Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletDynamics')
-rw-r--r--extern/bullet2/src/BulletDynamics/Character/btCharacterControllerInterface.h3
-rw-r--r--extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.cpp167
-rw-r--r--extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.h6
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h64
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btConstraintSolver.h16
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp129
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.h49
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btGearConstraint.h98
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h44
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h33
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h37
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h22
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp296
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h31
-rwxr-xr-xextern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.h46
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverBody.h13
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverConstraint.h1
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp10
-rw-r--r--extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h64
-rw-r--r--extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp39
-rw-r--r--extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h15
-rw-r--r--extern/bullet2/src/BulletDynamics/Dynamics/btDynamicsWorld.h3
-rw-r--r--extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.h4
-rw-r--r--extern/bullet2/src/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp4
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.cpp1009
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.h466
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp527
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h166
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp795
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h85
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp578
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h56
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp133
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h44
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp89
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h47
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLink.h110
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h92
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp143
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h60
-rw-r--r--extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h82
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp2079
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.h77
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigSolver.h112
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp626
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.h81
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h33
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btPATHSolver.h151
-rw-r--r--extern/bullet2/src/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h80
49 files changed, 8677 insertions, 238 deletions
diff --git a/extern/bullet2/src/BulletDynamics/Character/btCharacterControllerInterface.h b/extern/bullet2/src/BulletDynamics/Character/btCharacterControllerInterface.h
index c81813c92be..dffb06dfe94 100644
--- a/extern/bullet2/src/BulletDynamics/Character/btCharacterControllerInterface.h
+++ b/extern/bullet2/src/BulletDynamics/Character/btCharacterControllerInterface.h
@@ -31,7 +31,7 @@ public:
virtual void setWalkDirection(const btVector3& walkDirection) = 0;
virtual void setVelocityForTimeInterval(const btVector3& velocity, btScalar timeInterval) = 0;
- virtual void reset () = 0;
+ virtual void reset ( btCollisionWorld* collisionWorld ) = 0;
virtual void warp (const btVector3& origin) = 0;
virtual void preStep ( btCollisionWorld* collisionWorld) = 0;
@@ -40,6 +40,7 @@ public:
virtual void jump () = 0;
virtual bool onGround () const = 0;
+ virtual void setUpInterpolate (bool value) = 0;
};
#endif //BT_CHARACTER_CONTROLLER_INTERFACE_H
diff --git a/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.cpp b/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.cpp
index 9db909a5469..8f1cd20bf45 100644
--- a/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.cpp
+++ b/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.cpp
@@ -14,6 +14,7 @@ subject to the following restrictions:
*/
+#include <stdio.h>
#include "LinearMath/btIDebugDraw.h"
#include "BulletCollision/CollisionDispatch/btGhostObject.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
@@ -79,7 +80,7 @@ public:
if (!convexResult.m_hitCollisionObject->hasContactResponse())
return btScalar(1.0);
-
+
btVector3 hitNormalWorld;
if (normalInWorldSpace)
{
@@ -149,7 +150,11 @@ btKinematicCharacterController::btKinematicCharacterController (btPairCachingGho
m_jumpSpeed = 10.0; // ?
m_wasOnGround = false;
m_wasJumping = false;
+ m_interpolateUp = true;
setMaxSlope(btRadians(45.0));
+ m_currentStepOffset = 0;
+ full_drop = false;
+ bounce_fix = false;
}
btKinematicCharacterController::~btKinematicCharacterController ()
@@ -190,9 +195,10 @@ bool btKinematicCharacterController::recoverFromPenetration ( btCollisionWorld*
m_manifoldArray.resize(0);
btBroadphasePair* collisionPair = &m_ghostObject->getOverlappingPairCache()->getOverlappingPairArray()[i];
+
btCollisionObject* obj0 = static_cast<btCollisionObject*>(collisionPair->m_pProxy0->m_clientObject);
- btCollisionObject* obj1 = static_cast<btCollisionObject*>(collisionPair->m_pProxy1->m_clientObject);
-
+ btCollisionObject* obj1 = static_cast<btCollisionObject*>(collisionPair->m_pProxy1->m_clientObject);
+
if ((obj0 && !obj0->hasContactResponse()) || (obj1 && !obj1->hasContactResponse()))
continue;
@@ -268,7 +274,10 @@ void btKinematicCharacterController::stepUp ( btCollisionWorld* world)
{
// we moved up only a fraction of the step height
m_currentStepOffset = m_stepHeight * callback.m_closestHitFraction;
- m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
+ if (m_interpolateUp == true)
+ m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
+ else
+ m_currentPosition = m_targetPosition;
}
m_verticalVelocity = 0.0;
m_verticalOffset = 0.0;
@@ -333,7 +342,8 @@ void btKinematicCharacterController::stepForwardAndStrafe ( btCollisionWorld* co
{
if (m_normalizedDirection.dot(m_touchingNormal) > btScalar(0.0))
{
- updateTargetPositionBasedOnCollision (m_touchingNormal);
+ //interferes with step movement
+ //updateTargetPositionBasedOnCollision (m_touchingNormal);
}
}
@@ -405,7 +415,8 @@ void btKinematicCharacterController::stepForwardAndStrafe ( btCollisionWorld* co
void btKinematicCharacterController::stepDown ( btCollisionWorld* collisionWorld, btScalar dt)
{
- btTransform start, end;
+ btTransform start, end, end_double;
+ bool runonce = false;
// phase 3: down
/*btScalar additionalDownStep = (m_wasOnGround && !onGround()) ? m_stepHeight : 0.0;
@@ -414,44 +425,124 @@ void btKinematicCharacterController::stepDown ( btCollisionWorld* collisionWorld
btVector3 gravity_drop = getUpAxisDirections()[m_upAxis] * downVelocity;
m_targetPosition -= (step_drop + gravity_drop);*/
+ btVector3 orig_position = m_targetPosition;
+
btScalar downVelocity = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt;
- if(downVelocity > 0.0 && downVelocity < m_stepHeight
+
+ if(downVelocity > 0.0 && downVelocity > m_fallSpeed
&& (m_wasOnGround || !m_wasJumping))
- {
- downVelocity = m_stepHeight;
- }
+ downVelocity = m_fallSpeed;
btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity);
m_targetPosition -= step_drop;
- start.setIdentity ();
- end.setIdentity ();
+ btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, getUpAxisDirections()[m_upAxis], m_maxSlopeCosine);
+ callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
+ callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;
- start.setOrigin (m_currentPosition);
- end.setOrigin (m_targetPosition);
+ btKinematicClosestNotMeConvexResultCallback callback2 (m_ghostObject, getUpAxisDirections()[m_upAxis], m_maxSlopeCosine);
+ callback2.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
+ callback2.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;
- btKinematicClosestNotMeConvexResultCallback callback (m_ghostObject, getUpAxisDirections()[m_upAxis], m_maxSlopeCosine);
- callback.m_collisionFilterGroup = getGhostObject()->getBroadphaseHandle()->m_collisionFilterGroup;
- callback.m_collisionFilterMask = getGhostObject()->getBroadphaseHandle()->m_collisionFilterMask;
-
- if (m_useGhostObjectSweepTest)
+ while (1)
{
- m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
- } else
- {
- collisionWorld->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
+ start.setIdentity ();
+ end.setIdentity ();
+
+ end_double.setIdentity ();
+
+ start.setOrigin (m_currentPosition);
+ end.setOrigin (m_targetPosition);
+
+ //set double test for 2x the step drop, to check for a large drop vs small drop
+ end_double.setOrigin (m_targetPosition - step_drop);
+
+ if (m_useGhostObjectSweepTest)
+ {
+ m_ghostObject->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
+
+ if (!callback.hasHit())
+ {
+ //test a double fall height, to see if the character should interpolate it's fall (full) or not (partial)
+ m_ghostObject->convexSweepTest (m_convexShape, start, end_double, callback2, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
+ }
+ } else
+ {
+ collisionWorld->convexSweepTest (m_convexShape, start, end, callback, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
+
+ if (!callback.hasHit())
+ {
+ //test a double fall height, to see if the character should interpolate it's fall (large) or not (small)
+ collisionWorld->convexSweepTest (m_convexShape, start, end_double, callback2, collisionWorld->getDispatchInfo().m_allowedCcdPenetration);
+ }
+ }
+
+ btScalar downVelocity2 = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt;
+ bool has_hit = false;
+ if (bounce_fix == true)
+ has_hit = callback.hasHit() || callback2.hasHit();
+ else
+ has_hit = callback2.hasHit();
+
+ if(downVelocity2 > 0.0 && downVelocity2 < m_stepHeight && has_hit == true && runonce == false
+ && (m_wasOnGround || !m_wasJumping))
+ {
+ //redo the velocity calculation when falling a small amount, for fast stairs motion
+ //for larger falls, use the smoother/slower interpolated movement by not touching the target position
+
+ m_targetPosition = orig_position;
+ downVelocity = m_stepHeight;
+
+ btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity);
+ m_targetPosition -= step_drop;
+ runonce = true;
+ continue; //re-run previous tests
+ }
+ break;
}
- if (callback.hasHit())
+ if (callback.hasHit() || runonce == true)
{
// we dropped a fraction of the height -> hit floor
- m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
+
+ btScalar fraction = (m_currentPosition.getY() - callback.m_hitPointWorld.getY()) / 2;
+
+ //printf("hitpoint: %g - pos %g\n", callback.m_hitPointWorld.getY(), m_currentPosition.getY());
+
+ if (bounce_fix == true)
+ {
+ if (full_drop == true)
+ m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
+ else
+ //due to errors in the closestHitFraction variable when used with large polygons, calculate the hit fraction manually
+ m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, fraction);
+ }
+ else
+ m_currentPosition.setInterpolate3 (m_currentPosition, m_targetPosition, callback.m_closestHitFraction);
+
+ full_drop = false;
+
m_verticalVelocity = 0.0;
m_verticalOffset = 0.0;
m_wasJumping = false;
} else {
// we dropped the full height
+ full_drop = true;
+
+ if (bounce_fix == true)
+ {
+ downVelocity = (m_verticalVelocity<0.f?-m_verticalVelocity:0.f) * dt;
+ if (downVelocity > m_fallSpeed && (m_wasOnGround || !m_wasJumping))
+ {
+ m_targetPosition += step_drop; //undo previous target change
+ downVelocity = m_fallSpeed;
+ step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + downVelocity);
+ m_targetPosition -= step_drop;
+ }
+ }
+ //printf("full drop - %g, %g\n", m_currentPosition.getY(), m_targetPosition.getY());
+
m_currentPosition = m_targetPosition;
}
}
@@ -484,13 +575,24 @@ btScalar timeInterval
m_useWalkDirection = false;
m_walkDirection = velocity;
m_normalizedDirection = getNormalizedVector(m_walkDirection);
- m_velocityTimeInterval = timeInterval;
+ m_velocityTimeInterval += timeInterval;
}
-
-
-void btKinematicCharacterController::reset ()
-{
+void btKinematicCharacterController::reset ( btCollisionWorld* collisionWorld )
+{
+ m_verticalVelocity = 0.0;
+ m_verticalOffset = 0.0;
+ m_wasOnGround = false;
+ m_wasJumping = false;
+ m_walkDirection.setValue(0,0,0);
+ m_velocityTimeInterval = 0.0;
+
+ //clear pair cache
+ btHashedOverlappingPairCache *cache = m_ghostObject->getOverlappingPairCache();
+ while (cache->getOverlappingPairArray().size() > 0)
+ {
+ cache->removeOverlappingPair(cache->getOverlappingPairArray()[0].m_pProxy0, cache->getOverlappingPairArray()[0].m_pProxy1, collisionWorld->getDispatcher());
+ }
}
void btKinematicCharacterController::warp (const btVector3& origin)
@@ -661,3 +763,8 @@ btVector3* btKinematicCharacterController::getUpAxisDirections()
void btKinematicCharacterController::debugDraw(btIDebugDraw* debugDrawer)
{
}
+
+void btKinematicCharacterController::setUpInterpolate(bool value)
+{
+ m_interpolateUp = value;
+}
diff --git a/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.h b/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.h
index 8ec63735cd8..add6f30a687 100644
--- a/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.h
+++ b/extern/bullet2/src/BulletDynamics/Character/btKinematicCharacterController.h
@@ -81,6 +81,9 @@ protected:
int m_upAxis;
static btVector3* getUpAxisDirections();
+ bool m_interpolateUp;
+ bool full_drop;
+ bool bounce_fix;
btVector3 computeReflectionDirection (const btVector3& direction, const btVector3& normal);
btVector3 parallelComponent (const btVector3& direction, const btVector3& normal);
@@ -133,7 +136,7 @@ public:
virtual void setVelocityForTimeInterval(const btVector3& velocity,
btScalar timeInterval);
- void reset ();
+ void reset ( btCollisionWorld* collisionWorld );
void warp (const btVector3& origin);
void preStep ( btCollisionWorld* collisionWorld);
@@ -161,6 +164,7 @@ public:
}
bool onGround () const;
+ void setUpInterpolate (bool value);
};
#endif // BT_KINEMATIC_CHARACTER_CONTROLLER_H
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h
index 09c048beda8..1735b524dba 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.h
@@ -40,6 +40,15 @@ and swing 1 and 2 are along the z and y axes respectively.
#include "btJacobianEntry.h"
#include "btTypedConstraint.h"
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btConeTwistConstraintData2 btConeTwistConstraintDoubleData
+#define btConeTwistConstraintDataName "btConeTwistConstraintDoubleData"
+#else
+#define btConeTwistConstraintData2 btConeTwistConstraintData
+#define btConeTwistConstraintDataName "btConeTwistConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
class btRigidBody;
enum btConeTwistFlags
@@ -295,7 +304,30 @@ public:
};
-///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
+
+struct btConeTwistConstraintDoubleData
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame;
+ btTransformDoubleData m_rbBFrame;
+
+ //limits
+ double m_swingSpan1;
+ double m_swingSpan2;
+ double m_twistSpan;
+ double m_limitSoftness;
+ double m_biasFactor;
+ double m_relaxationFactor;
+
+ double m_damping;
+
+
+
+};
+
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///this structure is not used, except for loading pre-2.82 .bullet files
struct btConeTwistConstraintData
{
btTypedConstraintData m_typeConstraintData;
@@ -315,12 +347,12 @@ struct btConeTwistConstraintData
char m_pad[4];
};
-
-
+#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+//
SIMD_FORCE_INLINE int btConeTwistConstraint::calculateSerializeBufferSize() const
{
- return sizeof(btConeTwistConstraintData);
+ return sizeof(btConeTwistConstraintData2);
}
@@ -328,21 +360,21 @@ SIMD_FORCE_INLINE int btConeTwistConstraint::calculateSerializeBufferSize() cons
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* btConeTwistConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btConeTwistConstraintData* cone = (btConeTwistConstraintData*) dataBuffer;
+ btConeTwistConstraintData2* cone = (btConeTwistConstraintData2*) dataBuffer;
btTypedConstraint::serialize(&cone->m_typeConstraintData,serializer);
- m_rbAFrame.serializeFloat(cone->m_rbAFrame);
- m_rbBFrame.serializeFloat(cone->m_rbBFrame);
+ m_rbAFrame.serialize(cone->m_rbAFrame);
+ m_rbBFrame.serialize(cone->m_rbBFrame);
- cone->m_swingSpan1 = float(m_swingSpan1);
- cone->m_swingSpan2 = float(m_swingSpan2);
- cone->m_twistSpan = float(m_twistSpan);
- cone->m_limitSoftness = float(m_limitSoftness);
- cone->m_biasFactor = float(m_biasFactor);
- cone->m_relaxationFactor = float(m_relaxationFactor);
- cone->m_damping = float(m_damping);
-
- return "btConeTwistConstraintData";
+ cone->m_swingSpan1 = m_swingSpan1;
+ cone->m_swingSpan2 = m_swingSpan2;
+ cone->m_twistSpan = m_twistSpan;
+ cone->m_limitSoftness = m_limitSoftness;
+ cone->m_biasFactor = m_biasFactor;
+ cone->m_relaxationFactor = m_relaxationFactor;
+ cone->m_damping = m_damping;
+
+ return btConeTwistConstraintDataName;
}
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConstraintSolver.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConstraintSolver.h
index 6f673102be2..1ba1cd1e839 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConstraintSolver.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btConstraintSolver.h
@@ -28,6 +28,14 @@ class btIDebugDraw;
class btStackAlloc;
class btDispatcher;
/// btConstraintSolver provides solver interface
+
+
+enum btConstraintSolverType
+{
+ BT_SEQUENTIAL_IMPULSE_SOLVER=1,
+ BT_MLCP_SOLVER=2
+};
+
class btConstraintSolver
{
@@ -38,12 +46,16 @@ public:
virtual void prepareSolve (int /* numBodies */, int /* numManifolds */) {;}
///solve a group of constraints
- virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints, const btContactSolverInfo& info,class btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc,btDispatcher* dispatcher) = 0;
+ virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints, const btContactSolverInfo& info,class btIDebugDraw* debugDrawer,btDispatcher* dispatcher) = 0;
- virtual void allSolved (const btContactSolverInfo& /* info */,class btIDebugDraw* /* debugDrawer */, btStackAlloc* /* stackAlloc */) {;}
+ virtual void allSolved (const btContactSolverInfo& /* info */,class btIDebugDraw* /* debugDrawer */) {;}
///clear internal cached data and reset random seed
virtual void reset() = 0;
+
+ virtual btConstraintSolverType getSolverType() const=0;
+
+
};
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp
new file mode 100644
index 00000000000..f93a3280f35
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.cpp
@@ -0,0 +1,129 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btFixedConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btTransformUtil.h"
+#include <new>
+
+
+btFixedConstraint::btFixedConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& frameInA,const btTransform& frameInB)
+:btTypedConstraint(FIXED_CONSTRAINT_TYPE,rbA,rbB)
+{
+ m_pivotInA = frameInA.getOrigin();
+ m_pivotInB = frameInB.getOrigin();
+ m_relTargetAB = frameInA.getRotation()*frameInB.getRotation().inverse();
+
+}
+
+btFixedConstraint::~btFixedConstraint ()
+{
+}
+
+
+void btFixedConstraint::getInfo1 (btConstraintInfo1* info)
+{
+ info->m_numConstraintRows = 6;
+ info->nub = 6;
+}
+
+void btFixedConstraint::getInfo2 (btConstraintInfo2* info)
+{
+ //fix the 3 linear degrees of freedom
+
+
+ const btVector3& worldPosA = m_rbA.getCenterOfMassTransform().getOrigin();
+ const btMatrix3x3& worldOrnA = m_rbA.getCenterOfMassTransform().getBasis();
+ const btVector3& worldPosB= m_rbB.getCenterOfMassTransform().getOrigin();
+ const btMatrix3x3& worldOrnB = m_rbB.getCenterOfMassTransform().getBasis();
+
+
+ info->m_J1linearAxis[0] = 1;
+ info->m_J1linearAxis[info->rowskip+1] = 1;
+ info->m_J1linearAxis[2*info->rowskip+2] = 1;
+
+ btVector3 a1 = worldOrnA*m_pivotInA;
+ {
+ btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
+ btVector3 a1neg = -a1;
+ a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+
+ if (info->m_J2linearAxis)
+ {
+ info->m_J2linearAxis[0] = -1;
+ info->m_J2linearAxis[info->rowskip+1] = -1;
+ info->m_J2linearAxis[2*info->rowskip+2] = -1;
+ }
+
+ btVector3 a2 = worldOrnB*m_pivotInB;
+
+ {
+ // btVector3 a2n = -a2;
+ btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
+ btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
+ btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
+ a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
+ }
+
+ // set right hand side for the linear dofs
+ btScalar k = info->fps * info->erp;
+
+ btVector3 linearError = k*(a2+worldPosB-a1-worldPosA);
+ int j;
+ for (j=0; j<3; j++)
+ {
+
+
+
+ info->m_constraintError[j*info->rowskip] = linearError[j];
+ //printf("info->m_constraintError[%d]=%f\n",j,info->m_constraintError[j]);
+ }
+
+ //fix the 3 angular degrees of freedom
+
+ int start_row = 3;
+ int s = info->rowskip;
+ int start_index = start_row * s;
+
+ // 3 rows to make body rotations equal
+ info->m_J1angularAxis[start_index] = 1;
+ info->m_J1angularAxis[start_index + s + 1] = 1;
+ info->m_J1angularAxis[start_index + s*2+2] = 1;
+ if ( info->m_J2angularAxis)
+ {
+ info->m_J2angularAxis[start_index] = -1;
+ info->m_J2angularAxis[start_index + s+1] = -1;
+ info->m_J2angularAxis[start_index + s*2+2] = -1;
+ }
+
+ // set right hand side for the angular dofs
+
+ btVector3 diff;
+ btScalar angle;
+ btMatrix3x3 mrelCur = worldOrnA *worldOrnB.inverse();
+ btQuaternion qrelCur;
+ mrelCur.getRotation(qrelCur);
+ btTransformUtil::calculateDiffAxisAngleQuaternion(m_relTargetAB,qrelCur,diff,angle);
+ diff*=-angle;
+ for (j=0; j<3; j++)
+ {
+ info->m_constraintError[(3+j)*info->rowskip] = k * diff[j];
+ }
+
+} \ No newline at end of file
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.h
new file mode 100644
index 00000000000..697e319e2ce
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btFixedConstraint.h
@@ -0,0 +1,49 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_FIXED_CONSTRAINT_H
+#define BT_FIXED_CONSTRAINT_H
+
+#include "btTypedConstraint.h"
+
+ATTRIBUTE_ALIGNED16(class) btFixedConstraint : public btTypedConstraint
+{
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+ btQuaternion m_relTargetAB;
+
+public:
+ btFixedConstraint(btRigidBody& rbA,btRigidBody& rbB, const btTransform& frameInA,const btTransform& frameInB);
+
+ virtual ~btFixedConstraint();
+
+
+ virtual void getInfo1 (btConstraintInfo1* info);
+
+ virtual void getInfo2 (btConstraintInfo2* info);
+
+ virtual void setParam(int num, btScalar value, int axis = -1)
+ {
+ btAssert(0);
+ }
+ virtual btScalar getParam(int num, int axis = -1) const
+ {
+ btAssert(0);
+ return 0.f;
+ }
+
+};
+
+#endif //BT_FIXED_CONSTRAINT_H
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGearConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGearConstraint.h
index 60f60094843..f9afcb91211 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGearConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGearConstraint.h
@@ -19,6 +19,18 @@ subject to the following restrictions:
#define BT_GEAR_CONSTRAINT_H
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
+
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGearConstraintData btGearConstraintDoubleData
+#define btGearConstraintDataName "btGearConstraintDoubleData"
+#else
+#define btGearConstraintData btGearConstraintFloatData
+#define btGearConstraintDataName "btGearConstraintFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
+
///The btGeatConstraint will couple the angular velocity for two bodies around given local axis and ratio.
