
+ m_xSplit.resize(numConstraintRows);
+
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
+ {
+ const btSolverConstraint& c = *m_allConstraintPtrArray[i];
+ m_x[i] = c.m_appliedImpulse;
+ m_xSplit[i] = c.m_appliedPushImpulse;
+ }
+ }
+ else
+ {
+ m_x.setZero();
+ m_xSplit.setZero();
+ }
+ }
+}
+
+void btMultiBodyMLCPConstraintSolver::createMLCPFastMultiBody(const btContactSolverInfo& infoGlobal)
+{
+ const int multiBodyNumConstraints = m_multiBodyAllConstraintPtrArray.size();
+
+ if (multiBodyNumConstraints == 0)
+ return;
+
+ // 1. Compute b
+ {
+ BT_PROFILE("init b (rhs)");
+
+ m_multiBodyB.resize(multiBodyNumConstraints);
+ m_multiBodyB.setZero();
+
+ for (int i = 0; i < multiBodyNumConstraints; ++i)
+ {
+ const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
+ const btScalar jacDiag = constraint.m_jacDiagABInv;
+
+ if (!btFuzzyZero(jacDiag))
+ {
+ // Note that rhsPenetration is currently always zero because the split impulse hasn't been implemented for multibody yet.
+ const btScalar rhs = constraint.m_rhs;
+ m_multiBodyB[i] = rhs / jacDiag;
+ }
+ }
+ }
+
+ // 2. Compute lo and hi
+ {
+ BT_PROFILE("init lo/ho");
+
+ m_multiBodyLo.resize(multiBodyNumConstraints);
+ m_multiBodyHi.resize(multiBodyNumConstraints);
+
+ for (int i = 0; i < multiBodyNumConstraints; ++i)
+ {
+ const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
+ m_multiBodyLo[i] = constraint.m_lowerLimit;
+ m_multiBodyHi[i] = constraint.m_upperLimit;
+ }
+ }
+
+ // 3. Construct A matrix by using the impulse testing
+ {
+ BT_PROFILE("Compute A");
+
+ {
+ BT_PROFILE("m_A.resize");
+ m_multiBodyA.resize(multiBodyNumConstraints, multiBodyNumConstraints);
+ }
+
+ for (int i = 0; i < multiBodyNumConstraints; ++i)
+ {
+ // Compute the diagonal of A, which is A(i, i)
+ const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
+ const btScalar diagA = computeConstraintMatrixDiagElementMultiBody(m_tmpSolverBodyPool, m_data, constraint);
+ m_multiBodyA.setElem(i, i, diagA);
+
+ // Computes the off-diagonals of A:
+ // a. The rest of i-th row of A, from A(i, i+1) to A(i, n)
+ // b. The rest of i-th column of A, from A(i+1, i) to A(n, i)
+ for (int j = i + 1; j < multiBodyNumConstraints; ++j)
+ {
+ const btMultiBodySolverConstraint& offDiagConstraint = *m_multiBodyAllConstraintPtrArray[j];
+ const btScalar offDiagA = computeConstraintMatrixOffDiagElementMultiBody(m_tmpSolverBodyPool, m_data, constraint, offDiagConstraint);
+
+ // Set the off-diagonal values of A. Note that A is symmetric.
+ m_multiBodyA.setElem(i, j, offDiagA);
+ m_multiBodyA.setElem(j, i, offDiagA);
+ }
+ }
+ }
+
+ // Add CFM to the diagonal of m_A
+ for (int i = 0; i < m_multiBodyA.rows(); ++i)
+ {
+ m_multiBodyA.setElem(i, i, m_multiBodyA(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
+ }
+
+ // 4. Initialize x
+ {
+ BT_PROFILE("resize/init x");
+
+ m_multiBodyX.resize(multiBodyNumConstraints);
+
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ for (int i = 0; i < multiBodyNumConstraints; ++i)
+ {
+ const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
+ m_multiBodyX[i] = constraint.m_appliedImpulse;
+ }
+ }
+ else
+ {
+ m_multiBodyX.setZero();
+ }
+ }
+}
+
+bool btMultiBodyMLCPConstraintSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
+{
+ bool result = true;
+
+ if (m_A.rows() != 0)
+ {
+ // If using split impulse, we solve 2 separate (M)LCPs
+ if (infoGlobal.m_splitImpulse)
+ {
+ const btMatrixXu Acopy = m_A;
+ const btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
+ // TODO(JS): Do we really need these copies when solveMLCP takes them as const?