///See Bullet/Demos/ConstraintDemo for an example use.
class btGearConstraint : public btTypedConstraint
@@ -39,18 +51,102 @@ public:
///internal method used by the constraint solver, don't use them directly
virtual void getInfo2 (btConstraintInfo2* info);
+ void setAxisA(btVector3& axisA)
+ {
+ m_axisInA = axisA;
+ }
+ void setAxisB(btVector3& axisB)
+ {
+ m_axisInB = axisB;
+ }
+ void setRatio(btScalar ratio)
+ {
+ m_ratio = ratio;
+ }
+ const btVector3& getAxisA() const
+ {
+ return m_axisInA;
+ }
+ const btVector3& getAxisB() const
+ {
+ return m_axisInB;
+ }
+ btScalar getRatio() const
+ {
+ return m_ratio;
+ }
+
+
virtual void setParam(int num, btScalar value, int axis = -1)
{
+ (void) num;
+ (void) value;
+ (void) axis;
btAssert(0);
- };
+ }
///return the local value of parameter
virtual btScalar getParam(int num, int axis = -1) const
{
+ (void) num;
+ (void) axis;
btAssert(0);
return 0.f;
}
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
+};
+
+
+
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btGearConstraintFloatData
+{
+ btTypedConstraintFloatData m_typeConstraintData;
+
+ btVector3FloatData m_axisInA;
+ btVector3FloatData m_axisInB;
+
+ float m_ratio;
+ char m_padding[4];
};
+struct btGearConstraintDoubleData
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+
+ btVector3DoubleData m_axisInA;
+ btVector3DoubleData m_axisInB;
+
+ double m_ratio;
+};
+
+SIMD_FORCE_INLINE int btGearConstraint::calculateSerializeBufferSize() const
+{
+ return sizeof(btGearConstraintData);
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+SIMD_FORCE_INLINE const char* btGearConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
+{
+ btGearConstraintData* gear = (btGearConstraintData*)dataBuffer;
+ btTypedConstraint::serialize(&gear->m_typeConstraintData,serializer);
+
+ m_axisInA.serialize( gear->m_axisInA );
+ m_axisInB.serialize( gear->m_axisInB );
+
+ gear->m_ratio = m_ratio;
+
+ return btGearConstraintDataName;
+}
+
+
+
+
+
+
#endif //BT_GEAR_CONSTRAINT_H
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
index 0409f95379b..431a524169e 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
@@ -35,6 +35,14 @@ class btRigidBody;
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2
+#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2"
+#else
+#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData
+#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
//! Rotation Limit structure for generic joints
class btRotationalLimitMotor
@@ -561,7 +569,7 @@ public:
};
-///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
struct btGeneric6DofConstraintData
{
btTypedConstraintData m_typeConstraintData;
@@ -578,35 +586,51 @@ struct btGeneric6DofConstraintData
int m_useOffsetForConstraintFrame;
};
+struct btGeneric6DofConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+
+ btVector3DoubleData m_linearUpperLimit;
+ btVector3DoubleData m_linearLowerLimit;
+
+ btVector3DoubleData m_angularUpperLimit;
+ btVector3DoubleData m_angularLowerLimit;
+
+ int m_useLinearReferenceFrameA;
+ int m_useOffsetForConstraintFrame;
+};
+
SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const
{
- return sizeof(btGeneric6DofConstraintData);
+ return sizeof(btGeneric6DofConstraintData2);
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btGeneric6DofConstraintData* dof = (btGeneric6DofConstraintData*)dataBuffer;
+ btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer;
btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
- m_frameInA.serializeFloat(dof->m_rbAFrame);
- m_frameInB.serializeFloat(dof->m_rbBFrame);
+ m_frameInA.serialize(dof->m_rbAFrame);
+ m_frameInB.serialize(dof->m_rbBFrame);
int i;
for (i=0;i<3;i++)
{
- dof->m_angularLowerLimit.m_floats[i] = float(m_angularLimits[i].m_loLimit);
- dof->m_angularUpperLimit.m_floats[i] = float(m_angularLimits[i].m_hiLimit);
- dof->m_linearLowerLimit.m_floats[i] = float(m_linearLimits.m_lowerLimit[i]);
- dof->m_linearUpperLimit.m_floats[i] = float(m_linearLimits.m_upperLimit[i]);
+ dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit;
+ dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit;
+ dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i];
+ dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i];
}
dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0;
dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0;
- return "btGeneric6DofConstraintData";
+ return btGeneric6DofConstraintDataName;
}
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h
index 6fabb30369b..1b2e0f62ca8 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.h
@@ -21,6 +21,15 @@ subject to the following restrictions:
#include "btTypedConstraint.h"
#include "btGeneric6DofConstraint.h"
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btGeneric6DofSpringConstraintData2 btGeneric6DofSpringConstraintDoubleData2
+#define btGeneric6DofSpringConstraintDataName "btGeneric6DofSpringConstraintDoubleData2"
+#else
+#define btGeneric6DofSpringConstraintData2 btGeneric6DofSpringConstraintData
+#define btGeneric6DofSpringConstraintDataName "btGeneric6DofSpringConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
/// Generic 6 DOF constraint that allows to set spring motors to any translational and rotational DOF
@@ -65,7 +74,6 @@ public:
};
-///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btGeneric6DofSpringConstraintData
{
btGeneric6DofConstraintData m_6dofData;
@@ -76,26 +84,37 @@ struct btGeneric6DofSpringConstraintData
float m_springDamping[6];
};
+struct btGeneric6DofSpringConstraintDoubleData2
+{
+ btGeneric6DofConstraintDoubleData2 m_6dofData;
+
+ int m_springEnabled[6];
+ double m_equilibriumPoint[6];
+ double m_springStiffness[6];
+ double m_springDamping[6];
+};
+
+
SIMD_FORCE_INLINE int btGeneric6DofSpringConstraint::calculateSerializeBufferSize() const
{
- return sizeof(btGeneric6DofSpringConstraintData);
+ return sizeof(btGeneric6DofSpringConstraintData2);
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* btGeneric6DofSpringConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btGeneric6DofSpringConstraintData* dof = (btGeneric6DofSpringConstraintData*)dataBuffer;
+ btGeneric6DofSpringConstraintData2* dof = (btGeneric6DofSpringConstraintData2*)dataBuffer;
btGeneric6DofConstraint::serialize(&dof->m_6dofData,serializer);
int i;
for (i=0;i<6;i++)
{
- dof->m_equilibriumPoint[i] = (float)m_equilibriumPoint[i];
- dof->m_springDamping[i] = (float)m_springDamping[i];
+ dof->m_equilibriumPoint[i] = m_equilibriumPoint[i];
+ dof->m_springDamping[i] = m_springDamping[i];
dof->m_springEnabled[i] = m_springEnabled[i]? 1 : 0;
- dof->m_springStiffness[i] = (float)m_springStiffness[i];
+ dof->m_springStiffness[i] = m_springStiffness[i];
}
- return "btGeneric6DofSpringConstraintData";
+ return btGeneric6DofSpringConstraintDataName;
}
#endif // BT_GENERIC_6DOF_SPRING_CONSTRAINT_H
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h
index a7f2cca5500..7c33ac24e05 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btHingeConstraint.h
@@ -28,8 +28,8 @@ subject to the following restrictions:
class btRigidBody;
#ifdef BT_USE_DOUBLE_PRECISION
-#define btHingeConstraintData btHingeConstraintDoubleData
-#define btHingeConstraintDataName "btHingeConstraintDoubleData"
+#define btHingeConstraintData btHingeConstraintDoubleData2 //rename to 2 for backwards compatibility, so we can still load the 'btHingeConstraintDoubleData' version
+#define btHingeConstraintDataName "btHingeConstraintDoubleData2"
#else
#define btHingeConstraintData btHingeConstraintFloatData
#define btHingeConstraintDataName "btHingeConstraintFloatData"
@@ -302,7 +302,10 @@ public:
};
-///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
+//only for backward compatibility
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///this structure is not used, except for loading pre-2.82 .bullet files
struct btHingeConstraintDoubleData
{
btTypedConstraintData m_typeConstraintData;
@@ -321,7 +324,9 @@ struct btHingeConstraintDoubleData
float m_relaxationFactor;
};
-///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+
+
struct btHingeConstraintFloatData
{
btTypedConstraintData m_typeConstraintData;
@@ -344,6 +349,30 @@ struct btHingeConstraintFloatData
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btHingeConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+ int m_useReferenceFrameA;
+ int m_angularOnly;
+ int m_enableAngularMotor;
+ double m_motorTargetVelocity;
+ double m_maxMotorImpulse;
+
+ double m_lowerLimit;
+ double m_upperLimit;
+ double m_limitSoftness;
+ double m_biasFactor;
+ double m_relaxationFactor;
+ char m_padding1[4];
+
+};
+
+
+
+
SIMD_FORCE_INLINE int btHingeConstraint::calculateSerializeBufferSize() const
{
return sizeof(btHingeConstraintData);
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h
index 1e13416dfeb..91218949498 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h
@@ -24,10 +24,10 @@ class btRigidBody;
#ifdef BT_USE_DOUBLE_PRECISION
-#define btPoint2PointConstraintData btPoint2PointConstraintDoubleData
-#define btPoint2PointConstraintDataName "btPoint2PointConstraintDoubleData"
+#define btPoint2PointConstraintData2 btPoint2PointConstraintDoubleData2
+#define btPoint2PointConstraintDataName "btPoint2PointConstraintDoubleData2"
#else
-#define btPoint2PointConstraintData btPoint2PointConstraintFloatData
+#define btPoint2PointConstraintData2 btPoint2PointConstraintFloatData
#define btPoint2PointConstraintDataName "btPoint2PointConstraintFloatData"
#endif //BT_USE_DOUBLE_PRECISION
@@ -134,24 +134,36 @@ struct btPoint2PointConstraintFloatData
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btPoint2PointConstraintDoubleData2
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btVector3DoubleData m_pivotInA;
+ btVector3DoubleData m_pivotInB;
+};
+
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+///this structure is not used, except for loading pre-2.82 .bullet files
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
struct btPoint2PointConstraintDoubleData
{
btTypedConstraintData m_typeConstraintData;
btVector3DoubleData m_pivotInA;
btVector3DoubleData m_pivotInB;
};
+#endif //BT_BACKWARDS_COMPATIBLE_SERIALIZATION
SIMD_FORCE_INLINE int btPoint2PointConstraint::calculateSerializeBufferSize() const
{
- return sizeof(btPoint2PointConstraintData);
+ return sizeof(btPoint2PointConstraintData2);
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* btPoint2PointConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btPoint2PointConstraintData* p2pData = (btPoint2PointConstraintData*)dataBuffer;
+ btPoint2PointConstraintData2* p2pData = (btPoint2PointConstraintData2*)dataBuffer;
btTypedConstraint::serialize(&p2pData->m_typeConstraintData,serializer);
m_pivotInA.serialize(p2pData->m_pivotInA);
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
index 5f9437b7add..be93e35434c 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
@@ -152,7 +152,7 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
#endif
}
-// Project Gauss Seidel or the equivalent Sequential Impulse
+// Projected Gauss Seidel or the equivalent Sequential Impulse
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
@@ -280,7 +280,7 @@ int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
-void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject)
+void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep)
{
btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0;
@@ -299,6 +299,9 @@ void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBod
solverBody->m_linearFactor = rb->getLinearFactor();
solverBody->m_linearVelocity = rb->getLinearVelocity();
solverBody->m_angularVelocity = rb->getAngularVelocity();
+ solverBody->m_externalForceImpulse = rb->getTotalForce()*rb->getInvMass()*timeStep;
+ solverBody->m_externalTorqueImpulse = rb->getTotalTorque()*rb->getInvInertiaTensorWorld()*timeStep ;
+
} else
{
solverBody->m_worldTransform.setIdentity();
@@ -308,6 +311,8 @@ void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBod
solverBody->m_linearFactor.setValue(1,1,1);
solverBody->m_linearVelocity.setValue(0,0,0);
solverBody->m_angularVelocity.setValue(0,0,0);
+ solverBody->m_externalForceImpulse.setValue(0,0,0);
+ solverBody->m_externalTorqueImpulse.setValue(0,0,0);
}
@@ -326,8 +331,7 @@ btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel,
-static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
-static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode)
+void btSequentialImpulseConstraintSolver::applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode)
{
@@ -351,8 +355,6 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
{
- solverConstraint.m_contactNormal1 = normalAxis;
- solverConstraint.m_contactNormal2 = -normalAxis;
btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
@@ -368,15 +370,30 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
solverConstraint.m_appliedImpulse = 0.f;
solverConstraint.m_appliedPushImpulse = 0.f;
+ if (body0)
{
+ solverConstraint.m_contactNormal1 = normalAxis;
btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal1);
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_angularComponentA = body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor();
+ }else
+ {
+ solverConstraint.m_contactNormal1.setZero();
+ solverConstraint.m_relpos1CrossNormal.setZero();
+ solverConstraint.m_angularComponentA .setZero();
}
+
+ if (body1)
{
+ solverConstraint.m_contactNormal2 = -normalAxis;
btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal2);
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_angularComponentB = body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor();
+ } else
+ {
+ solverConstraint.m_contactNormal2.setZero();
+ solverConstraint.m_relpos2CrossNormal.setZero();
+ solverConstraint.m_angularComponentB.setZero();
}
{
@@ -401,9 +418,9 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
btScalar rel_vel;
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity:btVector3(0,0,0))
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity:btVector3(0,0,0))
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
rel_vel = vel1Dotn+vel2Dotn;
@@ -414,8 +431,8 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
solverConstraint.m_rhs = velocityImpulse;
solverConstraint.m_cfm = cfmSlip;
- solverConstraint.m_lowerLimit = 0;
- solverConstraint.m_upperLimit = 1e10f;
+ solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
+ solverConstraint.m_upperLimit = solverConstraint.m_friction;
}
}
@@ -481,9 +498,9 @@ void btSequentialImpulseConstraintSolver::setupRollingFrictionConstraint( btSolv
btScalar rel_vel;
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity:btVector3(0,0,0))
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity:btVector3(0,0,0))
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
rel_vel = vel1Dotn+vel2Dotn;
@@ -494,8 +511,8 @@ void btSequentialImpulseConstraintSolver::setupRollingFrictionConstraint( btSolv
btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
solverConstraint.m_rhs = velocityImpulse;
solverConstraint.m_cfm = cfmSlip;
- solverConstraint.m_lowerLimit = 0;
- solverConstraint.m_upperLimit = 1e10f;
+ solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
+ solverConstraint.m_upperLimit = solverConstraint.m_friction;
}
}
@@ -517,7 +534,7 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addRollingFrictionConst
}
-int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body)
+int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body,btScalar timeStep)
{
int solverBodyIdA = -1;
@@ -535,11 +552,19 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
{
solverBodyIdA = m_tmpSolverBodyPool.size();
btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
- initSolverBody(&solverBody,&body);
+ initSolverBody(&solverBody,&body,timeStep);
body.setCompanionId(solverBodyIdA);
} else
{
- return 0;//assume first one is a fixed solver body
+
+ if (m_fixedBodyId<0)
+ {
+ m_fixedBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&fixedBody,0,timeStep);
+ }
+ return m_fixedBodyId;
+// return 0;//assume first one is a fixed solver body
}
}
@@ -552,8 +577,8 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint,
int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
- btVector3& vel, btScalar& rel_vel, btScalar& relaxation,
- btVector3& rel_pos1, btVector3& rel_pos2)
+ btScalar& relaxation,
+ const btVector3& rel_pos1, const btVector3& rel_pos2)
{
const btVector3& pos1 = cp.getPositionWorldOnA();
@@ -567,8 +592,8 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
// btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
// btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
- rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
- rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+ //rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ //rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
relaxation = 1.f;
@@ -601,10 +626,24 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
solverConstraint.m_jacDiagABInv = denom;
}
- solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
- solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ if (rb0)
+ {
+ solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ } else
+ {
+ solverConstraint.m_contactNormal1.setZero();
+ solverConstraint.m_relpos1CrossNormal.setZero();
+ }
+ if (rb1)
+ {
+ solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ }else
+ {
+ solverConstraint.m_contactNormal2.setZero();
+ solverConstraint.m_relpos2CrossNormal.setZero();
+ }
btScalar restitution = 0.f;
btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
@@ -616,8 +655,8 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
vel2 = rb1? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
// btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
- vel = vel1 - vel2;
- rel_vel = cp.m_normalWorldOnB.dot(vel);
+ btVector3 vel = vel1 - vel2;
+ btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
@@ -648,10 +687,17 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
solverConstraint.m_appliedPushImpulse = 0.f;
{
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rb0?bodyA->m_linearVelocity:btVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(rb0?bodyA->m_angularVelocity:btVector3(0,0,0));
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rb1?bodyB->m_linearVelocity:btVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(rb1?bodyB->m_angularVelocity:btVector3(0,0,0));
+
+ btVector3 externalForceImpulseA = bodyA->m_originalBody ? bodyA->m_externalForceImpulse: btVector3(0,0,0);
+ btVector3 externalTorqueImpulseA = bodyA->m_originalBody ? bodyA->m_externalTorqueImpulse: btVector3(0,0,0);
+ btVector3 externalForceImpulseB = bodyB->m_originalBody ? bodyB->m_externalForceImpulse: btVector3(0,0,0);
+ btVector3 externalTorqueImpulseB = bodyB->m_originalBody ?bodyB->m_externalTorqueImpulse : btVector3(0,0,0);
+
+
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(bodyA->m_linearVelocity+externalForceImpulseA)
+ + solverConstraint.m_relpos1CrossNormal.dot(bodyA->m_angularVelocity+externalTorqueImpulseA);
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyB->m_linearVelocity+externalForceImpulseB)
+ + solverConstraint.m_relpos2CrossNormal.dot(bodyB->m_angularVelocity+externalTorqueImpulseB);
btScalar rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = 0.f;
@@ -680,7 +726,7 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
{
//combine position and velocity into rhs
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;//-solverConstraint.m_contactNormal1.dot(bodyA->m_externalForce*bodyA->m_invMass-bodyB->m_externalForce/bodyB->m_invMass)*solverConstraint.m_jacDiagABInv;
solverConstraint.m_rhsPenetration = 0.f;
} else
@@ -754,8 +800,8 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
- int solverBodyIdA = getOrInitSolverBody(*colObj0);
- int solverBodyIdB = getOrInitSolverBody(*colObj1);
+ int solverBodyIdA = getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
// btRigidBody* bodyA = btRigidBody::upcast(colObj0);
// btRigidBody* bodyB = btRigidBody::upcast(colObj1);
@@ -780,19 +826,35 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
btVector3 rel_pos1;
btVector3 rel_pos2;
btScalar relaxation;
- btScalar rel_vel;
- btVector3 vel;
+
int frictionIndex = m_tmpSolverContactConstraintPool.size();
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
-// btRigidBody* rb0 = btRigidBody::upcast(colObj0);
-// btRigidBody* rb1 = btRigidBody::upcast(colObj1);
+ btRigidBody* rb0 = btRigidBody::upcast(colObj0);
+ btRigidBody* rb1 = btRigidBody::upcast(colObj1);
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_originalContactPoint = &cp;
- setupContactConstraint(solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2);
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+ rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+
+ btVector3 vel1;// = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
+ btVector3 vel2;// = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+
+ solverBodyA->getVelocityInLocalPointNoDelta(rel_pos1,vel1);
+ solverBodyB->getVelocityInLocalPointNoDelta(rel_pos2,vel2 );
+
+ btVector3 vel = vel1 - vel2;
+ btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
+
+ setupContactConstraint(solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, relaxation, rel_pos1, rel_pos2);
+
+
// const btVector3& pos1 = cp.getPositionWorldOnA();
// const btVector3& pos2 = cp.getPositionWorldOnB();
@@ -801,9 +863,11 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
- btVector3 angVelA,angVelB;
- solverBodyA->getAngularVelocity(angVelA);
- solverBodyB->getAngularVelocity(angVelB);
+ btVector3 angVelA(0,0,0),angVelB(0,0,0);
+ if (rb0)
+ angVelA = rb0->getAngularVelocity();
+ if (rb1)
+ angVelB = rb1->getAngularVelocity();
btVector3 relAngVel = angVelB-angVelA;
if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
@@ -857,6 +921,10 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
{
cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
@@ -864,17 +932,16 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
}
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
} else
{
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
@@ -882,9 +949,6 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
{
@@ -899,8 +963,8 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
- setFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
}
+ setFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
@@ -909,10 +973,24 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
}
}
-btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
+void btSequentialImpulseConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
+{
+ int i;
+ btPersistentManifold* manifold = 0;
+// btCollisionObject* colObj0=0,*colObj1=0;
+
+
+ for (i=0;i<numManifolds;i++)
+ {
+ manifold = manifoldPtr[i];
+ convertContact(manifold,infoGlobal);
+ }
+}
+
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
{
+ m_fixedBodyId = -1;
BT_PROFILE("solveGroupCacheFriendlySetup");
- (void)stackAlloc;
(void)debugDrawer;
m_maxOverrideNumSolverIterations = 0;
@@ -996,14 +1074,15 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
m_tmpSolverBodyPool.reserve(numBodies+1);
m_tmpSolverBodyPool.resize(0);
- btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
- initSolverBody(&fixedBody,0);
+ //btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
+ //initSolverBody(&fixedBody,0);
//convert all bodies
for (int i=0;i<numBodies;i++)
{
- int bodyId = getOrInitSolverBody(*bodies[i]);
+ int bodyId = getOrInitSolverBody(*bodies[i],infoGlobal.m_timeStep);
+
btRigidBody* body = btRigidBody::upcast(bodies[i]);
if (body && body->getInvMass())
{
@@ -1012,9 +1091,8 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
if (body->getFlags()&BT_ENABLE_GYROPSCOPIC_FORCE)
{
gyroForce = body->computeGyroscopicForce(infoGlobal.m_maxGyroscopicForce);
+ solverBody.m_externalTorqueImpulse -= gyroForce*body->getInvInertiaTensorWorld()*infoGlobal.m_timeStep;
}
- solverBody.m_linearVelocity += body->getTotalForce()*body->getInvMass()*infoGlobal.m_timeStep;
- solverBody.m_angularVelocity += (body->getTotalTorque()-gyroForce)*body->getInvInertiaTensorWorld()*infoGlobal.m_timeStep;
}
}
@@ -1084,8 +1162,8 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btRigidBody& rbA = constraint->getRigidBodyA();
btRigidBody& rbB = constraint->getRigidBodyB();
- int solverBodyIdA = getOrInitSolverBody(rbA);
- int solverBodyIdB = getOrInitSolverBody(rbB);
+ int solverBodyIdA = getOrInitSolverBody(rbA,infoGlobal.m_timeStep);
+ int solverBodyIdB = getOrInitSolverBody(rbB,infoGlobal.m_timeStep);
btSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
@@ -1182,15 +1260,22 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
- ///fix rhs
- ///todo: add force/torque accelerators
+
{
btScalar rel_vel;
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
+ btVector3 externalForceImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalForceImpulse : btVector3(0,0,0);
+ btVector3 externalTorqueImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalTorqueImpulse : btVector3(0,0,0);
+
+ btVector3 externalForceImpulseB = bodyBPtr->m_originalBody ? bodyBPtr->m_externalForceImpulse : btVector3(0,0,0);
+ btVector3 externalTorqueImpulseB = bodyBPtr->m_originalBody ?bodyBPtr->m_externalTorqueImpulse : btVector3(0,0,0);
+
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()+externalForceImpulseA)
+ + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity()+externalTorqueImpulseA);
+
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()+externalForceImpulseB)
+ + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity()+externalTorqueImpulseB);
rel_vel = vel1Dotn+vel2Dotn;
-
btScalar restitution = 0.f;
btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
btScalar velocityError = restitution - rel_vel * info2.m_damping;
@@ -1199,6 +1284,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
solverConstraint.m_appliedImpulse = 0.f;
+
}
}
}
@@ -1206,18 +1292,8 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
}
- {
- int i;
- btPersistentManifold* manifold = 0;
-// btCollisionObject* colObj0=0,*colObj1=0;
-
+ convertContacts(manifoldPtr,numManifolds,infoGlobal);
- for (i=0;i<numManifolds;i++)
- {
- manifold = manifoldPtr[i];
- convertContact(manifold,infoGlobal);
- }
- }
}
// btContactSolverInfo info = infoGlobal;
@@ -1256,7 +1332,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
-btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/)
+btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
{
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
@@ -1309,14 +1385,14 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
{
for (int j=0;j<numConstraints;j++)
{
- if (constraints[j]->isEnabled())
- {
- int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA());
- int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB());
- btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
- btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
- constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
- }
+ if (constraints[j]->isEnabled())
+ {
+ int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
+ int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
+ btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
+ btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
+ constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
+ }
}
///solve all contact constraints using SIMD, if available
@@ -1376,7 +1452,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ //resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
@@ -1395,7 +1472,8 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
- resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ //resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
+ resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
}
}
@@ -1437,14 +1515,14 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
{
for (int j=0;j<numConstraints;j++)
{
- if (constraints[j]->isEnabled())
- {
- int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA());
- int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB());
- btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
- btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
- constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
- }
+ if (constraints[j]->isEnabled())
+ {
+ int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
+ int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
+ btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
+ btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
+ constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
+ }
}
///solve all contact constraints
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
@@ -1492,7 +1570,7 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
}
-void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
+void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
{
int iteration;
if (infoGlobal.m_splitImpulse)
@@ -1532,20 +1610,20 @@ void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIte
}
}
-btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
{
BT_PROFILE("solveGroupCacheFriendlyIterations");
{
///this is a special step to resolve penetrations (just for contacts)
- solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
+ solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
for ( int iteration = 0 ; iteration< maxIterations ; iteration++)
//for ( int iteration = maxIterations-1 ; iteration >= 0;iteration--)
{
- solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
+ solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
}
}
@@ -1610,9 +1688,15 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCo
m_tmpSolverBodyPool[i].writebackVelocityAndTransform(infoGlobal.m_timeStep, infoGlobal.m_splitImpulseTurnErp);
else
m_tmpSolverBodyPool[i].writebackVelocity();
+
+ m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(
+ m_tmpSolverBodyPool[i].m_linearVelocity+
+ m_tmpSolverBodyPool[i].m_externalForceImpulse);
+
+ m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(
+ m_tmpSolverBodyPool[i].m_angularVelocity+
+ m_tmpSolverBodyPool[i].m_externalTorqueImpulse);
- m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(m_tmpSolverBodyPool[i].m_linearVelocity);
- m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(m_tmpSolverBodyPool[i].m_angularVelocity);
if (infoGlobal.m_splitImpulse)
m_tmpSolverBodyPool[i].m_originalBody->setWorldTransform(m_tmpSolverBodyPool[i].m_worldTransform);
@@ -1632,15 +1716,15 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCo
/// btSequentialImpulseConstraintSolver Sequentially applies impulses
-btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* /*dispatcher*/)
+btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btDispatcher* /*dispatcher*/)
{
BT_PROFILE("solveGroup");
//you need to provide at least some bodies
- solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
+ solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
- solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
+ solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h
index 2eea6be0db2..180d2a385d3 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h
@@ -18,7 +18,6 @@ subject to the following restrictions:
class btIDebugDraw;
class btPersistentManifold;
-class btStackAlloc;
class btDispatcher;
class btCollisionObject;
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
@@ -43,7 +42,7 @@ protected:
btAlignedObjectArray<int> m_orderFrictionConstraintPool;
btAlignedObjectArray<btTypedConstraint::btConstraintInfo1> m_tmpConstraintSizesPool;
int m_maxOverrideNumSolverIterations;
-
+ int m_fixedBodyId;
void setupFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,
btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,
btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
@@ -57,10 +56,11 @@ protected:
btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity=0., btScalar cfmSlip=0.);
btSolverConstraint& addRollingFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity=0, btScalar cfmSlip=0.f);
-
+
void setupContactConstraint(btSolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
- const btContactSolverInfo& infoGlobal, btVector3& vel, btScalar& rel_vel, btScalar& relaxation,
- btVector3& rel_pos1, btVector3& rel_pos2);
+ const btContactSolverInfo& infoGlobal,btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
+
+ static void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode);
void setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, int solverBodyIdA,int solverBodyIdB,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
@@ -71,6 +71,8 @@ protected:
btScalar restitutionCurve(btScalar rel_vel, btScalar restitution);
+ virtual void convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
+
void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
@@ -83,8 +85,8 @@ protected:
const btSolverConstraint& contactConstraint);
//internal method
- int getOrInitSolverBody(btCollisionObject& body);
- void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject);
+ int getOrInitSolverBody(btCollisionObject& body,btScalar timeStep);
+ void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep);
void resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
@@ -97,12 +99,12 @@ protected:
protected:
- virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc);
+ virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
- btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc);
+ virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
- virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc);
- virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc);
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
public:
@@ -112,7 +114,7 @@ public:
btSequentialImpulseConstraintSolver();
virtual ~btSequentialImpulseConstraintSolver();
- virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btStackAlloc* stackAlloc,btDispatcher* dispatcher);
+ virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
@@ -132,6 +134,11 @@ public:
return m_btSeed2;
}
+
+ virtual btConstraintSolverType getSolverType() const
+ {
+ return BT_SEQUENTIAL_IMPULSE_SOLVER;
+ }
};
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.h
index ca8e715bc47..57ebb47d8e7 100755
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSliderConstraint.h
@@ -25,7 +25,13 @@ TODO:
#ifndef BT_SLIDER_CONSTRAINT_H
#define BT_SLIDER_CONSTRAINT_H
-
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btSliderConstraintData2 btSliderConstraintDoubleData
+#define btSliderConstraintDataName "btSliderConstraintDoubleData"
+#else
+#define btSliderConstraintData2 btSliderConstraintData
+#define btSliderConstraintDataName "btSliderConstraintData"
+#endif //BT_USE_DOUBLE_PRECISION
#include "LinearMath/btVector3.h"
#include "btJacobianEntry.h"
@@ -283,7 +289,10 @@ public:
};
+
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
+
struct btSliderConstraintData
{
btTypedConstraintData m_typeConstraintData;
@@ -302,31 +311,48 @@ struct btSliderConstraintData
};
+struct btSliderConstraintDoubleData
+{
+ btTypedConstraintDoubleData m_typeConstraintData;
+ btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
+ btTransformDoubleData m_rbBFrame;
+
+ double m_linearUpperLimit;
+ double m_linearLowerLimit;
+
+ double m_angularUpperLimit;
+ double m_angularLowerLimit;
+
+ int m_useLinearReferenceFrameA;
+ int m_useOffsetForConstraintFrame;
+
+};
+
SIMD_FORCE_INLINE int btSliderConstraint::calculateSerializeBufferSize() const
{
- return sizeof(btSliderConstraintData);
+ return sizeof(btSliderConstraintData2);
}
///fills the dataBuffer and returns the struct name (and 0 on failure)
SIMD_FORCE_INLINE const char* btSliderConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btSliderConstraintData* sliderData = (btSliderConstraintData*) dataBuffer;
+ btSliderConstraintData2* sliderData = (btSliderConstraintData2*) dataBuffer;
btTypedConstraint::serialize(&sliderData->m_typeConstraintData,serializer);
- m_frameInA.serializeFloat(sliderData->m_rbAFrame);
- m_frameInB.serializeFloat(sliderData->m_rbBFrame);
+ m_frameInA.serialize(sliderData->m_rbAFrame);
+ m_frameInB.serialize(sliderData->m_rbBFrame);
- sliderData->m_linearUpperLimit = float(m_upperLinLimit);
- sliderData->m_linearLowerLimit = float(m_lowerLinLimit);
+ sliderData->m_linearUpperLimit = m_upperLinLimit;
+ sliderData->m_linearLowerLimit = m_lowerLinLimit;
- sliderData->m_angularUpperLimit = float(m_upperAngLimit);
- sliderData->m_angularLowerLimit = float(m_lowerAngLimit);
+ sliderData->m_angularUpperLimit = m_upperAngLimit;
+ sliderData->m_angularLowerLimit = m_lowerAngLimit;
sliderData->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA;
sliderData->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame;
- return "btSliderConstraintData";
+ return btSliderConstraintDataName;
}
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverBody.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverBody.h
index ccc45996c8b..27ccefe4169 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverBody.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverBody.h
@@ -118,6 +118,8 @@ ATTRIBUTE_ALIGNED16 (struct) btSolverBody
btVector3 m_turnVelocity;
btVector3 m_linearVelocity;
btVector3 m_angularVelocity;
+ btVector3 m_externalForceImpulse;
+ btVector3 m_externalTorqueImpulse;
btRigidBody* m_originalBody;
void setWorldTransform(const btTransform& worldTransform)
@@ -130,6 +132,17 @@ ATTRIBUTE_ALIGNED16 (struct) btSolverBody
return m_worldTransform;
}
+
+
+ SIMD_FORCE_INLINE void getVelocityInLocalPointNoDelta(const btVector3& rel_pos, btVector3& velocity ) const
+ {
+ if (m_originalBody)
+ velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity+m_externalTorqueImpulse).cross(rel_pos);
+ else
+ velocity.setValue(0,0,0);
+ }
+
+
SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const
{
if (m_originalBody)
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverConstraint.h
index 2ade61b2f69..5515e6b311c 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btSolverConstraint.h
@@ -55,6 +55,7 @@ ATTRIBUTE_ALIGNED16 (struct) btSolverConstraint
{
void* m_originalContactPoint;
btScalar m_unusedPadding4;
+ int m_numRowsForNonContactConstraint;
};
int m_overrideNumSolverIterations;
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp
index 465c0746c58..27fdd9d3df8 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.cpp
@@ -109,7 +109,7 @@ btScalar btTypedConstraint::getMotorFactor(btScalar pos, btScalar lowLim, btScal
///fills the dataBuffer and returns the struct name (and 0 on failure)
const char* btTypedConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
{
- btTypedConstraintData* tcd = (btTypedConstraintData*) dataBuffer;
+ btTypedConstraintData2* tcd = (btTypedConstraintData2*) dataBuffer;
tcd->m_rbA = (btRigidBodyData*)serializer->getUniquePointer(&m_rbA);
tcd->m_rbB = (btRigidBodyData*)serializer->getUniquePointer(&m_rbB);
@@ -123,14 +123,14 @@ const char* btTypedConstraint::serialize(void* dataBuffer, btSerializer* seriali
tcd->m_objectType = m_objectType;
tcd->m_needsFeedback = m_needsFeedback;
tcd->m_overrideNumSolverIterations = m_overrideNumSolverIterations;
- tcd->m_breakingImpulseThreshold = float(m_breakingImpulseThreshold);
+ tcd->m_breakingImpulseThreshold = m_breakingImpulseThreshold;
tcd->m_isEnabled = m_isEnabled? 1: 0;
tcd->m_userConstraintId =m_userConstraintId;
tcd->m_userConstraintType =m_userConstraintType;
- tcd->m_appliedImpulse = float(m_appliedImpulse);
- tcd->m_dbgDrawSize = float(m_dbgDrawSize );
+ tcd->m_appliedImpulse = m_appliedImpulse;
+ tcd->m_dbgDrawSize = m_dbgDrawSize;
tcd->m_disableCollisionsBetweenLinkedBodies = false;
@@ -142,7 +142,7 @@ const char* btTypedConstraint::serialize(void* dataBuffer, btSerializer* seriali
if (m_rbB.getConstraintRef(i) == this)
tcd->m_disableCollisionsBetweenLinkedBodies = true;
- return "btTypedConstraintData";
+ return btTypedConstraintDataName;
}
btRigidBody& btTypedConstraint::getFixedBody()
diff --git a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h
index 441fa375050..b58f984d0fb 100644
--- a/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h
+++ b/extern/bullet2/src/BulletDynamics/ConstraintSolver/btTypedConstraint.h
@@ -21,6 +21,15 @@ subject to the following restrictions:
#include "btSolverConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btTypedConstraintData2 btTypedConstraintDoubleData
+#define btTypedConstraintDataName "btTypedConstraintDoubleData"
+#else
+#define btTypedConstraintData2 btTypedConstraintFloatData
+#define btTypedConstraintDataName "btTypedConstraintFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+
class btSerializer;
//Don't change any of the existing enum values, so add enum types at the end for serialization compatibility
@@ -34,6 +43,7 @@ enum btTypedConstraintType
CONTACT_CONSTRAINT_TYPE,
D6_SPRING_CONSTRAINT_TYPE,
GEAR_CONSTRAINT_TYPE,
+ FIXED_CONSTRAINT_TYPE,
MAX_CONSTRAINT_TYPE
};
@@ -356,6 +366,33 @@ SIMD_FORCE_INLINE btScalar btAdjustAngleToLimits(btScalar angleInRadians, btScal
}
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btTypedConstraintFloatData
+{
+ btRigidBodyFloatData *m_rbA;
+ btRigidBodyFloatData *m_rbB;
+ char *m_name;
+
+ int m_objectType;
+ int m_userConstraintType;
+ int m_userConstraintId;
+ int m_needsFeedback;
+
+ float m_appliedImpulse;
+ float m_dbgDrawSize;
+
+ int m_disableCollisionsBetweenLinkedBodies;
+ int m_overrideNumSolverIterations;
+
+ float m_breakingImpulseThreshold;
+ int m_isEnabled;
+
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+
+#define BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+#ifdef BT_BACKWARDS_COMPATIBLE_SERIALIZATION
+///this structure is not used, except for loading pre-2.82 .bullet files
struct btTypedConstraintData
{
btRigidBodyData *m_rbA;
@@ -377,10 +414,35 @@ struct btTypedConstraintData
int m_isEnabled;
};
+#endif //BACKWARDS_COMPATIBLE
+
+struct btTypedConstraintDoubleData
+{
+ btRigidBodyDoubleData *m_rbA;
+ btRigidBodyDoubleData *m_rbB;
+ char *m_name;
+
+ int m_objectType;
+ int m_userConstraintType;
+ int m_userConstraintId;
+ int m_needsFeedback;
+
+ double m_appliedImpulse;
+ double m_dbgDrawSize;
+
+ int m_disableCollisionsBetweenLinkedBodies;
+ int m_overrideNumSolverIterations;
+
+ double m_breakingImpulseThreshold;
+ int m_isEnabled;
+ char padding[4];
+
+};
+
SIMD_FORCE_INLINE int btTypedConstraint::calculateSerializeBufferSize() const
{
- return sizeof(btTypedConstraintData);
+ return sizeof(btTypedConstraintData2);
}
diff --git a/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp b/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
index 9ff2d9f1173..fb8a4068e23 100644
--- a/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
+++ b/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
@@ -87,7 +87,6 @@ struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCal
btTypedConstraint** m_sortedConstraints;
int m_numConstraints;
btIDebugDraw* m_debugDrawer;
- btStackAlloc* m_stackAlloc;
btDispatcher* m_dispatcher;
btAlignedObjectArray<btCollisionObject*> m_bodies;
@@ -104,7 +103,6 @@ struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCal
m_sortedConstraints(NULL),
m_numConstraints(0),
m_debugDrawer(NULL),
- m_stackAlloc(stackAlloc),
m_dispatcher(dispatcher)
{
@@ -135,7 +133,7 @@ struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCal
if (islandId<0)
{
///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
- m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
+ m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
} else
{
//also add all non-contact constraints/joints for this island
@@ -163,7 +161,7 @@ struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCal
if (m_solverInfo->m_minimumSolverBatchSize<=1)
{
- m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
+ m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
} else
{
@@ -190,7 +188,7 @@ struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCal
btPersistentManifold** manifold = m_manifolds.size()?&m_manifolds[0]:0;
btTypedConstraint** constraints = m_constraints.size()?&m_constraints[0]:0;
- m_solver->solveGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,*m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
+ m_solver->solveGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,*m_solverInfo,m_debugDrawer,m_dispatcher);
m_bodies.resize(0);
m_manifolds.resize(0);
m_constraints.resize(0);
@@ -210,7 +208,9 @@ m_gravity(0,-10,0),
m_localTime(0),
m_synchronizeAllMotionStates(false),
m_applySpeculativeContactRestitution(false),
-m_profileTimings(0)
+m_profileTimings(0),
+m_fixedTimeStep(0),
+m_latencyMotionStateInterpolation(true)
{
if (!m_constraintSolver)
@@ -232,7 +232,7 @@ m_profileTimings(0)
{
void* mem = btAlignedAlloc(sizeof(InplaceSolverIslandCallback),16);
- m_solverIslandCallback = new (mem) InplaceSolverIslandCallback (m_constraintSolver, m_stackAlloc, dispatcher);
+ m_solverIslandCallback = new (mem) InplaceSolverIslandCallback (m_constraintSolver, 0, dispatcher);
}
}
@@ -359,7 +359,9 @@ void btDiscreteDynamicsWorld::synchronizeSingleMotionState(btRigidBody* body)
{
btTransform interpolatedTransform;
btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(),
- body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),m_localTime*body->getHitFraction(),interpolatedTransform);
+ body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),
+ (m_latencyMotionStateInterpolation && m_fixedTimeStep) ? m_localTime - m_fixedTimeStep : m_localTime*body->getHitFraction(),
+ interpolatedTransform);
body->getMotionState()->setWorldTransform(interpolatedTransform);
}
}
@@ -403,6 +405,7 @@ int btDiscreteDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps,
if (maxSubSteps)
{
//fixed timestep with interpolation
+ m_fixedTimeStep = fixedTimeStep;
m_localTime += timeStep;
if (m_localTime >= fixedTimeStep)
{
@@ -413,7 +416,8 @@ int btDiscreteDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps,
{
//variable timestep
fixedTimeStep = timeStep;
- m_localTime = timeStep;
+ m_localTime = m_latencyMotionStateInterpolation ? 0 : timeStep;
+ m_fixedTimeStep = 0;
if (btFuzzyZero(timeStep))
{
numSimulationSubSteps = 0;
@@ -724,7 +728,7 @@ void btDiscreteDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
m_solverIslandCallback->processConstraints();
- m_constraintSolver->allSolved(solverInfo, m_debugDrawer, m_stackAlloc);
+ m_constraintSolver->allSolved(solverInfo, m_debugDrawer);
}
@@ -746,12 +750,7 @@ void btDiscreteDynamicsWorld::calculateSimulationIslands()
if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
{
- if (colObj0->isActive() || colObj1->isActive())
- {
-
- getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),
- (colObj1)->getIslandTag());
- }
+ getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
}
}
}
@@ -770,12 +769,7 @@ void btDiscreteDynamicsWorld::calculateSimulationIslands()
if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
{
- if (colObj0->isActive() || colObj1->isActive())
- {
-
- getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),
- (colObj1)->getIslandTag());
- }
+ getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
}
}
}
@@ -1131,7 +1125,6 @@ void btDiscreteDynamicsWorld::predictUnconstraintMotion(btScalar timeStep)
{
//don't integrate/update velocities here, it happens in the constraint solver
- //damping
body->applyDamping(timeStep);
body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform());
diff --git a/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h b/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h
index fa934c49d2b..d8a34b7da3d 100644
--- a/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h
+++ b/extern/bullet2/src/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h
@@ -53,6 +53,7 @@ protected:
//for variable timesteps
btScalar m_localTime;
+ btScalar m_fixedTimeStep;
//for variable timesteps
bool m_ownsIslandManager;
@@ -64,6 +65,8 @@ protected:
int m_profileTimings;
+ bool m_latencyMotionStateInterpolation;
+
btAlignedObjectArray<btPersistentManifold*> m_predictiveManifolds;
virtual void predictUnconstraintMotion(btScalar timeStep);
@@ -74,7 +77,7 @@ protected:
virtual void solveConstraints(btContactSolverInfo& solverInfo);
- void updateActivationState(btScalar timeStep);
+ virtual void updateActivationState(btScalar timeStep);
void updateActions(btScalar timeStep);
@@ -216,6 +219,16 @@ public:
///Preliminary serialization test for Bullet 2.76. Loading those files requires a separate parser (see Bullet/Demos/SerializeDemo)
virtual void serialize(btSerializer* serializer);
+ ///Interpolate motion state between previous and current transform, instead of current and next transform.