+
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
+ if (result)
+ result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo, m_hi, limitDependenciesCopy, infoGlobal.m_numIterations);
+ }
+ else
+ {
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
+ }
+ }
+
+ if (!result)
+ return false;
+
+ if (m_multiBodyA.rows() != 0)
+ {
+ result = m_solver->solveMLCP(m_multiBodyA, m_multiBodyB, m_multiBodyX, m_multiBodyLo, m_multiBodyHi, m_multiBodyLimitDependencies, infoGlobal.m_numIterations);
+ }
+
+ return result;
+}
+
+btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlySetup(
+ btCollisionObject** bodies,
+ int numBodies,
+ btPersistentManifold** manifoldPtr,
+ int numManifolds,
+ btTypedConstraint** constraints,
+ int numConstraints,
+ const btContactSolverInfo& infoGlobal,
+ btIDebugDraw* debugDrawer)
+{
+ // 1. Setup for rigid-bodies
+ btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(
+ bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
+
+ // 2. Setup for multi-bodies
+ // a. Collect all different kinds of constraint as pointers into one array, m_allConstraintPtrArray
+ // b. Set the index array for frictional contact constraints, m_limitDependencies
+ {
+ BT_PROFILE("gather constraint data");
+
+ int dindex = 0;
+
+ const int numRigidBodyConstraints = m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size();
+ const int numMultiBodyConstraints = m_multiBodyNonContactConstraints.size() + m_multiBodyNormalContactConstraints.size() + m_multiBodyFrictionContactConstraints.size();
+
+ m_allConstraintPtrArray.resize(0);
+ m_multiBodyAllConstraintPtrArray.resize(0);
+
+ // i. Setup for rigid bodies
+
+ m_limitDependencies.resize(numRigidBodyConstraints);
+
+ for (int i = 0; i < m_tmpSolverNonContactConstraintPool.size(); ++i)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverNonContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ }
+
+ int firstContactConstraintOffset = dindex;
+
+ // The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
+ if (interleaveContactAndFriction1)
+ {
+ for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
+ {
+ const int numFrictionPerContact = m_tmpSolverContactConstraintPool.size() == m_tmpSolverContactFrictionConstraintPool.size() ? 1 : 2;
+
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact]);
+ int findex = (m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact].m_frictionIndex * (1 + numFrictionPerContact));
+ m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
+ if (numFrictionPerContact == 2)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact + 1]);
+ m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
+ }
+ }
+ }
+ else
+ {
+ for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ }
+ for (int i = 0; i < m_tmpSolverContactFrictionConstraintPool.size(); i++)
+ {
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i]);
+ m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex + firstContactConstraintOffset;
+ }
+ }
+
+ if (!m_allConstraintPtrArray.size())
+ {
+ m_A.resize(0, 0);
+ m_b.resize(0);
+ m_x.resize(0);
+ m_lo.resize(0);
+ m_hi.resize(0);
+ }
+
+ // ii. Setup for multibodies
+
+ dindex = 0;
+
+ m_multiBodyLimitDependencies.resize(numMultiBodyConstraints);
+
+ for (int i = 0; i < m_multiBodyNonContactConstraints.size(); ++i)
+ {
+ m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNonContactConstraints[i]);
+ m_multiBodyLimitDependencies[dindex++] = -1;
+ }
+
+ firstContactConstraintOffset = dindex;
+
+ // The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
+ if (interleaveContactAndFriction1)
+ {
+ for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
+ {
+ const int numtiBodyNumFrictionPerContact = m_multiBodyNormalContactConstraints.size() == m_multiBodyFrictionContactConstraints.size() ? 1 : 2;
+
+ m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNormalContactConstraints[i]);
+ m_multiBodyLimitDependencies[dindex++] = -1;
+
+ btMultiBodySolverConstraint& frictionContactConstraint1 = m_multiBodyFrictionContactConstraints[i * numtiBodyNumFrictionPerContact];
+ m_multiBodyAllConstraintPtrArray.push_back(&frictionContactConstraint1);
+
+ const int findex = (frictionContactConstraint1.m_frictionIndex * (1 + numtiBodyNumFrictionPerContact)) + firstContactConstraintOffset;
+
+ m_multiBodyLimitDependencies[dindex++] = findex;
+
+ if (numtiBodyNumFrictionPerContact == 2)
+ {
+ btMultiBodySolverConstraint& frictionContactConstraint2 = m_multiBodyFrictionContactConstraints[i * numtiBodyNumFrictionPerContact + 1];