+ ///This can relieve discontinuities in the rendering, due to penetrations
+ void setLatencyMotionStateInterpolation(bool latencyInterpolation )
+ {
+ m_latencyMotionStateInterpolation = latencyInterpolation;
+ }
+ bool getLatencyMotionStateInterpolation() const
+ {
+ return m_latencyMotionStateInterpolation;
+ }
};
#endif //BT_DISCRETE_DYNAMICS_WORLD_H
diff --git a/extern/bullet2/src/BulletDynamics/Dynamics/btDynamicsWorld.h b/extern/bullet2/src/BulletDynamics/Dynamics/btDynamicsWorld.h
index 7d5c621f850..35dd1400fe7 100644
--- a/extern/bullet2/src/BulletDynamics/Dynamics/btDynamicsWorld.h
+++ b/extern/bullet2/src/BulletDynamics/Dynamics/btDynamicsWorld.h
@@ -33,7 +33,8 @@ enum btDynamicsWorldType
BT_SIMPLE_DYNAMICS_WORLD=1,
BT_DISCRETE_DYNAMICS_WORLD=2,
BT_CONTINUOUS_DYNAMICS_WORLD=3,
- BT_SOFT_RIGID_DYNAMICS_WORLD=4
+ BT_SOFT_RIGID_DYNAMICS_WORLD=4,
+ BT_GPU_DYNAMICS_WORLD=5
};
///The btDynamicsWorld is the interface class for several dynamics implementation, basic, discrete, parallel, and continuous etc.
diff --git a/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.h b/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.h
index f0e07f942af..ed90fb44115 100644
--- a/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.h
+++ b/extern/bullet2/src/BulletDynamics/Dynamics/btRigidBody.h
@@ -363,11 +363,13 @@ public:
inline void setLinearVelocity(const btVector3& lin_vel)
{
+ m_updateRevision++;
m_linearVelocity = lin_vel;
}
inline void setAngularVelocity(const btVector3& ang_vel)
{
+ m_updateRevision++;
m_angularVelocity = ang_vel;
}
@@ -484,11 +486,13 @@ public:
void setAngularFactor(const btVector3& angFac)
{
+ m_updateRevision++;
m_angularFactor = angFac;
}
void setAngularFactor(btScalar angFac)
{
+ m_updateRevision++;
m_angularFactor.setValue(angFac,angFac,angFac);
}
const btVector3& getAngularFactor() const
diff --git a/extern/bullet2/src/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp b/extern/bullet2/src/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp
index 5fc2f3cf8f7..35dd38840f6 100644
--- a/extern/bullet2/src/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp
+++ b/extern/bullet2/src/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp
@@ -78,8 +78,8 @@ int btSimpleDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, b
btContactSolverInfo infoGlobal;
infoGlobal.m_timeStep = timeStep;
m_constraintSolver->prepareSolve(0,numManifolds);
- m_constraintSolver->solveGroup(&getCollisionObjectArray()[0],getNumCollisionObjects(),manifoldPtr, numManifolds,0,0,infoGlobal,m_debugDrawer, m_stackAlloc,m_dispatcher1);
- m_constraintSolver->allSolved(infoGlobal,m_debugDrawer, m_stackAlloc);
+ m_constraintSolver->solveGroup(&getCollisionObjectArray()[0],getNumCollisionObjects(),manifoldPtr, numManifolds,0,0,infoGlobal,m_debugDrawer, m_dispatcher1);
+ m_constraintSolver->allSolved(infoGlobal,m_debugDrawer);
}
///integrate transforms
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.cpp
new file mode 100644
index 00000000000..56a1c55d9ae
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.cpp
@@ -0,0 +1,1009 @@
+/*
+ * PURPOSE:
+ * Class representing an articulated rigid body. Stores the body's
+ * current state, allows forces and torques to be set, handles
+ * timestepping and implements Featherstone's algorithm.
+ *
+ * COPYRIGHT:
+ * Copyright (C) Stephen Thompson, <stephen@solarflare.org.uk>, 2011-2013
+ * Portions written By Erwin Coumans: replacing Eigen math library by Bullet LinearMath and a dedicated 6x6 matrix inverse (solveImatrix)
+
+ This software is provided 'as-is', without any express or implied warranty.
+ In no event will the authors be held liable for any damages arising from the use of this software.
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it freely,
+ subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ */
+
+
+#include "btMultiBody.h"
+#include "btMultiBodyLink.h"
+#include "btMultiBodyLinkCollider.h"
+
+// #define INCLUDE_GYRO_TERM
+
+namespace {
+ const btScalar SLEEP_EPSILON = btScalar(0.05); // this is a squared velocity (m^2 s^-2)
+ const btScalar SLEEP_TIMEOUT = btScalar(2); // in seconds
+}
+
+
+
+
+//
+// Various spatial helper functions
+//
+
+namespace {
+ void SpatialTransform(const btMatrix3x3 &rotation_matrix, // rotates vectors in 'from' frame to vectors in 'to' frame
+ const btVector3 &displacement, // vector from origin of 'from' frame to origin of 'to' frame, in 'to' coordinates
+ const btVector3 &top_in, // top part of input vector
+ const btVector3 &bottom_in, // bottom part of input vector
+ btVector3 &top_out, // top part of output vector
+ btVector3 &bottom_out) // bottom part of output vector
+ {
+ top_out = rotation_matrix * top_in;
+ bottom_out = -displacement.cross(top_out) + rotation_matrix * bottom_in;
+ }
+
+ void InverseSpatialTransform(const btMatrix3x3 &rotation_matrix,
+ const btVector3 &displacement,
+ const btVector3 &top_in,
+ const btVector3 &bottom_in,
+ btVector3 &top_out,
+ btVector3 &bottom_out)
+ {
+ top_out = rotation_matrix.transpose() * top_in;
+ bottom_out = rotation_matrix.transpose() * (bottom_in + displacement.cross(top_in));
+ }
+
+ btScalar SpatialDotProduct(const btVector3 &a_top,
+ const btVector3 &a_bottom,
+ const btVector3 &b_top,
+ const btVector3 &b_bottom)
+ {
+ return a_bottom.dot(b_top) + a_top.dot(b_bottom);
+ }
+}
+
+
+//
+// Implementation of class btMultiBody
+//
+
+btMultiBody::btMultiBody(int n_links,
+ btScalar mass,
+ const btVector3 &inertia,
+ bool fixed_base_,
+ bool can_sleep_)
+ : base_quat(0, 0, 0, 1),
+ base_mass(mass),
+ base_inertia(inertia),
+
+ fixed_base(fixed_base_),
+ awake(true),
+ can_sleep(can_sleep_),
+ sleep_timer(0),
+ m_baseCollider(0),
+ m_linearDamping(0.04f),
+ m_angularDamping(0.04f),
+ m_useGyroTerm(true),
+ m_maxAppliedImpulse(1000.f),
+ m_hasSelfCollision(true)
+{
+ links.resize(n_links);
+
+ vector_buf.resize(2*n_links);
+ matrix_buf.resize(n_links + 1);
+ m_real_buf.resize(6 + 2*n_links);
+ base_pos.setValue(0, 0, 0);
+ base_force.setValue(0, 0, 0);
+ base_torque.setValue(0, 0, 0);
+}
+
+btMultiBody::~btMultiBody()
+{
+}
+
+void btMultiBody::setupPrismatic(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rot_parent_to_this,
+ const btVector3 &joint_axis,
+ const btVector3 &r_vector_when_q_zero,
+ bool disableParentCollision)
+{
+ links[i].mass = mass;
+ links[i].inertia = inertia;
+ links[i].parent = parent;
+ links[i].zero_rot_parent_to_this = rot_parent_to_this;
+ links[i].axis_top.setValue(0,0,0);
+ links[i].axis_bottom = joint_axis;
+ links[i].e_vector = r_vector_when_q_zero;
+ links[i].is_revolute = false;
+ links[i].cached_rot_parent_to_this = rot_parent_to_this;
+ if (disableParentCollision)
+ links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+
+ links[i].updateCache();
+}
+
+void btMultiBody::setupRevolute(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &zero_rot_parent_to_this,
+ const btVector3 &joint_axis,
+ const btVector3 &parent_axis_position,
+ const btVector3 &my_axis_position,
+ bool disableParentCollision)
+{
+ links[i].mass = mass;
+ links[i].inertia = inertia;
+ links[i].parent = parent;
+ links[i].zero_rot_parent_to_this = zero_rot_parent_to_this;
+ links[i].axis_top = joint_axis;
+ links[i].axis_bottom = joint_axis.cross(my_axis_position);
+ links[i].d_vector = my_axis_position;
+ links[i].e_vector = parent_axis_position;
+ links[i].is_revolute = true;
+ if (disableParentCollision)
+ links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+ links[i].updateCache();
+}
+
+
+
+
+
+int btMultiBody::getParent(int i) const
+{
+ return links[i].parent;
+}
+
+btScalar btMultiBody::getLinkMass(int i) const
+{
+ return links[i].mass;
+}
+
+const btVector3 & btMultiBody::getLinkInertia(int i) const
+{
+ return links[i].inertia;
+}
+
+btScalar btMultiBody::getJointPos(int i) const
+{
+ return links[i].joint_pos;
+}
+
+btScalar btMultiBody::getJointVel(int i) const
+{
+ return m_real_buf[6 + i];
+}
+
+void btMultiBody::setJointPos(int i, btScalar q)
+{
+ links[i].joint_pos = q;
+ links[i].updateCache();
+}
+
+void btMultiBody::setJointVel(int i, btScalar qdot)
+{
+ m_real_buf[6 + i] = qdot;
+}
+
+const btVector3 & btMultiBody::getRVector(int i) const
+{
+ return links[i].cached_r_vector;
+}
+
+const btQuaternion & btMultiBody::getParentToLocalRot(int i) const
+{
+ return links[i].cached_rot_parent_to_this;
+}
+
+btVector3 btMultiBody::localPosToWorld(int i, const btVector3 &local_pos) const
+{
+ btVector3 result = local_pos;
+ while (i != -1) {
+ // 'result' is in frame i. transform it to frame parent(i)
+ result += getRVector(i);
+ result = quatRotate(getParentToLocalRot(i).inverse(),result);
+ i = getParent(i);
+ }
+
+ // 'result' is now in the base frame. transform it to world frame
+ result = quatRotate(getWorldToBaseRot().inverse() ,result);
+ result += getBasePos();
+
+ return result;
+}
+
+btVector3 btMultiBody::worldPosToLocal(int i, const btVector3 &world_pos) const
+{
+ if (i == -1) {
+ // world to base
+ return quatRotate(getWorldToBaseRot(),(world_pos - getBasePos()));
+ } else {
+ // find position in parent frame, then transform to current frame
+ return quatRotate(getParentToLocalRot(i),worldPosToLocal(getParent(i), world_pos)) - getRVector(i);
+ }
+}
+
+btVector3 btMultiBody::localDirToWorld(int i, const btVector3 &local_dir) const
+{
+ btVector3 result = local_dir;
+ while (i != -1) {
+ result = quatRotate(getParentToLocalRot(i).inverse() , result);
+ i = getParent(i);
+ }
+ result = quatRotate(getWorldToBaseRot().inverse() , result);
+ return result;
+}
+
+btVector3 btMultiBody::worldDirToLocal(int i, const btVector3 &world_dir) const
+{
+ if (i == -1) {
+ return quatRotate(getWorldToBaseRot(), world_dir);
+ } else {
+ return quatRotate(getParentToLocalRot(i) ,worldDirToLocal(getParent(i), world_dir));
+ }
+}
+
+void btMultiBody::compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const
+{
+ int num_links = getNumLinks();
+ // Calculates the velocities of each link (and the base) in its local frame
+ omega[0] = quatRotate(base_quat ,getBaseOmega());
+ vel[0] = quatRotate(base_quat ,getBaseVel());
+
+ for (int i = 0; i < num_links; ++i) {
+ const int parent = links[i].parent;
+
+ // transform parent vel into this frame, store in omega[i+1], vel[i+1]
+ SpatialTransform(btMatrix3x3(links[i].cached_rot_parent_to_this), links[i].cached_r_vector,
+ omega[parent+1], vel[parent+1],
+ omega[i+1], vel[i+1]);
+
+ // now add qidot * shat_i
+ omega[i+1] += getJointVel(i) * links[i].axis_top;
+ vel[i+1] += getJointVel(i) * links[i].axis_bottom;
+ }
+}
+
+btScalar btMultiBody::getKineticEnergy() const
+{
+ int num_links = getNumLinks();
+ // TODO: would be better not to allocate memory here
+ btAlignedObjectArray<btVector3> omega;omega.resize(num_links+1);
+ btAlignedObjectArray<btVector3> vel;vel.resize(num_links+1);
+ compTreeLinkVelocities(&omega[0], &vel[0]);
+
+ // we will do the factor of 0.5 at the end
+ btScalar result = base_mass * vel[0].dot(vel[0]);
+ result += omega[0].dot(base_inertia * omega[0]);
+
+ for (int i = 0; i < num_links; ++i) {
+ result += links[i].mass * vel[i+1].dot(vel[i+1]);
+ result += omega[i+1].dot(links[i].inertia * omega[i+1]);
+ }
+
+ return 0.5f * result;
+}
+
+btVector3 btMultiBody::getAngularMomentum() const
+{
+ int num_links = getNumLinks();
+ // TODO: would be better not to allocate memory here
+ btAlignedObjectArray<btVector3> omega;omega.resize(num_links+1);
+ btAlignedObjectArray<btVector3> vel;vel.resize(num_links+1);
+ btAlignedObjectArray<btQuaternion> rot_from_world;rot_from_world.resize(num_links+1);
+ compTreeLinkVelocities(&omega[0], &vel[0]);
+
+ rot_from_world[0] = base_quat;
+ btVector3 result = quatRotate(rot_from_world[0].inverse() , (base_inertia * omega[0]));
+
+ for (int i = 0; i < num_links; ++i) {
+ rot_from_world[i+1] = links[i].cached_rot_parent_to_this * rot_from_world[links[i].parent+1];
+ result += (quatRotate(rot_from_world[i+1].inverse() , (links[i].inertia * omega[i+1])));
+ }
+
+ return result;
+}
+
+
+void btMultiBody::clearForcesAndTorques()
+{
+ base_force.setValue(0, 0, 0);
+ base_torque.setValue(0, 0, 0);
+
+ for (int i = 0; i < getNumLinks(); ++i) {
+ links[i].applied_force.setValue(0, 0, 0);
+ links[i].applied_torque.setValue(0, 0, 0);
+ links[i].joint_torque = 0;
+ }
+}
+
+void btMultiBody::clearVelocities()
+{
+ for (int i = 0; i < 6 + getNumLinks(); ++i)
+ {
+ m_real_buf[i] = 0.f;
+ }
+}
+void btMultiBody::addLinkForce(int i, const btVector3 &f)
+{
+ links[i].applied_force += f;
+}
+
+void btMultiBody::addLinkTorque(int i, const btVector3 &t)
+{
+ links[i].applied_torque += t;
+}
+
+void btMultiBody::addJointTorque(int i, btScalar Q)
+{
+ links[i].joint_torque += Q;
+}
+
+const btVector3 & btMultiBody::getLinkForce(int i) const
+{
+ return links[i].applied_force;
+}
+
+const btVector3 & btMultiBody::getLinkTorque(int i) const
+{
+ return links[i].applied_torque;
+}
+
+btScalar btMultiBody::getJointTorque(int i) const
+{
+ return links[i].joint_torque;
+}
+
+
+inline btMatrix3x3 vecMulVecTranspose(const btVector3& v0, const btVector3& v1Transposed)
+{
+ btVector3 row0 = btVector3(
+ v0.x() * v1Transposed.x(),
+ v0.x() * v1Transposed.y(),
+ v0.x() * v1Transposed.z());
+ btVector3 row1 = btVector3(
+ v0.y() * v1Transposed.x(),
+ v0.y() * v1Transposed.y(),
+ v0.y() * v1Transposed.z());
+ btVector3 row2 = btVector3(
+ v0.z() * v1Transposed.x(),
+ v0.z() * v1Transposed.y(),
+ v0.z() * v1Transposed.z());
+
+ btMatrix3x3 m(row0[0],row0[1],row0[2],
+ row1[0],row1[1],row1[2],
+ row2[0],row2[1],row2[2]);
+ return m;
+}
+
+
+void btMultiBody::stepVelocities(btScalar dt,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m)
+{
+ // Implement Featherstone's algorithm to calculate joint accelerations (q_double_dot)
+ // and the base linear & angular accelerations.
+
+ // We apply damping forces in this routine as well as any external forces specified by the
+ // caller (via addBaseForce etc).
+
+ // output should point to an array of 6 + num_links reals.
+ // Format is: 3 angular accelerations (in world frame), 3 linear accelerations (in world frame),
+ // num_links joint acceleration values.
+
+ int num_links = getNumLinks();
+
+ const btScalar DAMPING_K1_LINEAR = m_linearDamping;
+ const btScalar DAMPING_K2_LINEAR = m_linearDamping;
+
+ const btScalar DAMPING_K1_ANGULAR = m_angularDamping;
+ const btScalar DAMPING_K2_ANGULAR= m_angularDamping;
+
+ btVector3 base_vel = getBaseVel();
+ btVector3 base_omega = getBaseOmega();
+
+ // Temporary matrices/vectors -- use scratch space from caller
+ // so that we don't have to keep reallocating every frame
+
+ scratch_r.resize(2*num_links + 6);
+ scratch_v.resize(8*num_links + 6);
+ scratch_m.resize(4*num_links + 4);
+
+ btScalar * r_ptr = &scratch_r[0];
+ btScalar * output = &scratch_r[num_links]; // "output" holds the q_double_dot results
+ btVector3 * v_ptr = &scratch_v[0];
+
+ // vhat_i (top = angular, bottom = linear part)
+ btVector3 * vel_top_angular = v_ptr; v_ptr += num_links + 1;
+ btVector3 * vel_bottom_linear = v_ptr; v_ptr += num_links + 1;
+
+ // zhat_i^A
+ btVector3 * zero_acc_top_angular = v_ptr; v_ptr += num_links + 1;
+ btVector3 * zero_acc_bottom_linear = v_ptr; v_ptr += num_links + 1;
+
+ // chat_i (note NOT defined for the base)
+ btVector3 * coriolis_top_angular = v_ptr; v_ptr += num_links;
+ btVector3 * coriolis_bottom_linear = v_ptr; v_ptr += num_links;
+
+ // top left, top right and bottom left blocks of Ihat_i^A.
+ // bottom right block = transpose of top left block and is not stored.
+ // Note: the top right and bottom left blocks are always symmetric matrices, but we don't make use of this fact currently.
+ btMatrix3x3 * inertia_top_left = &scratch_m[num_links + 1];
+ btMatrix3x3 * inertia_top_right = &scratch_m[2*num_links + 2];
+ btMatrix3x3 * inertia_bottom_left = &scratch_m[3*num_links + 3];
+
+ // Cached 3x3 rotation matrices from parent frame to this frame.
+ btMatrix3x3 * rot_from_parent = &matrix_buf[0];
+ btMatrix3x3 * rot_from_world = &scratch_m[0];
+
+ // hhat_i, ahat_i
+ // hhat is NOT stored for the base (but ahat is)
+ btVector3 * h_top = num_links > 0 ? &vector_buf[0] : 0;
+ btVector3 * h_bottom = num_links > 0 ? &vector_buf[num_links] : 0;
+ btVector3 * accel_top = v_ptr; v_ptr += num_links + 1;
+ btVector3 * accel_bottom = v_ptr; v_ptr += num_links + 1;
+
+ // Y_i, D_i
+ btScalar * Y = r_ptr; r_ptr += num_links;
+ btScalar * D = num_links > 0 ? &m_real_buf[6 + num_links] : 0;
+
+ // ptr to the joint accel part of the output
+ btScalar * joint_accel = output + 6;
+
+
+ // Start of the algorithm proper.
+
+ // First 'upward' loop.
+ // Combines CompTreeLinkVelocities and InitTreeLinks from Mirtich.
+
+ rot_from_parent[0] = btMatrix3x3(base_quat);
+
+ vel_top_angular[0] = rot_from_parent[0] * base_omega;
+ vel_bottom_linear[0] = rot_from_parent[0] * base_vel;
+
+ if (fixed_base) {
+ zero_acc_top_angular[0] = zero_acc_bottom_linear[0] = btVector3(0,0,0);
+ } else {
+ zero_acc_top_angular[0] = - (rot_from_parent[0] * (base_force
+ - base_mass*(DAMPING_K1_LINEAR+DAMPING_K2_LINEAR*base_vel.norm())*base_vel));
+
+ zero_acc_bottom_linear[0] =
+ - (rot_from_parent[0] * base_torque);
+
+ if (m_useGyroTerm)
+ zero_acc_bottom_linear[0]+=vel_top_angular[0].cross( base_inertia * vel_top_angular[0] );
+
+ zero_acc_bottom_linear[0] += base_inertia * vel_top_angular[0] * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR*vel_top_angular[0].norm());
+
+ }
+
+
+
+ inertia_top_left[0] = btMatrix3x3(0,0,0,0,0,0,0,0,0);//::Zero();
+
+
+ inertia_top_right[0].setValue(base_mass, 0, 0,
+ 0, base_mass, 0,
+ 0, 0, base_mass);
+ inertia_bottom_left[0].setValue(base_inertia[0], 0, 0,
+ 0, base_inertia[1], 0,
+ 0, 0, base_inertia[2]);
+
+ rot_from_world[0] = rot_from_parent[0];
+
+ for (int i = 0; i < num_links; ++i) {
+ const int parent = links[i].parent;
+ rot_from_parent[i+1] = btMatrix3x3(links[i].cached_rot_parent_to_this);
+
+
+ rot_from_world[i+1] = rot_from_parent[i+1] * rot_from_world[parent+1];
+
+ // vhat_i = i_xhat_p(i) * vhat_p(i)
+ SpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
+ vel_top_angular[parent+1], vel_bottom_linear[parent+1],
+ vel_top_angular[i+1], vel_bottom_linear[i+1]);
+
+ // we can now calculate chat_i
+ // remember vhat_i is really vhat_p(i) (but in current frame) at this point
+ coriolis_bottom_linear[i] = vel_top_angular[i+1].cross(vel_top_angular[i+1].cross(links[i].cached_r_vector))
+ + 2 * vel_top_angular[i+1].cross(links[i].axis_bottom) * getJointVel(i);
+ if (links[i].is_revolute) {
+ coriolis_top_angular[i] = vel_top_angular[i+1].cross(links[i].axis_top) * getJointVel(i);
+ coriolis_bottom_linear[i] += (getJointVel(i) * getJointVel(i)) * links[i].axis_top.cross(links[i].axis_bottom);
+ } else {
+ coriolis_top_angular[i] = btVector3(0,0,0);
+ }
+
+ // now set vhat_i to its true value by doing
+ // vhat_i += qidot * shat_i
+ vel_top_angular[i+1] += getJointVel(i) * links[i].axis_top;
+ vel_bottom_linear[i+1] += getJointVel(i) * links[i].axis_bottom;
+
+ // calculate zhat_i^A
+ zero_acc_top_angular[i+1] = - (rot_from_world[i+1] * (links[i].applied_force));
+ zero_acc_top_angular[i+1] += links[i].mass * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR*vel_bottom_linear[i+1].norm()) * vel_bottom_linear[i+1];
+
+ zero_acc_bottom_linear[i+1] =
+ - (rot_from_world[i+1] * links[i].applied_torque);
+ if (m_useGyroTerm)
+ {
+ zero_acc_bottom_linear[i+1] += vel_top_angular[i+1].cross( links[i].inertia * vel_top_angular[i+1] );
+ }
+
+ zero_acc_bottom_linear[i+1] += links[i].inertia * vel_top_angular[i+1] * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR*vel_top_angular[i+1].norm());
+
+ // calculate Ihat_i^A
+ inertia_top_left[i+1] = btMatrix3x3(0,0,0,0,0,0,0,0,0);//::Zero();
+ inertia_top_right[i+1].setValue(links[i].mass, 0, 0,
+ 0, links[i].mass, 0,
+ 0, 0, links[i].mass);
+ inertia_bottom_left[i+1].setValue(links[i].inertia[0], 0, 0,
+ 0, links[i].inertia[1], 0,
+ 0, 0, links[i].inertia[2]);
+ }
+
+
+ // 'Downward' loop.
+ // (part of TreeForwardDynamics in Mirtich.)
+ for (int i = num_links - 1; i >= 0; --i) {
+
+ h_top[i] = inertia_top_left[i+1] * links[i].axis_top + inertia_top_right[i+1] * links[i].axis_bottom;
+ h_bottom[i] = inertia_bottom_left[i+1] * links[i].axis_top + inertia_top_left[i+1].transpose() * links[i].axis_bottom;
+ btScalar val = SpatialDotProduct(links[i].axis_top, links[i].axis_bottom, h_top[i], h_bottom[i]);
+ D[i] = val;
+ Y[i] = links[i].joint_torque
+ - SpatialDotProduct(links[i].axis_top, links[i].axis_bottom, zero_acc_top_angular[i+1], zero_acc_bottom_linear[i+1])
+ - SpatialDotProduct(h_top[i], h_bottom[i], coriolis_top_angular[i], coriolis_bottom_linear[i]);
+
+ const int parent = links[i].parent;
+
+
+ // Ip += pXi * (Ii - hi hi' / Di) * iXp
+ const btScalar one_over_di = 1.0f / D[i];
+
+
+
+
+ const btMatrix3x3 TL = inertia_top_left[i+1] - vecMulVecTranspose(one_over_di * h_top[i] , h_bottom[i]);
+ const btMatrix3x3 TR = inertia_top_right[i+1] - vecMulVecTranspose(one_over_di * h_top[i] , h_top[i]);
+ const btMatrix3x3 BL = inertia_bottom_left[i+1]- vecMulVecTranspose(one_over_di * h_bottom[i] , h_bottom[i]);
+
+
+ btMatrix3x3 r_cross;
+ r_cross.setValue(
+ 0, -links[i].cached_r_vector[2], links[i].cached_r_vector[1],
+ links[i].cached_r_vector[2], 0, -links[i].cached_r_vector[0],
+ -links[i].cached_r_vector[1], links[i].cached_r_vector[0], 0);
+
+ inertia_top_left[parent+1] += rot_from_parent[i+1].transpose() * ( TL - TR * r_cross ) * rot_from_parent[i+1];
+ inertia_top_right[parent+1] += rot_from_parent[i+1].transpose() * TR * rot_from_parent[i+1];
+ inertia_bottom_left[parent+1] += rot_from_parent[i+1].transpose() *
+ (r_cross * (TL - TR * r_cross) + BL - TL.transpose() * r_cross) * rot_from_parent[i+1];
+
+
+ // Zp += pXi * (Zi + Ii*ci + hi*Yi/Di)
+ btVector3 in_top, in_bottom, out_top, out_bottom;
+ const btScalar Y_over_D = Y[i] * one_over_di;
+ in_top = zero_acc_top_angular[i+1]
+ + inertia_top_left[i+1] * coriolis_top_angular[i]
+ + inertia_top_right[i+1] * coriolis_bottom_linear[i]
+ + Y_over_D * h_top[i];
+ in_bottom = zero_acc_bottom_linear[i+1]
+ + inertia_bottom_left[i+1] * coriolis_top_angular[i]
+ + inertia_top_left[i+1].transpose() * coriolis_bottom_linear[i]
+ + Y_over_D * h_bottom[i];
+ InverseSpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
+ in_top, in_bottom, out_top, out_bottom);
+ zero_acc_top_angular[parent+1] += out_top;
+ zero_acc_bottom_linear[parent+1] += out_bottom;
+ }
+
+
+ // Second 'upward' loop
+ // (part of TreeForwardDynamics in Mirtich)
+
+ if (fixed_base)
+ {
+ accel_top[0] = accel_bottom[0] = btVector3(0,0,0);
+ }
+ else
+ {
+ if (num_links > 0)
+ {
+ //Matrix<btScalar, 6, 6> Imatrix;
+ //Imatrix.block<3,3>(0,0) = inertia_top_left[0];
+ //Imatrix.block<3,3>(3,0) = inertia_bottom_left[0];
+ //Imatrix.block<3,3>(0,3) = inertia_top_right[0];
+ //Imatrix.block<3,3>(3,3) = inertia_top_left[0].transpose();
+ //cached_imatrix_lu.reset(new Eigen::LU<Matrix<btScalar, 6, 6> >(Imatrix)); // TODO: Avoid memory allocation here?
+
+ cached_inertia_top_left = inertia_top_left[0];
+ cached_inertia_top_right = inertia_top_right[0];
+ cached_inertia_lower_left = inertia_bottom_left[0];
+ cached_inertia_lower_right= inertia_top_left[0].transpose();
+
+ }
+ btVector3 rhs_top (zero_acc_top_angular[0][0], zero_acc_top_angular[0][1], zero_acc_top_angular[0][2]);
+ btVector3 rhs_bot (zero_acc_bottom_linear[0][0], zero_acc_bottom_linear[0][1], zero_acc_bottom_linear[0][2]);
+ float result[6];
+
+ solveImatrix(rhs_top, rhs_bot, result);
+// printf("result=%f,%f,%f,%f,%f,%f\n",result[0],result[0],result[0],result[0],result[0],result[0]);
+ for (int i = 0; i < 3; ++i) {
+ accel_top[0][i] = -result[i];
+ accel_bottom[0][i] = -result[i+3];
+ }
+
+ }
+
+ // now do the loop over the links
+ for (int i = 0; i < num_links; ++i) {
+ const int parent = links[i].parent;
+ SpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
+ accel_top[parent+1], accel_bottom[parent+1],
+ accel_top[i+1], accel_bottom[i+1]);
+ joint_accel[i] = (Y[i] - SpatialDotProduct(h_top[i], h_bottom[i], accel_top[i+1], accel_bottom[i+1])) / D[i];
+ accel_top[i+1] += coriolis_top_angular[i] + joint_accel[i] * links[i].axis_top;
+ accel_bottom[i+1] += coriolis_bottom_linear[i] + joint_accel[i] * links[i].axis_bottom;
+ }
+
+ // transform base accelerations back to the world frame.
+ btVector3 omegadot_out = rot_from_parent[0].transpose() * accel_top[0];
+ output[0] = omegadot_out[0];
+ output[1] = omegadot_out[1];
+ output[2] = omegadot_out[2];
+
+ btVector3 vdot_out = rot_from_parent[0].transpose() * accel_bottom[0];
+ output[3] = vdot_out[0];
+ output[4] = vdot_out[1];
+ output[5] = vdot_out[2];
+ // Final step: add the accelerations (times dt) to the velocities.
+ applyDeltaVee(output, dt);
+
+
+}
+
+
+
+void btMultiBody::solveImatrix(const btVector3& rhs_top, const btVector3& rhs_bot, float result[6]) const
+{
+ int num_links = getNumLinks();
+ ///solve I * x = rhs, so the result = invI * rhs
+ if (num_links == 0)
+ {
+ // in the case of 0 links (i.e. a plain rigid body, not a multibody) rhs * invI is easier
+ result[0] = rhs_bot[0] / base_inertia[0];
+ result[1] = rhs_bot[1] / base_inertia[1];
+ result[2] = rhs_bot[2] / base_inertia[2];
+ result[3] = rhs_top[0] / base_mass;
+ result[4] = rhs_top[1] / base_mass;
+ result[5] = rhs_top[2] / base_mass;
+ } else
+ {
+ /// Special routine for calculating the inverse of a spatial inertia matrix
+ ///the 6x6 matrix is stored as 4 blocks of 3x3 matrices
+ btMatrix3x3 Binv = cached_inertia_top_right.inverse()*-1.f;
+ btMatrix3x3 tmp = cached_inertia_lower_right * Binv;
+ btMatrix3x3 invIupper_right = (tmp * cached_inertia_top_left + cached_inertia_lower_left).inverse();
+ tmp = invIupper_right * cached_inertia_lower_right;
+ btMatrix3x3 invI_upper_left = (tmp * Binv);
+ btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
+ tmp = cached_inertia_top_left * invI_upper_left;
+ tmp[0][0]-= 1.0;
+ tmp[1][1]-= 1.0;
+ tmp[2][2]-= 1.0;
+ btMatrix3x3 invI_lower_left = (Binv * tmp);
+
+ //multiply result = invI * rhs
+ {
+ btVector3 vtop = invI_upper_left*rhs_top;
+ btVector3 tmp;
+ tmp = invIupper_right * rhs_bot;
+ vtop += tmp;
+ btVector3 vbot = invI_lower_left*rhs_top;
+ tmp = invI_lower_right * rhs_bot;
+ vbot += tmp;
+ result[0] = vtop[0];
+ result[1] = vtop[1];
+ result[2] = vtop[2];
+ result[3] = vbot[0];
+ result[4] = vbot[1];
+ result[5] = vbot[2];
+ }
+
+ }
+}
+
+
+void btMultiBody::calcAccelerationDeltas(const btScalar *force, btScalar *output,
+ btAlignedObjectArray<btScalar> &scratch_r, btAlignedObjectArray<btVector3> &scratch_v) const
+{
+ // Temporary matrices/vectors -- use scratch space from caller
+ // so that we don't have to keep reallocating every frame
+ int num_links = getNumLinks();
+ scratch_r.resize(num_links);
+ scratch_v.resize(4*num_links + 4);
+
+ btScalar * r_ptr = num_links == 0 ? 0 : &scratch_r[0];
+ btVector3 * v_ptr = &scratch_v[0];
+
+ // zhat_i^A (scratch space)
+ btVector3 * zero_acc_top_angular = v_ptr; v_ptr += num_links + 1;
+ btVector3 * zero_acc_bottom_linear = v_ptr; v_ptr += num_links + 1;
+
+ // rot_from_parent (cached from calcAccelerations)
+ const btMatrix3x3 * rot_from_parent = &matrix_buf[0];
+
+ // hhat (cached), accel (scratch)
+ const btVector3 * h_top = num_links > 0 ? &vector_buf[0] : 0;
+ const btVector3 * h_bottom = num_links > 0 ? &vector_buf[num_links] : 0;
+ btVector3 * accel_top = v_ptr; v_ptr += num_links + 1;
+ btVector3 * accel_bottom = v_ptr; v_ptr += num_links + 1;
+
+ // Y_i (scratch), D_i (cached)
+ btScalar * Y = r_ptr; r_ptr += num_links;
+ const btScalar * D = num_links > 0 ? &m_real_buf[6 + num_links] : 0;
+
+ btAssert(num_links == 0 || r_ptr - &scratch_r[0] == scratch_r.size());
+ btAssert(v_ptr - &scratch_v[0] == scratch_v.size());
+
+
+
+ // First 'upward' loop.
+ // Combines CompTreeLinkVelocities and InitTreeLinks from Mirtich.
+
+ btVector3 input_force(force[3],force[4],force[5]);
+ btVector3 input_torque(force[0],force[1],force[2]);
+
+ // Fill in zero_acc
+ // -- set to force/torque on the base, zero otherwise
+ if (fixed_base)
+ {
+ zero_acc_top_angular[0] = zero_acc_bottom_linear[0] = btVector3(0,0,0);
+ } else
+ {
+ zero_acc_top_angular[0] = - (rot_from_parent[0] * input_force);
+ zero_acc_bottom_linear[0] = - (rot_from_parent[0] * input_torque);
+ }
+ for (int i = 0; i < num_links; ++i)
+ {
+ zero_acc_top_angular[i+1] = zero_acc_bottom_linear[i+1] = btVector3(0,0,0);
+ }
+
+ // 'Downward' loop.
+ for (int i = num_links - 1; i >= 0; --i)
+ {
+
+ Y[i] = - SpatialDotProduct(links[i].axis_top, links[i].axis_bottom, zero_acc_top_angular[i+1], zero_acc_bottom_linear[i+1]);
+ Y[i] += force[6 + i]; // add joint torque
+
+ const int parent = links[i].parent;
+
+ // Zp += pXi * (Zi + hi*Yi/Di)
+ btVector3 in_top, in_bottom, out_top, out_bottom;
+ const btScalar Y_over_D = Y[i] / D[i];
+ in_top = zero_acc_top_angular[i+1] + Y_over_D * h_top[i];
+ in_bottom = zero_acc_bottom_linear[i+1] + Y_over_D * h_bottom[i];
+ InverseSpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
+ in_top, in_bottom, out_top, out_bottom);
+ zero_acc_top_angular[parent+1] += out_top;
+ zero_acc_bottom_linear[parent+1] += out_bottom;
+ }
+
+ // ptr to the joint accel part of the output
+ btScalar * joint_accel = output + 6;
+
+ // Second 'upward' loop
+ if (fixed_base)
+ {
+ accel_top[0] = accel_bottom[0] = btVector3(0,0,0);
+ } else
+ {
+ btVector3 rhs_top (zero_acc_top_angular[0][0], zero_acc_top_angular[0][1], zero_acc_top_angular[0][2]);
+ btVector3 rhs_bot (zero_acc_bottom_linear[0][0], zero_acc_bottom_linear[0][1], zero_acc_bottom_linear[0][2]);
+
+ float result[6];
+ solveImatrix(rhs_top,rhs_bot, result);
+ // printf("result=%f,%f,%f,%f,%f,%f\n",result[0],result[0],result[0],result[0],result[0],result[0]);
+
+ for (int i = 0; i < 3; ++i) {
+ accel_top[0][i] = -result[i];
+ accel_bottom[0][i] = -result[i+3];
+ }
+
+ }
+
+ // now do the loop over the links
+ for (int i = 0; i < num_links; ++i) {
+ const int parent = links[i].parent;
+ SpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
+ accel_top[parent+1], accel_bottom[parent+1],
+ accel_top[i+1], accel_bottom[i+1]);
+ joint_accel[i] = (Y[i] - SpatialDotProduct(h_top[i], h_bottom[i], accel_top[i+1], accel_bottom[i+1])) / D[i];
+ accel_top[i+1] += joint_accel[i] * links[i].axis_top;
+ accel_bottom[i+1] += joint_accel[i] * links[i].axis_bottom;
+ }
+
+ // transform base accelerations back to the world frame.
+ btVector3 omegadot_out;
+ omegadot_out = rot_from_parent[0].transpose() * accel_top[0];
+ output[0] = omegadot_out[0];
+ output[1] = omegadot_out[1];
+ output[2] = omegadot_out[2];
+
+ btVector3 vdot_out;
+ vdot_out = rot_from_parent[0].transpose() * accel_bottom[0];
+
+ output[3] = vdot_out[0];
+ output[4] = vdot_out[1];
+ output[5] = vdot_out[2];
+}
+
+void btMultiBody::stepPositions(btScalar dt)
+{
+ int num_links = getNumLinks();
+ // step position by adding dt * velocity
+ btVector3 v = getBaseVel();
+ base_pos += dt * v;
+
+ // "exponential map" method for the rotation
+ btVector3 base_omega = getBaseOmega();
+ const btScalar omega_norm = base_omega.norm();
+ const btScalar omega_times_dt = omega_norm * dt;
+ const btScalar SMALL_ROTATION_ANGLE = 0.02f; // Theoretically this should be ~ pow(FLT_EPSILON,0.25) which is ~ 0.0156
+ if (fabs(omega_times_dt) < SMALL_ROTATION_ANGLE)
+ {
+ const btScalar xsq = omega_times_dt * omega_times_dt; // |omega|^2 * dt^2
+ const btScalar sin_term = dt * (xsq / 48.0f - 0.5f); // -sin(0.5*dt*|omega|) / |omega|
+ const btScalar cos_term = 1.0f - xsq / 8.0f; // cos(0.5*dt*|omega|)
+ base_quat = base_quat * btQuaternion(sin_term * base_omega[0],sin_term * base_omega[1],sin_term * base_omega[2],cos_term);
+ } else
+ {
+ base_quat = base_quat * btQuaternion(base_omega / omega_norm,-omega_times_dt);
+ }
+
+ // Make sure the quaternion represents a valid rotation.
+ // (Not strictly necessary, but helps prevent any round-off errors from building up.)
+ base_quat.normalize();
+
+ // Finally we can update joint_pos for each of the links
+ for (int i = 0; i < num_links; ++i)
+ {
+ float jointVel = getJointVel(i);
+ links[i].joint_pos += dt * jointVel;
+ links[i].updateCache();
+ }
+}
+
+void btMultiBody::fillContactJacobian(int link,
+ const btVector3 &contact_point,
+ const btVector3 &normal,
+ btScalar *jac,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m) const
+{
+ // temporary space
+ int num_links = getNumLinks();
+ scratch_v.resize(2*num_links + 2);
+ scratch_m.resize(num_links + 1);
+
+ btVector3 * v_ptr = &scratch_v[0];
+ btVector3 * p_minus_com = v_ptr; v_ptr += num_links + 1;
+ btVector3 * n_local = v_ptr; v_ptr += num_links + 1;
+ btAssert(v_ptr - &scratch_v[0] == scratch_v.size());
+
+ scratch_r.resize(num_links);
+ btScalar * results = num_links > 0 ? &scratch_r[0] : 0;
+
+ btMatrix3x3 * rot_from_world = &scratch_m[0];
+
+ const btVector3 p_minus_com_world = contact_point - base_pos;
+
+ rot_from_world[0] = btMatrix3x3(base_quat);
+
+ p_minus_com[0] = rot_from_world[0] * p_minus_com_world;
+ n_local[0] = rot_from_world[0] * normal;
+
+ // omega coeffients first.