+ m_multiBodyAllConstraintPtrArray.push_back(&frictionContactConstraint2);
+
+ m_multiBodyLimitDependencies[dindex++] = findex;
+ }
+ }
+ }
+ else
+ {
+ for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
+ {
+ m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNormalContactConstraints[i]);
+ m_multiBodyLimitDependencies[dindex++] = -1;
+ }
+ for (int i = 0; i < m_multiBodyFrictionContactConstraints.size(); ++i)
+ {
+ m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyFrictionContactConstraints[i]);
+ m_multiBodyLimitDependencies[dindex++] = m_multiBodyFrictionContactConstraints[i].m_frictionIndex + firstContactConstraintOffset;
+ }
+ }
+
+ if (!m_multiBodyAllConstraintPtrArray.size())
+ {
+ m_multiBodyA.resize(0, 0);
+ m_multiBodyB.resize(0);
+ m_multiBodyX.resize(0);
+ m_multiBodyLo.resize(0);
+ m_multiBodyHi.resize(0);
+ }
+ }
+
+ // Construct MLCP terms
+ {
+ BT_PROFILE("createMLCPFast");
+ createMLCPFast(infoGlobal);
+ }
+
+ return btScalar(0);
+}
+
+btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
+{
+ bool result = true;
+ {
+ BT_PROFILE("solveMLCP");
+ result = solveMLCP(infoGlobal);
+ }
+
+ // Fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations if the solution isn't valid.
+ if (!result)
+ {
+ m_fallback++;
+ return btMultiBodyConstraintSolver::solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
+ }
+
+ {
+ BT_PROFILE("process MLCP results");
+
+ for (int i = 0; i < m_allConstraintPtrArray.size(); ++i)
+ {
+ const btSolverConstraint& c = *m_allConstraintPtrArray[i];
+
+ const btScalar deltaImpulse = m_x[i] - c.m_appliedImpulse;
+ c.m_appliedImpulse = m_x[i];
+
+ int sbA = c.m_solverBodyIdA;
+ int sbB = c.m_solverBodyIdB;
+
+ btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
+ btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
+
+ solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+
+ if (infoGlobal.m_splitImpulse)
+ {
+ const btScalar deltaPushImpulse = m_xSplit[i] - c.m_appliedPushImpulse;
+ solverBodyA.internalApplyPushImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaPushImpulse);
+ solverBodyB.internalApplyPushImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaPushImpulse);
+ c.m_appliedPushImpulse = m_xSplit[i];
+ }
+ }
+
+ for (int i = 0; i < m_multiBodyAllConstraintPtrArray.size(); ++i)
+ {
+ btMultiBodySolverConstraint& c = *m_multiBodyAllConstraintPtrArray[i];
+
+ const btScalar deltaImpulse = m_multiBodyX[i] - c.m_appliedImpulse;
+ c.m_appliedImpulse = m_multiBodyX[i];
+
+ btMultiBody* multiBodyA = c.m_multiBodyA;
+ if (multiBodyA)
+ {
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse, c.m_deltaVelAindex, ndofA);
+#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ //note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
+ //it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
+ multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse);
+#endif // DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ }
+ else
+ {
+ const int sbA = c.m_solverBodyIdA;
+ btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
+ solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ }
+
+ btMultiBody* multiBodyB = c.m_multiBodyB;
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse, c.m_deltaVelBindex, ndofB);
+#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ //note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
+ //it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
+ multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse);
+#endif // DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ }
+ else
+ {
+ const int sbB = c.m_solverBodyIdB;
+ btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
+ solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+ }
+ }
+ }
+
+ return btScalar(0);
+}
+
+btMultiBodyMLCPConstraintSolver::btMultiBodyMLCPConstraintSolver(btMLCPSolverInterface* solver)
+ : m_solver(solver), m_fallback(0)
+{
+ // Do nothing
+}
+
+btMultiBodyMLCPConstraintSolver::~btMultiBodyMLCPConstraintSolver()
+{
+ // Do nothing
+}
+
+void btMultiBodyMLCPConstraintSolver::setMLCPSolver(btMLCPSolverInterface* solver)
+{
+ m_solver = solver;
+}
+
+int btMultiBodyMLCPConstraintSolver::getNumFallbacks() const
+{
+ return m_fallback;
+}
+
+void btMultiBodyMLCPConstraintSolver::setNumFallbacks(int num)
+{
+ m_fallback = num;
+}
+
+btConstraintSolverType btMultiBodyMLCPConstraintSolver::getSolverType() const
+{
+ return BT_MLCP_SOLVER;
+}