+ btVector3 omega_coeffs;
+ omega_coeffs = p_minus_com_world.cross(normal);
+ jac[0] = omega_coeffs[0];
+ jac[1] = omega_coeffs[1];
+ jac[2] = omega_coeffs[2];
+ // then v coefficients
+ jac[3] = normal[0];
+ jac[4] = normal[1];
+ jac[5] = normal[2];
+
+ // Set remaining jac values to zero for now.
+ for (int i = 6; i < 6 + num_links; ++i) {
+ jac[i] = 0;
+ }
+
+ // Qdot coefficients, if necessary.
+ if (num_links > 0 && link > -1) {
+
+ // TODO: speed this up -- don't calculate for links we don't need.
+ // (Also, we are making 3 separate calls to this function, for the normal & the 2 friction directions,
+ // which is resulting in repeated work being done...)
+
+ // calculate required normals & positions in the local frames.
+ for (int i = 0; i < num_links; ++i) {
+
+ // transform to local frame
+ const int parent = links[i].parent;
+ const btMatrix3x3 mtx(links[i].cached_rot_parent_to_this);
+ rot_from_world[i+1] = mtx * rot_from_world[parent+1];
+
+ n_local[i+1] = mtx * n_local[parent+1];
+ p_minus_com[i+1] = mtx * p_minus_com[parent+1] - links[i].cached_r_vector;
+
+ // calculate the jacobian entry
+ if (links[i].is_revolute) {
+ results[i] = n_local[i+1].dot( links[i].axis_top.cross(p_minus_com[i+1]) + links[i].axis_bottom );
+ } else {
+ results[i] = n_local[i+1].dot( links[i].axis_bottom );
+ }
+ }
+
+ // Now copy through to output.
+ while (link != -1) {
+ jac[6 + link] = results[link];
+ link = links[link].parent;
+ }
+ }
+}
+
+void btMultiBody::wakeUp()
+{
+ awake = true;
+}
+
+void btMultiBody::goToSleep()
+{
+ awake = false;
+}
+
+void btMultiBody::checkMotionAndSleepIfRequired(btScalar timestep)
+{
+ int num_links = getNumLinks();
+ extern bool gDisableDeactivation;
+ if (!can_sleep || gDisableDeactivation)
+ {
+ awake = true;
+ sleep_timer = 0;
+ return;
+ }
+
+ // motion is computed as omega^2 + v^2 + (sum of squares of joint velocities)
+ btScalar motion = 0;
+ for (int i = 0; i < 6 + num_links; ++i) {
+ motion += m_real_buf[i] * m_real_buf[i];
+ }
+
+ if (motion < SLEEP_EPSILON) {
+ sleep_timer += timestep;
+ if (sleep_timer > SLEEP_TIMEOUT) {
+ goToSleep();
+ }
+ } else {
+ sleep_timer = 0;
+ if (!awake)
+ wakeUp();
+ }
+}
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.h
new file mode 100644
index 00000000000..7177bebbff5
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBody.h
@@ -0,0 +1,466 @@
+/*
+ * PURPOSE:
+ * Class representing an articulated rigid body. Stores the body's
+ * current state, allows forces and torques to be set, handles
+ * timestepping and implements Featherstone's algorithm.
+ *
+ * COPYRIGHT:
+ * Copyright (C) Stephen Thompson, <stephen@solarflare.org.uk>, 2011-2013
+ * Portions written By Erwin Coumans: replacing Eigen math library by Bullet LinearMath and a dedicated 6x6 matrix inverse (solveImatrix)
+
+ This software is provided 'as-is', without any express or implied warranty.
+ In no event will the authors be held liable for any damages arising from the use of this software.
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it freely,
+ subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ */
+
+
+#ifndef BT_MULTIBODY_H
+#define BT_MULTIBODY_H
+
+#include "LinearMath/btScalar.h"
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btQuaternion.h"
+#include "LinearMath/btMatrix3x3.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+
+#include "btMultiBodyLink.h"
+class btMultiBodyLinkCollider;
+
+class btMultiBody
+{
+public:
+
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ //
+ // initialization
+ //
+
+ btMultiBody(int n_links, // NOT including the base
+ btScalar mass, // mass of base
+ const btVector3 &inertia, // inertia of base, in base frame; assumed diagonal
+ bool fixed_base_, // whether the base is fixed (true) or can move (false)
+ bool can_sleep_);
+
+ ~btMultiBody();
+
+ void setupPrismatic(int i, // 0 to num_links-1
+ btScalar mass,
+ const btVector3 &inertia, // in my frame; assumed diagonal
+ int parent,
+ const btQuaternion &rot_parent_to_this, // rotate points in parent frame to my frame.
+ const btVector3 &joint_axis, // in my frame
+ const btVector3 &r_vector_when_q_zero, // vector from parent COM to my COM, in my frame, when q = 0.
+ bool disableParentCollision=false
+ );
+
+ void setupRevolute(int i, // 0 to num_links-1
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &zero_rot_parent_to_this, // rotate points in parent frame to this frame, when q = 0
+ const btVector3 &joint_axis, // in my frame
+ const btVector3 &parent_axis_position, // vector from parent COM to joint axis, in PARENT frame
+ const btVector3 &my_axis_position, // vector from joint axis to my COM, in MY frame
+ bool disableParentCollision=false);
+
+ const btMultibodyLink& getLink(int index) const
+ {
+ return links[index];
+ }
+
+ btMultibodyLink& getLink(int index)
+ {
+ return links[index];
+ }
+
+
+ void setBaseCollider(btMultiBodyLinkCollider* collider)//collider can be NULL to disable collision for the base
+ {
+ m_baseCollider = collider;
+ }
+ const btMultiBodyLinkCollider* getBaseCollider() const
+ {
+ return m_baseCollider;
+ }
+ btMultiBodyLinkCollider* getBaseCollider()
+ {
+ return m_baseCollider;
+ }
+
+ //
+ // get parent
+ // input: link num from 0 to num_links-1
+ // output: link num from 0 to num_links-1, OR -1 to mean the base.
+ //
+ int getParent(int link_num) const;
+
+
+ //
+ // get number of links, masses, moments of inertia
+ //
+
+ int getNumLinks() const { return links.size(); }
+ btScalar getBaseMass() const { return base_mass; }
+ const btVector3 & getBaseInertia() const { return base_inertia; }
+ btScalar getLinkMass(int i) const;
+ const btVector3 & getLinkInertia(int i) const;
+
+
+ //
+ // change mass (incomplete: can only change base mass and inertia at present)
+ //
+
+ void setBaseMass(btScalar mass) { base_mass = mass; }
+ void setBaseInertia(const btVector3 &inertia) { base_inertia = inertia; }
+
+
+ //
+ // get/set pos/vel/rot/omega for the base link
+ //
+
+ const btVector3 & getBasePos() const { return base_pos; } // in world frame
+ const btVector3 getBaseVel() const
+ {
+ return btVector3(m_real_buf[3],m_real_buf[4],m_real_buf[5]);
+ } // in world frame
+ const btQuaternion & getWorldToBaseRot() const
+ {
+ return base_quat;
+ } // rotates world vectors into base frame
+ btVector3 getBaseOmega() const { return btVector3(m_real_buf[0],m_real_buf[1],m_real_buf[2]); } // in world frame
+
+ void setBasePos(const btVector3 &pos)
+ {
+ base_pos = pos;
+ }
+ void setBaseVel(const btVector3 &vel)
+ {
+
+ m_real_buf[3]=vel[0]; m_real_buf[4]=vel[1]; m_real_buf[5]=vel[2];
+ }
+ void setWorldToBaseRot(const btQuaternion &rot)
+ {
+ base_quat = rot;
+ }
+ void setBaseOmega(const btVector3 &omega)
+ {
+ m_real_buf[0]=omega[0];
+ m_real_buf[1]=omega[1];
+ m_real_buf[2]=omega[2];
+ }
+
+
+ //
+ // get/set pos/vel for child links (i = 0 to num_links-1)
+ //
+
+ btScalar getJointPos(int i) const;
+ btScalar getJointVel(int i) const;
+
+ void setJointPos(int i, btScalar q);
+ void setJointVel(int i, btScalar qdot);
+
+ //
+ // direct access to velocities as a vector of 6 + num_links elements.
+ // (omega first, then v, then joint velocities.)
+ //
+ const btScalar * getVelocityVector() const
+ {
+ return &m_real_buf[0];
+ }
+/* btScalar * getVelocityVector()
+ {
+ return &real_buf[0];
+ }
+ */
+
+ //
+ // get the frames of reference (positions and orientations) of the child links
+ // (i = 0 to num_links-1)
+ //
+
+ const btVector3 & getRVector(int i) const; // vector from COM(parent(i)) to COM(i), in frame i's coords
+ const btQuaternion & getParentToLocalRot(int i) const; // rotates vectors in frame parent(i) to vectors in frame i.
+
+
+ //
+ // transform vectors in local frame of link i to world frame (or vice versa)
+ //
+ btVector3 localPosToWorld(int i, const btVector3 &vec) const;
+ btVector3 localDirToWorld(int i, const btVector3 &vec) const;
+ btVector3 worldPosToLocal(int i, const btVector3 &vec) const;
+ btVector3 worldDirToLocal(int i, const btVector3 &vec) const;
+
+
+ //
+ // calculate kinetic energy and angular momentum
+ // useful for debugging.
+ //
+
+ btScalar getKineticEnergy() const;
+ btVector3 getAngularMomentum() const;
+
+
+ //
+ // set external forces and torques. Note all external forces/torques are given in the WORLD frame.
+ //
+
+ void clearForcesAndTorques();
+ void clearVelocities();
+
+ void addBaseForce(const btVector3 &f)
+ {
+ base_force += f;
+ }
+ void addBaseTorque(const btVector3 &t) { base_torque += t; }
+ void addLinkForce(int i, const btVector3 &f);
+ void addLinkTorque(int i, const btVector3 &t);
+ void addJointTorque(int i, btScalar Q);
+
+ const btVector3 & getBaseForce() const { return base_force; }
+ const btVector3 & getBaseTorque() const { return base_torque; }
+ const btVector3 & getLinkForce(int i) const;
+ const btVector3 & getLinkTorque(int i) const;
+ btScalar getJointTorque(int i) const;
+
+
+ //
+ // dynamics routines.
+ //
+
+ // timestep the velocities (given the external forces/torques set using addBaseForce etc).
+ // also sets up caches for calcAccelerationDeltas.
+ //
+ // Note: the caller must provide three vectors which are used as
+ // temporary scratch space. The idea here is to reduce dynamic
+ // memory allocation: the same scratch vectors can be re-used
+ // again and again for different Multibodies, instead of each
+ // btMultiBody allocating (and then deallocating) their own
+ // individual scratch buffers. This gives a considerable speed
+ // improvement, at least on Windows (where dynamic memory
+ // allocation appears to be fairly slow).
+ //
+ void stepVelocities(btScalar dt,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m);
+
+ // calcAccelerationDeltas
+ // input: force vector (in same format as jacobian, i.e.:
+ // 3 torque values, 3 force values, num_links joint torque values)
+ // output: 3 omegadot values, 3 vdot values, num_links q_double_dot values
+ // (existing contents of output array are replaced)
+ // stepVelocities must have been called first.
+ void calcAccelerationDeltas(const btScalar *force, btScalar *output,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v) const;
+
+ // apply a delta-vee directly. used in sequential impulses code.
+ void applyDeltaVee(const btScalar * delta_vee)
+ {
+
+ for (int i = 0; i < 6 + getNumLinks(); ++i)
+ {
+ m_real_buf[i] += delta_vee[i];
+ }
+
+ }
+ void applyDeltaVee(const btScalar * delta_vee, btScalar multiplier)
+ {
+ btScalar sum = 0;
+ for (int i = 0; i < 6 + getNumLinks(); ++i)
+ {
+ sum += delta_vee[i]*multiplier*delta_vee[i]*multiplier;
+ }
+ btScalar l = btSqrt(sum);
+ /*
+ static btScalar maxl = -1e30f;
+ if (l>maxl)
+ {
+ maxl=l;
+ // printf("maxl=%f\n",maxl);
+ }
+ */
+ if (l>m_maxAppliedImpulse)
+ {
+// printf("exceeds 100: l=%f\n",maxl);
+ multiplier *= m_maxAppliedImpulse/l;
+ }
+
+ for (int i = 0; i < 6 + getNumLinks(); ++i)
+ {
+ sum += delta_vee[i]*multiplier*delta_vee[i]*multiplier;
+ m_real_buf[i] += delta_vee[i] * multiplier;
+ }
+ }
+
+ // timestep the positions (given current velocities).
+ void stepPositions(btScalar dt);
+
+
+ //
+ // contacts
+ //
+
+ // This routine fills out a contact constraint jacobian for this body.
+ // the 'normal' supplied must be -n for body1 or +n for body2 of the contact.
+ // 'normal' & 'contact_point' are both given in world coordinates.
+ void fillContactJacobian(int link,
+ const btVector3 &contact_point,
+ const btVector3 &normal,
+ btScalar *jac,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m) const;
+
+
+ //
+ // sleeping
+ //
+ void setCanSleep(bool canSleep)
+ {
+ can_sleep = canSleep;
+ }
+
+ bool isAwake() const { return awake; }
+ void wakeUp();
+ void goToSleep();
+ void checkMotionAndSleepIfRequired(btScalar timestep);
+
+ bool hasFixedBase() const
+ {
+ return fixed_base;
+ }
+
+ int getCompanionId() const
+ {
+ return m_companionId;
+ }
+ void setCompanionId(int id)
+ {
+ //printf("for %p setCompanionId(%d)\n",this, id);
+ m_companionId = id;
+ }
+
+ void setNumLinks(int numLinks)//careful: when changing the number of links, make sure to re-initialize or update existing links
+ {
+ links.resize(numLinks);
+ }
+
+ btScalar getLinearDamping() const
+ {
+ return m_linearDamping;
+ }
+ void setLinearDamping( btScalar damp)
+ {
+ m_linearDamping = damp;
+ }
+ btScalar getAngularDamping() const
+ {
+ return m_angularDamping;
+ }
+
+ bool getUseGyroTerm() const
+ {
+ return m_useGyroTerm;
+ }
+ void setUseGyroTerm(bool useGyro)
+ {
+ m_useGyroTerm = useGyro;
+ }
+ btScalar getMaxAppliedImpulse() const
+ {
+ return m_maxAppliedImpulse;
+ }
+ void setMaxAppliedImpulse(btScalar maxImp)
+ {
+ m_maxAppliedImpulse = maxImp;
+ }
+
+ void setHasSelfCollision(bool hasSelfCollision)
+ {
+ m_hasSelfCollision = hasSelfCollision;
+ }
+ bool hasSelfCollision() const
+ {
+ return m_hasSelfCollision;
+ }
+
+private:
+ btMultiBody(const btMultiBody &); // not implemented
+ void operator=(const btMultiBody &); // not implemented
+
+ void compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const;
+
+ void solveImatrix(const btVector3& rhs_top, const btVector3& rhs_bot, float result[6]) const;
+
+
+private:
+
+ btMultiBodyLinkCollider* m_baseCollider;//can be NULL
+
+ btVector3 base_pos; // position of COM of base (world frame)
+ btQuaternion base_quat; // rotates world points into base frame
+
+ btScalar base_mass; // mass of the base
+ btVector3 base_inertia; // inertia of the base (in local frame; diagonal)
+
+ btVector3 base_force; // external force applied to base. World frame.
+ btVector3 base_torque; // external torque applied to base. World frame.
+
+ btAlignedObjectArray<btMultibodyLink> links; // array of links, excluding the base. index from 0 to num_links-1.
+ btAlignedObjectArray<btMultiBodyLinkCollider*> m_colliders;
+
+ //
+ // real_buf:
+ // offset size array
+ // 0 6 + num_links v (base_omega; base_vel; joint_vels)
+ // 6+num_links num_links D
+ //
+ // vector_buf:
+ // offset size array
+ // 0 num_links h_top
+ // num_links num_links h_bottom
+ //
+ // matrix_buf:
+ // offset size array
+ // 0 num_links+1 rot_from_parent
+ //
+
+ btAlignedObjectArray<btScalar> m_real_buf;
+ btAlignedObjectArray<btVector3> vector_buf;
+ btAlignedObjectArray<btMatrix3x3> matrix_buf;
+
+ //std::auto_ptr<Eigen::LU<Eigen::Matrix<btScalar, 6, 6> > > cached_imatrix_lu;
+
+ btMatrix3x3 cached_inertia_top_left;
+ btMatrix3x3 cached_inertia_top_right;
+ btMatrix3x3 cached_inertia_lower_left;
+ btMatrix3x3 cached_inertia_lower_right;
+
+ bool fixed_base;
+
+ // Sleep parameters.
+ bool awake;
+ bool can_sleep;
+ btScalar sleep_timer;
+
+ int m_companionId;
+ btScalar m_linearDamping;
+ btScalar m_angularDamping;
+ bool m_useGyroTerm;
+ btScalar m_maxAppliedImpulse;
+ bool m_hasSelfCollision;
+};
+
+#endif
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
new file mode 100644
index 00000000000..44e04c3a132
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
@@ -0,0 +1,527 @@
+#include "btMultiBodyConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+
+btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral)
+ :m_bodyA(bodyA),
+ m_bodyB(bodyB),
+ m_linkA(linkA),
+ m_linkB(linkB),
+ m_num_rows(numRows),
+ m_isUnilateral(isUnilateral),
+ m_maxAppliedImpulse(100)
+{
+ m_jac_size_A = (6 + bodyA->getNumLinks());
+ m_jac_size_both = (m_jac_size_A + (bodyB ? 6 + bodyB->getNumLinks() : 0));
+ m_pos_offset = ((1 + m_jac_size_both)*m_num_rows);
+ m_data.resize((2 + m_jac_size_both) * m_num_rows);
+}
+
+btMultiBodyConstraint::~btMultiBodyConstraint()
+{
+}
+
+
+
+btScalar btMultiBodyConstraint::fillConstraintRowMultiBodyMultiBody(btMultiBodySolverConstraint& constraintRow,
+ btMultiBodyJacobianData& data,
+ btScalar* jacOrgA,btScalar* jacOrgB,
+ const btContactSolverInfo& infoGlobal,
+ btScalar desiredVelocity,
+ btScalar lowerLimit,
+ btScalar upperLimit)
+{
+
+
+
+ constraintRow.m_multiBodyA = m_bodyA;
+ constraintRow.m_multiBodyB = m_bodyB;
+
+ btMultiBody* multiBodyA = constraintRow.m_multiBodyA;
+ btMultiBody* multiBodyB = constraintRow.m_multiBodyB;
+
+ if (multiBodyA)
+ {
+
+ const int ndofA = multiBodyA->getNumLinks() + 6;
+
+ constraintRow.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (constraintRow.m_deltaVelAindex <0)
+ {
+ constraintRow.m_deltaVelAindex = data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(constraintRow.m_deltaVelAindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(data.m_deltaVelocities.size() >= constraintRow.m_deltaVelAindex+ndofA);
+ }
+
+ constraintRow.m_jacAindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+ for (int i=0;i<ndofA;i++)
+ data.m_jacobians[constraintRow.m_jacAindex+i] = jacOrgA[i];
+
+ btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
+ multiBodyA->calcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacAindex],delta,data.scratch_r, data.scratch_v);
+ }
+
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+
+ constraintRow.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (constraintRow.m_deltaVelBindex <0)
+ {
+ constraintRow.m_deltaVelBindex = data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(constraintRow.m_deltaVelBindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
+ }
+
+ constraintRow.m_jacBindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
+
+ for (int i=0;i<ndofB;i++)
+ data.m_jacobians[constraintRow.m_jacBindex+i] = jacOrgB[i];
+
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+ multiBodyB->calcAccelerationDeltas(&data.m_jacobians[constraintRow.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex],data.scratch_r, data.scratch_v);
+ }
+ {
+
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* lambdaA =0;
+ btScalar* lambdaB =0;
+ int ndofA = 0;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ jacA = &data.m_jacobians[constraintRow.m_jacAindex];
+ lambdaA = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l =lambdaA[i];
+ denom0 += j*l;
+ }
+ }
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+ jacB = &data.m_jacobians[constraintRow.m_jacBindex];
+ lambdaB = &data.m_deltaVelocitiesUnitImpulse[constraintRow.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l =lambdaB[i];
+ denom1 += j*l;
+ }
+
+ }
+
+ if (multiBodyA && (multiBodyA==multiBodyB))
+ {
+ // ndof1 == ndof2 in this case
+ for (int i = 0; i < ndofA; ++i)
+ {
+ denom1 += jacB[i] * lambdaA[i];
+ denom1 += jacA[i] * lambdaB[i];
+ }
+ }
+
+ btScalar d = denom0+denom1;
+ if (btFabs(d)>SIMD_EPSILON)
+ {
+
+ constraintRow.m_jacDiagABInv = 1.f/(d);
+ } else
+ {
+ constraintRow.m_jacDiagABInv = 1.f;
+ }
+
+ }
+
+
+ //compute rhs and remaining constraintRow fields
+
+
+
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ btScalar* jacA = &data.m_jacobians[constraintRow.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumLinks() + 6;
+ btScalar* jacB = &data.m_jacobians[constraintRow.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ }
+
+ constraintRow.m_friction = 0.f;
+
+ constraintRow.m_appliedImpulse = 0.f;
+ constraintRow.m_appliedPushImpulse = 0.f;
+
+ btScalar velocityError = desiredVelocity - rel_vel;// * damping;
+
+ btScalar erp = infoGlobal.m_erp2;
+
+ btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv;
+
+ if (!infoGlobal.m_splitImpulse)
+ {
+ //combine position and velocity into rhs
+ constraintRow.m_rhs = velocityImpulse;
+ constraintRow.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ constraintRow.m_rhs = velocityImpulse;
+ constraintRow.m_rhsPenetration = 0.f;
+ }
+
+
+ constraintRow.m_cfm = 0.f;
+ constraintRow.m_lowerLimit = lowerLimit;
+ constraintRow.m_upperLimit = upperLimit;
+
+ }
+ return rel_vel;
+}
+
+
+void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
+{
+ for (int i = 0; i < ndof; ++i)
+ data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
+}
+
+
+void btMultiBodyConstraint::fillMultiBodyConstraintMixed(btMultiBodySolverConstraint& solverConstraint,
+ btMultiBodyJacobianData& data,
+ const btVector3& contactNormalOnB,
+ const btVector3& posAworld, const btVector3& posBworld,
+ btScalar position,
+ const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+
+ btVector3 rel_pos1 = posAworld;
+ btVector3 rel_pos2 = posBworld;
+
+ solverConstraint.m_multiBodyA = m_bodyA;
+ solverConstraint.m_multiBodyB = m_bodyB;
+ solverConstraint.m_linkA = m_linkA;
+ solverConstraint.m_linkB = m_linkB;
+
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ const btVector3& pos1 = posAworld;
+ const btVector3& pos2 = posBworld;
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
+ btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ if (bodyA)
+ rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+
+ relaxation = 1.f;
+
+ if (multiBodyA)
+ {
+ const int ndofA = multiBodyA->getNumLinks() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex <0)
+ {
+ solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
+ }
+
+ solverConstraint.m_jacAindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+
+ btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
+ multiBodyA->fillContactJacobian(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
+ btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
+ } else
+ {
+ btVector3 torqueAxis0 = rel_pos1.cross(contactNormalOnB);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = contactNormalOnB;
+ }
+
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex <0)
+ {
+ solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
+ }
+
+ solverConstraint.m_jacBindex = data.m_jacobians.size();
+
+ data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+
+ multiBodyB->fillContactJacobian(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
+ multiBodyB->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacBindex],&data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],data.scratch_r, data.scratch_v);
+ } else
+ {
+ btVector3 torqueAxis1 = rel_pos2.cross(contactNormalOnB);
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -contactNormalOnB;
+ }
+
+ {
+
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* lambdaA =0;
+ btScalar* lambdaB =0;
+ int ndofA = 0;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
+ lambdaA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l =lambdaA[i];
+ denom0 += j*l;
+ }
+ } else
+ {
+ if (rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + contactNormalOnB.dot(vec);
+ }
+ }
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+ jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
+ lambdaB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l =lambdaB[i];
+ denom1 += j*l;
+ }
+
+ } else
+ {
+ if (rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + contactNormalOnB.dot(vec);
+ }
+ }
+
+ if (multiBodyA && (multiBodyA==multiBodyB))
+ {
+ // ndof1 == ndof2 in this case
+ for (int i = 0; i < ndofA; ++i)
+ {
+ denom1 += jacB[i] * lambdaA[i];
+ denom1 += jacA[i] * lambdaB[i];
+ }
+ }
+
+ btScalar d = denom0+denom1;
+ if (btFabs(d)>SIMD_EPSILON)
+ {
+
+ solverConstraint.m_jacDiagABInv = relaxation/(d);
+ } else
+ {
+ solverConstraint.m_jacDiagABInv = 1.f;
+ }
+
+ }
+
+
+ //compute rhs and remaining solverConstraint fields
+
+
+
+ btScalar restitution = 0.f;
+ btScalar penetration = isFriction? 0 : position+infoGlobal.m_linearSlop;
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ } else
+ {
+ if (rb0)
+ {
+ rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
+ }
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumLinks() + 6;
+ btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ } else
+ {
+ if (rb1)
+ {
+ rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
+ }
+ }
+
+ solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
+
+
+ restitution = restitution * -rel_vel;//restitutionCurve(rel_vel, cp.m_combinedRestitution);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
+
+
+ ///warm starting (or zero if disabled)
+ /*
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+
+ if (solverConstraint.m_appliedImpulse)
+ {
+ if (multiBodyA)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
+ } else
+ {
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ }
+ if (multiBodyB)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ multiBodyB->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
+ } else
+ {
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
+ }
+ }
+ } else
+ */
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
+
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = restitution - rel_vel;// * damping;
+
+
+ btScalar erp = infoGlobal.m_erp2;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+
+ if (penetration>0)
+ {
+ positionalError = 0;
+ velocityError = -penetration / infoGlobal.m_timeStep;
+
+ } else
+ {
+ positionalError = -penetration * erp/infoGlobal.m_timeStep;
+ }
+
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = -m_maxAppliedImpulse;
+ solverConstraint.m_upperLimit = m_maxAppliedImpulse;
+ }
+
+}
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h
new file mode 100644
index 00000000000..9fa317330b3
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h
@@ -0,0 +1,166 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_CONSTRAINT_H
+#define BT_MULTIBODY_CONSTRAINT_H
+
+#include "LinearMath/btScalar.h"
+#include "LinearMath/btAlignedObjectArray.h"
+#include "btMultiBody.h"
+
+class btMultiBody;
+struct btSolverInfo;
+
+#include "btMultiBodySolverConstraint.h"
+
+struct btMultiBodyJacobianData
+{
+ btAlignedObjectArray<btScalar> m_jacobians;
+ btAlignedObjectArray<btScalar> m_deltaVelocitiesUnitImpulse;
+ btAlignedObjectArray<btScalar> m_deltaVelocities;
+ btAlignedObjectArray<btScalar> scratch_r;
+ btAlignedObjectArray<btVector3> scratch_v;
+ btAlignedObjectArray<btMatrix3x3> scratch_m;
+ btAlignedObjectArray<btSolverBody>* m_solverBodyPool;
+ int m_fixedBodyId;
+
+};
+
+
+class btMultiBodyConstraint
+{
+protected:
+
+ btMultiBody* m_bodyA;
+ btMultiBody* m_bodyB;
+ int m_linkA;
+ int m_linkB;
+
+ int m_num_rows;
+ int m_jac_size_A;
+ int m_jac_size_both;
+ int m_pos_offset;
+
+ bool m_isUnilateral;
+
+ btScalar m_maxAppliedImpulse;
+
+
+ // data block laid out as follows:
+ // cached impulses. (one per row.)
+ // jacobians. (interleaved, row1 body1 then row1 body2 then row2 body 1 etc)
+ // positions. (one per row.)
+ btAlignedObjectArray<btScalar> m_data;
+
+ void applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof);
+
+ void fillMultiBodyConstraintMixed(btMultiBodySolverConstraint& solverConstraint,
+ btMultiBodyJacobianData& data,
+ const btVector3& contactNormalOnB,
+ const btVector3& posAworld, const btVector3& posBworld,
+ btScalar position,
+ const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+ btScalar fillConstraintRowMultiBodyMultiBody(btMultiBodySolverConstraint& constraintRow,
+ btMultiBodyJacobianData& data,
+ btScalar* jacOrgA,btScalar* jacOrgB,
+ const btContactSolverInfo& infoGlobal,
+ btScalar desiredVelocity,
+ btScalar lowerLimit,
+ btScalar upperLimit);
+
+public:
+
+ btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral);
+ virtual ~btMultiBodyConstraint();
+
+
+
+ virtual int getIslandIdA() const =0;
+ virtual int getIslandIdB() const =0;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)=0;
+
+ int getNumRows() const
+ {
+ return m_num_rows;
+ }
+
+ btMultiBody* getMultiBodyA()
+ {
+ return m_bodyA;
+ }
+ btMultiBody* getMultiBodyB()
+ {
+ return m_bodyB;
+ }
+
+ // current constraint position
+ // constraint is pos >= 0 for unilateral, or pos = 0 for bilateral
+ // NOTE: ignored position for friction rows.
+ btScalar getPosition(int row) const
+ {
+ return m_data[m_pos_offset + row];
+ }
+
+ void setPosition(int row, btScalar pos)
+ {
+ m_data[m_pos_offset + row] = pos;
+ }
+
+
+ bool isUnilateral() const
+ {
+ return m_isUnilateral;
+ }
+
+ // jacobian blocks.
+ // each of size 6 + num_links. (jacobian2 is null if no body2.)
+ // format: 3 'omega' coefficients, 3 'v' coefficients, then the 'qdot' coefficients.
+ btScalar* jacobianA(int row)
+ {
+ return &m_data[m_num_rows + row * m_jac_size_both];
+ }
+ const btScalar* jacobianA(int row) const
+ {
+ return &m_data[m_num_rows + (row * m_jac_size_both)];
+ }
+ btScalar* jacobianB(int row)
+ {
+ return &m_data[m_num_rows + (row * m_jac_size_both) + m_jac_size_A];
+ }
+ const btScalar* jacobianB(int row) const
+ {
+ return &m_data[m_num_rows + (row * m_jac_size_both) + m_jac_size_A];
+ }
+
+ btScalar getMaxAppliedImpulse() const
+ {
+ return m_maxAppliedImpulse;
+ }
+ void setMaxAppliedImpulse(btScalar maxImp)
+ {
+ m_maxAppliedImpulse = maxImp;
+ }
+
+
+};
+
+#endif //BT_MULTIBODY_CONSTRAINT_H
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
new file mode 100644
index 00000000000..577f846225b
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
@@ -0,0 +1,795 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btMultiBodyConstraintSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+#include "btMultiBodyLinkCollider.h"
+
+#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
+#include "btMultiBodyConstraint.h"
+#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
+
+#include "LinearMath/btQuickprof.h"
+
+btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ btScalar val = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ //solve featherstone non-contact constraints
+
+ //printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
+ for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
+ {
+ btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[j];
+ //if (iteration < constraint.m_overrideNumSolverIterations)
+ //resolveSingleConstraintRowGenericMultiBody(constraint);
+ resolveSingleConstraintRowGeneric(constraint);
+ }
+
+ //solve featherstone normal contact
+ for (int j=0;j<m_multiBodyNormalContactConstraints.size();j++)
+ {
+ btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[j];
+ if (iteration < infoGlobal.m_numIterations)
+ resolveSingleConstraintRowGeneric(constraint);
+ }
+
+ //solve featherstone frictional contact
+
+ for (int j=0;j<this->m_multiBodyFrictionContactConstraints.size();j++)
+ {
+ if (iteration < infoGlobal.m_numIterations)
+ {
+ btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[j];
+ btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
+ //adjust friction limits here
+ if (totalImpulse>btScalar(0))
+ {
+ frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
+ frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
+ resolveSingleConstraintRowGeneric(frictionConstraint);
+ }
+ }
+ }
+ return val;
+}
+
+btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ m_multiBodyNonContactConstraints.resize(0);
+ m_multiBodyNormalContactConstraints.resize(0);
+ m_multiBodyFrictionContactConstraints.resize(0);
+ m_data.m_jacobians.resize(0);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(0);
+ m_data.m_deltaVelocities.resize(0);
+
+ for (int i=0;i<numBodies;i++)
+ {
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
+ if (fcA)
+ {
+ fcA->m_multiBody->setCompanionId(-1);
+ }
+ }
+
+ btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
+
+ return val;
+}
+
+void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
+{
+ for (int i = 0; i < ndof; ++i)
+ m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
+}
+
+void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
+{
+
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaVelADotn=0;
+ btScalar deltaVelBDotn=0;
+ btSolverBody* bodyA = 0;
+ btSolverBody* bodyB = 0;
+ int ndofA=0;
+ int ndofB=0;
+
+ if (c.m_multiBodyA)
+ {
+ ndofA = c.m_multiBodyA->getNumLinks() + 6;
+ for (int i = 0; i < ndofA; ++i)
+ deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
+ } else
+ {
+ bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
+ deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
+ }
+
+ if (c.m_multiBodyB)
+ {
+ ndofB = c.m_multiBodyB->getNumLinks() + 6;
+ for (int i = 0; i < ndofB; ++i)
+ deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
+ } else
+ {
+ bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
+ deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
+ }
+
+
+ deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
+ deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+
+ if (c.m_multiBodyA)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
+ c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
+ } else
+ {
+ bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+
+ }
+ if (c.m_multiBodyB)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
+ c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
+ } else
+ {
+ bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ }
+
+}
+
+
+void btMultiBodyConstraintSolver::resolveSingleConstraintRowGenericMultiBody(const btMultiBodySolverConstraint& c)
+{
+
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaVelADotn=0;
+ btScalar deltaVelBDotn=0;
+ int ndofA=0;
+ int ndofB=0;
+
+ if (c.m_multiBodyA)
+ {
+ ndofA = c.m_multiBodyA->getNumLinks() + 6;
+ for (int i = 0; i < ndofA; ++i)
+ deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
+ }
+
+ if (c.m_multiBodyB)
+ {
+ ndofB = c.m_multiBodyB->getNumLinks() + 6;
+ for (int i = 0; i < ndofB; ++i)
+ deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
+ }
+
+
+ deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
+ deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+
+ if (c.m_multiBodyA)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
+ c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
+ }
+ if (c.m_multiBodyB)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
+ c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
+ }
+}
+
+
+void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& contactNormal,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+ BT_PROFILE("setupMultiBodyContactConstraint");
+ btVector3 rel_pos1;
+ btVector3 rel_pos2;
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
+ btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ if (bodyA)
+ rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+
+ relaxation = 1.f;
+
+ if (multiBodyA)
+ {
+ const int ndofA = multiBodyA->getNumLinks() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex <0)
+ {
+ solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
+ }
+
+ solverConstraint.m_jacAindex = m_data.m_jacobians.size();
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
+ multiBodyA->fillContactJacobian(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
+ } else
+ {
+ btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = contactNormal;
+ }
+
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex <0)
+ {
+ solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
+ }
+
+ solverConstraint.m_jacBindex = m_data.m_jacobians.size();
+
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ multiBodyB->fillContactJacobian(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ multiBodyB->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
+ } else
+ {
+ btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -contactNormal;
+ }
+
+ {
+
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* lambdaA =0;
+ btScalar* lambdaB =0;
+ int ndofA = 0;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l =lambdaA[i];
+ denom0 += j*l;
+ }
+ } else
+ {
+ if (rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + contactNormal.dot(vec);
+ }
+ }
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumLinks() + 6;
+ jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l =lambdaB[i];
+ denom1 += j*l;
+ }
+
+ } else
+ {
+ if (rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + contactNormal.dot(vec);
+ }
+ }
+
+ if (multiBodyA && (multiBodyA==multiBodyB))
+ {
+ // ndof1 == ndof2 in this case
+ for (int i = 0; i < ndofA; ++i)
+ {
+ denom1 += jacB[i] * lambdaA[i];
+ denom1 += jacA[i] * lambdaB[i];
+ }
+ }
+
+ btScalar d = denom0+denom1;
+ if (btFabs(d)>SIMD_EPSILON)
+ {
+
+ solverConstraint.m_jacDiagABInv = relaxation/(d);
+ } else
+ {
+ solverConstraint.m_jacDiagABInv = 1.f;
+ }
+
+ }
+
+
+ //compute rhs and remaining solverConstraint fields
+
+
+
+ btScalar restitution = 0.f;
+ btScalar penetration = isFriction? 0 : cp.getDistance()+infoGlobal.m_linearSlop;
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumLinks() + 6;
+ btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ } else
+ {
+ if (rb0)
+ {
+ rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
+ }
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumLinks() + 6;
+ btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ } else
+ {
+ if (rb1)
+ {
+ rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
+ }
+ }
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+
+
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
+
+
+ ///warm starting (or zero if disabled)
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+
+ if (solverConstraint.m_appliedImpulse)
+ {
+ if (multiBodyA)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
+ } else
+ {
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ }
+ if (multiBodyB)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ multiBodyB->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
+ } else
+ {
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
+ }
+ }
+ } else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
+
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = restitution - rel_vel;// * damping;
+
+
+ btScalar erp = infoGlobal.m_erp2;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+
+ if (penetration>0)
+ {
+ positionalError = 0;
+ velocityError = -penetration / infoGlobal.m_timeStep;
+
+ } else
+ {
+ positionalError = -penetration * erp/infoGlobal.m_timeStep;
+ }
+
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
+
+}
+
+
+
+
+btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ BT_PROFILE("addMultiBodyFrictionConstraint");
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
+ solverConstraint.m_frictionIndex = frictionIndex;
+ bool isFriction = true;
+
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
+{
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ btCollisionObject* colObj0=0,*colObj1=0;
+
+ colObj0 = (btCollisionObject*)manifold->getBody0();
+ colObj1 = (btCollisionObject*)manifold->getBody1();
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+ btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
+
+
+ ///avoid collision response between two static objects
+// if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
+ // return;
+
+ int rollingFriction=1;
+
+ for (int j=0;j<manifold->getNumContacts();j++)
+ {
+
+ btManifoldPoint& cp = manifold->getContactPoint(j);
+
+ if (cp.getDistance() <= manifold->getContactProcessingThreshold())
+ {
+
+ btScalar relaxation;
+
+ int frictionIndex = m_multiBodyNormalContactConstraints.size();
+
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
+
+ btRigidBody* rb0 = btRigidBody::upcast(colObj0);
+ btRigidBody* rb1 = btRigidBody::upcast(colObj1);
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ bool isFriction = false;
+ setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
+
+// const btVector3& pos1 = cp.getPositionWorldOnA();
+// const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ /////setup the friction constraints
+#define ENABLE_FRICTION
+#ifdef ENABLE_FRICTION
+ solverConstraint.m_frictionIndex = frictionIndex;
+#if ROLLING_FRICTION
+ btVector3 angVelA(0,0,0),angVelB(0,0,0);
+ if (rb0)
+ angVelA = rb0->getAngularVelocity();
+ if (rb1)
+ angVelB = rb1->getAngularVelocity();
+ btVector3 relAngVel = angVelB-angVelA;
+
+ if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
+ {
+ //only a single rollingFriction per manifold
+ rollingFriction--;
+ if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold)
+ {
+ relAngVel.normalize();
+ applyAnisotropicFriction(colObj0,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ if (relAngVel.length()>0.001)
+ addRollingFrictionConstraint(relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ } else
+ {
+ addRollingFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ btVector3 axis0,axis1;
+ btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
+ applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ if (axis0.length()>0.001)
+ addRollingFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ if (axis1.length()>0.001)
+ addRollingFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ }
+ }
+#endif //ROLLING_FRICTION
+
+ ///Bullet has several options to set the friction directions
+ ///By default, each contact has only a single friction direction that is recomputed automatically very frame
+ ///based on the relative linear velocity.
+ ///If the relative velocity it zero, it will automatically compute a friction direction.
+
+ ///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
+ ///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
+ ///
+ ///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
+ ///
+ ///The user can manually override the friction directions for certain contacts using a contact callback,
+ ///and set the cp.m_lateralFrictionInitialized to true
+ ///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
+ ///this will give a conveyor belt effect
+ ///
+ if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
+ {/*
+ cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
+ btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
+ if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
+ {
+ cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
+ if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
+ cp.m_lateralFrictionDir2.normalize();//??
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ } else
+ */
+ {
+ btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
+ {
+ cp.m_lateralFrictionInitialized = true;
+ }
+ }
+
+ } else
+ {
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_contactCFM1);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_contactCFM2);
+
+ //setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
+ //todo:
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+ }
+
+
+#endif //ENABLE_FRICTION
+
+ }
+ }
+}
+
+void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
+{
+ btPersistentManifold* manifold = 0;
+
+ for (int i=0;i<numManifolds;i++)
+ {
+ btPersistentManifold* manifold= manifoldPtr[i];
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+ if (!fcA && !fcB)
+ {
+ //the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
+ convertContact(manifold,infoGlobal);
+ } else
+ {
+ convertMultiBodyContact(manifold,infoGlobal);
+ }
+ }
+
+ //also convert the multibody constraints, if any
+
+
+ for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
+ {
+ btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
+ m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
+ m_data.m_fixedBodyId = m_fixedBodyId;
+
+ c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
+ }
+
+}
+
+
+
+btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
+{
+ return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
+}
+
+
+void btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
+{
+ //printf("solveMultiBodyGroup start\n");
+ m_tmpMultiBodyConstraints = multiBodyConstraints;
+ m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
+
+ btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
+
+ m_tmpMultiBodyConstraints = 0;
+ m_tmpNumMultiBodyConstraints = 0;
+
+
+}
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h
new file mode 100644
index 00000000000..0f4cd69c029
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h
@@ -0,0 +1,85 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_CONSTRAINT_SOLVER_H
+#define BT_MULTIBODY_CONSTRAINT_SOLVER_H
+
+#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
+#include "btMultiBodySolverConstraint.h"
+
+
+class btMultiBody;
+
+#include "btMultiBodyConstraint.h"
+
+
+
+ATTRIBUTE_ALIGNED16(class) btMultiBodyConstraintSolver : public btSequentialImpulseConstraintSolver
+{
+
+protected:
+
+ btMultiBodyConstraintArray m_multiBodyNonContactConstraints;
+
+ btMultiBodyConstraintArray m_multiBodyNormalContactConstraints;
+ btMultiBodyConstraintArray m_multiBodyFrictionContactConstraints;
+
+ btMultiBodyJacobianData m_data;
+
+ //temp storage for multi body constraints for a specific island/group called by 'solveGroup'
+ btMultiBodyConstraint** m_tmpMultiBodyConstraints;
+ int m_tmpNumMultiBodyConstraints;
+
+ void resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c);
+ void resolveSingleConstraintRowGenericMultiBody(const btMultiBodySolverConstraint& c);
+
+ void convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal);
+ btMultiBodySolverConstraint& addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+
+ void setupMultiBodyJointLimitConstraint(btMultiBodySolverConstraint& constraintRow,
+ btScalar* jacA,btScalar* jacB,
+ btScalar penetration,btScalar combinedFrictionCoeff, btScalar combinedRestitutionCoeff,
+ const btContactSolverInfo& infoGlobal);
+
+ void setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& contactNormal,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+ void convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+// virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+
+ virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ void applyDeltaVee(btScalar* deltaV, btScalar impulse, int velocityIndex, int ndof);
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ ///this method should not be called, it was just used during porting/integration of Featherstone btMultiBody, providing backwards compatibility but no support for btMultiBodyConstraint (only contact constraints)
+ virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
+
+ virtual void solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
+};
+
+
+
+
+
+#endif //BT_MULTIBODY_CONSTRAINT_SOLVER_H
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp
new file mode 100644
index 00000000000..0910f8f6abb
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp
@@ -0,0 +1,578 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btMultiBodyDynamicsWorld.h"
+#include "btMultiBodyConstraintSolver.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
+#include "LinearMath/btQuickprof.h"
+#include "btMultiBodyConstraint.h"
+
+
+
+
+void btMultiBodyDynamicsWorld::addMultiBody(btMultiBody* body, short group, short mask)
+{
+ m_multiBodies.push_back(body);
+
+}
+
+void btMultiBodyDynamicsWorld::removeMultiBody(btMultiBody* body)
+{
+ m_multiBodies.remove(body);
+}
+
+void btMultiBodyDynamicsWorld::calculateSimulationIslands()
+{
+ BT_PROFILE("calculateSimulationIslands");
+
+ getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher());
+
+ {
+ //merge islands based on speculative contact manifolds too
+ for (int i=0;i<this->m_predictiveManifolds.size();i++)
+ {
+ btPersistentManifold* manifold = m_predictiveManifolds[i];
+
+ const btCollisionObject* colObj0 = manifold->getBody0();
+ const btCollisionObject* colObj1 = manifold->getBody1();
+
+ if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
+ ((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
+ {
+ getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
+ }
+ }
+ }
+
+ {
+ int i;
+ int numConstraints = int(m_constraints.size());
+ for (i=0;i< numConstraints ; i++ )
+ {
+ btTypedConstraint* constraint = m_constraints[i];
+ if (constraint->isEnabled())
+ {
+ const btRigidBody* colObj0 = &constraint->getRigidBodyA();
+ const btRigidBody* colObj1 = &constraint->getRigidBodyB();
+
+ if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
+ ((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
+ {
+ getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
+ }
+ }
+ }
+ }
+
+ //merge islands linked by Featherstone link colliders
+ for (int i=0;i<m_multiBodies.size();i++)
+ {
+ btMultiBody* body = m_multiBodies[i];
+ {
+ btMultiBodyLinkCollider* prev = body->getBaseCollider();
+
+ for (int b=0;b<body->getNumLinks();b++)
+ {
+ btMultiBodyLinkCollider* cur = body->getLink(b).m_collider;
+
+ if (((cur) && (!(cur)->isStaticOrKinematicObject())) &&
+ ((prev) && (!(prev)->isStaticOrKinematicObject())))
+ {
+ int tagPrev = prev->getIslandTag();
+ int tagCur = cur->getIslandTag();
+ getSimulationIslandManager()->getUnionFind().unite(tagPrev, tagCur);
+ }
+ if (cur && !cur->isStaticOrKinematicObject())
+ prev = cur;
+
+ }
+ }
+ }
+
+ //merge islands linked by multibody constraints
+ {
+ for (int i=0;i<this->m_multiBodyConstraints.size();i++)
+ {
+ btMultiBodyConstraint* c = m_multiBodyConstraints[i];
+ int tagA = c->getIslandIdA();
+ int tagB = c->getIslandIdB();
+ if (tagA>=0 && tagB>=0)
+ getSimulationIslandManager()->getUnionFind().unite(tagA, tagB);
+ }
+ }
+
+ //Store the island id in each body
+ getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld());
+
+}
+
+
+void btMultiBodyDynamicsWorld::updateActivationState(btScalar timeStep)
+{
+ BT_PROFILE("btMultiBodyDynamicsWorld::updateActivationState");
+
+
+
+ for ( int i=0;i<m_multiBodies.size();i++)
+ {
+ btMultiBody* body = m_multiBodies[i];
+ if (body)
+ {
+ body->checkMotionAndSleepIfRequired(timeStep);
+ if (!body->isAwake())
+ {
+ btMultiBodyLinkCollider* col = body->getBaseCollider();
+ if (col && col->getActivationState() == ACTIVE_TAG)
+ {
+ col->setActivationState( WANTS_DEACTIVATION);
+ col->setDeactivationTime(0.f);
+ }
+ for (int b=0;b<body->getNumLinks();b++)
+ {
+ btMultiBodyLinkCollider* col = body->getLink(b).m_collider;
+ if (col && col->getActivationState() == ACTIVE_TAG)
+ {
+ col->setActivationState( WANTS_DEACTIVATION);
+ col->setDeactivationTime(0.f);
+ }
+ }
+ } else
+ {
+ btMultiBodyLinkCollider* col = body->getBaseCollider();
+ if (col && col->getActivationState() != DISABLE_DEACTIVATION)
+ col->setActivationState( ACTIVE_TAG );
+
+ for (int b=0;b<body->getNumLinks();b++)
+ {
+ btMultiBodyLinkCollider* col = body->getLink(b).m_collider;
+ if (col && col->getActivationState() != DISABLE_DEACTIVATION)
+ col->setActivationState( ACTIVE_TAG );
+ }
+ }
+
+ }
+ }
+
+ btDiscreteDynamicsWorld::updateActivationState(timeStep);
+}
+
+
+SIMD_FORCE_INLINE int btGetConstraintIslandId2(const btTypedConstraint* lhs)
+{
+ int islandId;
+
+ const btCollisionObject& rcolObj0 = lhs->getRigidBodyA();
+ const btCollisionObject& rcolObj1 = lhs->getRigidBodyB();
+ islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag();
+ return islandId;
+
+}
+
+
+class btSortConstraintOnIslandPredicate2
+{
+ public:
+
+ bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs ) const
+ {
+ int rIslandId0,lIslandId0;
+ rIslandId0 = btGetConstraintIslandId2(rhs);
+ lIslandId0 = btGetConstraintIslandId2(lhs);
+ return lIslandId0 < rIslandId0;
+ }
+};
+
+
+
+SIMD_FORCE_INLINE int btGetMultiBodyConstraintIslandId(const btMultiBodyConstraint* lhs)
+{
+ int islandId;
+
+ int islandTagA = lhs->getIslandIdA();
+ int islandTagB = lhs->getIslandIdB();
+ islandId= islandTagA>=0?islandTagA:islandTagB;
+ return islandId;
+
+}
+
+
+class btSortMultiBodyConstraintOnIslandPredicate
+{
+ public:
+
+ bool operator() ( const btMultiBodyConstraint* lhs, const btMultiBodyConstraint* rhs ) const
+ {
+ int rIslandId0,lIslandId0;
+ rIslandId0 = btGetMultiBodyConstraintIslandId(rhs);
+ lIslandId0 = btGetMultiBodyConstraintIslandId(lhs);
+ return lIslandId0 < rIslandId0;
+ }
+};
+
+struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
+{
+ btContactSolverInfo* m_solverInfo;
+ btMultiBodyConstraintSolver* m_solver;
+ btMultiBodyConstraint** m_multiBodySortedConstraints;
+ int m_numMultiBodyConstraints;
+
+ btTypedConstraint** m_sortedConstraints;
+ int m_numConstraints;
+ btIDebugDraw* m_debugDrawer;
+ btDispatcher* m_dispatcher;
+
+ btAlignedObjectArray<btCollisionObject*> m_bodies;
+ btAlignedObjectArray<btPersistentManifold*> m_manifolds;
+ btAlignedObjectArray<btTypedConstraint*> m_constraints;
+ btAlignedObjectArray<btMultiBodyConstraint*> m_multiBodyConstraints;
+
+
+ MultiBodyInplaceSolverIslandCallback( btMultiBodyConstraintSolver* solver,
+ btDispatcher* dispatcher)
+ :m_solverInfo(NULL),
+ m_solver(solver),
+ m_multiBodySortedConstraints(NULL),
+ m_numConstraints(0),
+ m_debugDrawer(NULL),
+ m_dispatcher(dispatcher)
+ {
+
+ }
+
+ MultiBodyInplaceSolverIslandCallback& operator=(MultiBodyInplaceSolverIslandCallback& other)
+ {
+ btAssert(0);
+ (void)other;
+ return *this;
+ }
+
+ SIMD_FORCE_INLINE void setup ( btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btMultiBodyConstraint** sortedMultiBodyConstraints, int numMultiBodyConstraints, btIDebugDraw* debugDrawer)
+ {
+ btAssert(solverInfo);
+ m_solverInfo = solverInfo;
+
+ m_multiBodySortedConstraints = sortedMultiBodyConstraints;
+ m_numMultiBodyConstraints = numMultiBodyConstraints;
+ m_sortedConstraints = sortedConstraints;
+ m_numConstraints = numConstraints;
+
+ m_debugDrawer = debugDrawer;
+ m_bodies.resize (0);
+ m_manifolds.resize (0);
+ m_constraints.resize (0);
+ m_multiBodyConstraints.resize(0);
+ }
+
+
+ virtual void processIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId)
+ {
+ if (islandId<0)
+ {
+ ///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
+ m_solver->solveMultiBodyGroup( bodies,numBodies,manifolds, numManifolds,m_sortedConstraints, m_numConstraints, &m_multiBodySortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
+ } else
+ {
+ //also add all non-contact constraints/joints for this island
+ btTypedConstraint** startConstraint = 0;
+ btMultiBodyConstraint** startMultiBodyConstraint = 0;
+
+ int numCurConstraints = 0;
+ int numCurMultiBodyConstraints = 0;
+
+ int i;
+
+ //find the first constraint for this island
+
+ for (i=0;i<m_numConstraints;i++)
+ {
+ if (btGetConstraintIslandId2(m_sortedConstraints[i]) == islandId)
+ {
+ startConstraint = &m_sortedConstraints[i];
+ break;
+ }
+ }
+ //count the number of constraints in this island
+ for (;i<m_numConstraints;i++)
+ {
+ if (btGetConstraintIslandId2(m_sortedConstraints[i]) == islandId)
+ {
+ numCurConstraints++;
+ }
+ }
+
+ for (i=0;i<m_numMultiBodyConstraints;i++)
+ {
+ if (btGetMultiBodyConstraintIslandId(m_multiBodySortedConstraints[i]) == islandId)
+ {
+
+ startMultiBodyConstraint = &m_multiBodySortedConstraints[i];
+ break;
+ }
+ }
+ //count the number of multi body constraints in this island
+ for (;i<m_numMultiBodyConstraints;i++)
+ {
+ if (btGetMultiBodyConstraintIslandId(m_multiBodySortedConstraints[i]) == islandId)
+ {
+ numCurMultiBodyConstraints++;
+ }
+ }
+
+ if (m_solverInfo->m_minimumSolverBatchSize<=1)
+ {
+ m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
+ } else
+ {
+
+ for (i=0;i<numBodies;i++)
+ m_bodies.push_back(bodies[i]);
+ for (i=0;i<numManifolds;i++)
+ m_manifolds.push_back(manifolds[i]);
+ for (i=0;i<numCurConstraints;i++)
+ m_constraints.push_back(startConstraint[i]);
+
+ for (i=0;i<numCurMultiBodyConstraints;i++)
+ m_multiBodyConstraints.push_back(startMultiBodyConstraint[i]);
+
+ if ((m_constraints.size()+m_manifolds.size())>m_solverInfo->m_minimumSolverBatchSize)
+ {
+ processConstraints();
+ } else
+ {
+ //printf("deferred\n");
+ }
+ }
+ }
+ }
+ void processConstraints()
+ {
+
+ btCollisionObject** bodies = m_bodies.size()? &m_bodies[0]:0;
+ btPersistentManifold** manifold = m_manifolds.size()?&m_manifolds[0]:0;
+ btTypedConstraint** constraints = m_constraints.size()?&m_constraints[0]:0;
+ btMultiBodyConstraint** multiBodyConstraints = m_multiBodyConstraints.size() ? &m_multiBodyConstraints[0] : 0;
+
+ m_solver->solveMultiBodyGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,multiBodyConstraints, m_multiBodyConstraints.size(), *m_solverInfo,m_debugDrawer,m_dispatcher);
+ m_bodies.resize(0);
+ m_manifolds.resize(0);
+ m_constraints.resize(0);
+ m_multiBodyConstraints.resize(0);
+ }
+
+};
+
+
+
+btMultiBodyDynamicsWorld::btMultiBodyDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btMultiBodyConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration)
+ :btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration),
+ m_multiBodyConstraintSolver(constraintSolver)
+{
+ //split impulse is not yet supported for Featherstone hierarchies
+ getSolverInfo().m_splitImpulse = false;
+ getSolverInfo().m_solverMode |=SOLVER_USE_2_FRICTION_DIRECTIONS;
+ m_solverMultiBodyIslandCallback = new MultiBodyInplaceSolverIslandCallback(constraintSolver,dispatcher);
+}
+
+btMultiBodyDynamicsWorld::~btMultiBodyDynamicsWorld ()
+{
+ delete m_solverMultiBodyIslandCallback;
+}
+
+
+
+
+void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
+{
+
+ btAlignedObjectArray<btScalar> scratch_r;
+ btAlignedObjectArray<btVector3> scratch_v;
+ btAlignedObjectArray<btMatrix3x3> scratch_m;
+
+
+ BT_PROFILE("solveConstraints");
+
+ m_sortedConstraints.resize( m_constraints.size());
+ int i;
+ for (i=0;i<getNumConstraints();i++)
+ {
+ m_sortedConstraints[i] = m_constraints[i];
+ }
+ m_sortedConstraints.quickSort(btSortConstraintOnIslandPredicate2());
+ btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0;
+
+ m_sortedMultiBodyConstraints.resize(m_multiBodyConstraints.size());
+ for (i=0;i<m_multiBodyConstraints.size();i++)
+ {
+ m_sortedMultiBodyConstraints[i] = m_multiBodyConstraints[i];
+ }
+ m_sortedMultiBodyConstraints.quickSort(btSortMultiBodyConstraintOnIslandPredicate());
+
+ btMultiBodyConstraint** sortedMultiBodyConstraints = m_sortedMultiBodyConstraints.size() ? &m_sortedMultiBodyConstraints[0] : 0;
+
+
+ m_solverMultiBodyIslandCallback->setup(&solverInfo,constraintsPtr,m_sortedConstraints.size(),sortedMultiBodyConstraints,m_sortedMultiBodyConstraints.size(), getDebugDrawer());
+ m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds());
+
+ /// solve all the constraints for this island
+ m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),m_solverMultiBodyIslandCallback);
+
+
+ {
+ BT_PROFILE("btMultiBody addForce and stepVelocities");
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+
+ bool isSleeping = false;
+
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+ if (!isSleeping)
+ {
+ scratch_r.resize(bod->getNumLinks()+1);
+ scratch_v.resize(bod->getNumLinks()+1);
+ scratch_m.resize(bod->getNumLinks()+1);
+
+ bod->clearForcesAndTorques();
+ bod->addBaseForce(m_gravity * bod->getBaseMass());
+
+ for (int j = 0; j < bod->getNumLinks(); ++j)
+ {
+ bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
+ }
+
+ bod->stepVelocities(solverInfo.m_timeStep, scratch_r, scratch_v, scratch_m);
+ }
+ }
+ }
+
+ m_solverMultiBodyIslandCallback->processConstraints();
+
+ m_constraintSolver->allSolved(solverInfo, m_debugDrawer);
+
+}
+
+void btMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
+{
+ btDiscreteDynamicsWorld::integrateTransforms(timeStep);
+
+ {
+ BT_PROFILE("btMultiBody stepPositions");
+ //integrate and update the Featherstone hierarchies
+ btAlignedObjectArray<btQuaternion> world_to_local;
+ btAlignedObjectArray<btVector3> local_origin;
+
+ for (int b=0;b<m_multiBodies.size();b++)
+ {
+ btMultiBody* bod = m_multiBodies[b];
+ bool isSleeping = false;
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+
+ if (!isSleeping)
+ {
+ int nLinks = bod->getNumLinks();
+
+ ///base + num links
+ world_to_local.resize(nLinks+1);
+ local_origin.resize(nLinks+1);
+
+ bod->stepPositions(timeStep);
+
+
+
+ world_to_local[0] = bod->getWorldToBaseRot();
+ local_origin[0] = bod->getBasePos();
+
+ if (bod->getBaseCollider())
+ {
+ btVector3 posr = local_origin[0];
+ float pos[4]={posr.x(),posr.y(),posr.z(),1};
+ float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
+ btTransform tr;
+ tr.setIdentity();
+ tr.setOrigin(posr);
+ tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
+
+ bod->getBaseCollider()->setWorldTransform(tr);
+
+ }
+
+ for (int k=0;k<bod->getNumLinks();k++)
+ {
+ const int parent = bod->getParent(k);
+ world_to_local[k+1] = bod->getParentToLocalRot(k) * world_to_local[parent+1];
+ local_origin[k+1] = local_origin[parent+1] + (quatRotate(world_to_local[k+1].inverse() , bod->getRVector(k)));
+ }
+
+
+ for (int m=0;m<bod->getNumLinks();m++)
+ {
+ btMultiBodyLinkCollider* col = bod->getLink(m).m_collider;
+ if (col)
+ {
+ int link = col->m_link;
+ btAssert(link == m);
+
+ int index = link+1;
+
+ btVector3 posr = local_origin[index];
+ float pos[4]={posr.x(),posr.y(),posr.z(),1};
+ float quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
+ btTransform tr;
+ tr.setIdentity();
+ tr.setOrigin(posr);
+ tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
+
+ col->setWorldTransform(tr);
+ }
+ }
+ } else
+ {
+ bod->clearVelocities();
+ }
+ }
+ }
+}
+
+
+
+void btMultiBodyDynamicsWorld::addMultiBodyConstraint( btMultiBodyConstraint* constraint)
+{
+ m_multiBodyConstraints.push_back(constraint);
+}
+
+void btMultiBodyDynamicsWorld::removeMultiBodyConstraint( btMultiBodyConstraint* constraint)
+{
+ m_multiBodyConstraints.remove(constraint);
+}
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h
new file mode 100644
index 00000000000..ad57a346dcc
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h
@@ -0,0 +1,56 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_DYNAMICS_WORLD_H
+#define BT_MULTIBODY_DYNAMICS_WORLD_H
+
+#include "BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h"
+
+
+class btMultiBody;
+class btMultiBodyConstraint;
+class btMultiBodyConstraintSolver;
+struct MultiBodyInplaceSolverIslandCallback;
+
+///The btMultiBodyDynamicsWorld adds Featherstone multi body dynamics to Bullet
+///This implementation is still preliminary/experimental.
+class btMultiBodyDynamicsWorld : public btDiscreteDynamicsWorld
+{
+protected:
+ btAlignedObjectArray<btMultiBody*> m_multiBodies;
+ btAlignedObjectArray<btMultiBodyConstraint*> m_multiBodyConstraints;
+ btAlignedObjectArray<btMultiBodyConstraint*> m_sortedMultiBodyConstraints;
+ btMultiBodyConstraintSolver* m_multiBodyConstraintSolver;
+ MultiBodyInplaceSolverIslandCallback* m_solverMultiBodyIslandCallback;
+
+ virtual void calculateSimulationIslands();
+ virtual void updateActivationState(btScalar timeStep);
+ virtual void solveConstraints(btContactSolverInfo& solverInfo);
+ virtual void integrateTransforms(btScalar timeStep);
+public:
+
+ btMultiBodyDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btMultiBodyConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration);
+
+ virtual ~btMultiBodyDynamicsWorld ();
+
+ virtual void addMultiBody(btMultiBody* body, short group= btBroadphaseProxy::DefaultFilter, short mask=btBroadphaseProxy::AllFilter);
+
+ virtual void removeMultiBody(btMultiBody* body);
+
+ virtual void addMultiBodyConstraint( btMultiBodyConstraint* constraint);
+
+ virtual void removeMultiBodyConstraint( btMultiBodyConstraint* constraint);
+};
+#endif //BT_MULTIBODY_DYNAMICS_WORLD_H
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp
new file mode 100644
index 00000000000..ea309e8857d
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp
@@ -0,0 +1,133 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyJointLimitConstraint.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+
+btMultiBodyJointLimitConstraint::btMultiBodyJointLimitConstraint(btMultiBody* body, int link, btScalar lower, btScalar upper)
+ :btMultiBodyConstraint(body,body,link,link,2,true),
+ m_lowerBound(lower),
+ m_upperBound(upper)
+{
+ // the data.m_jacobians never change, so may as well
+ // initialize them here
+
+ // note: we rely on the fact that data.m_jacobians are
+ // always initialized to zero by the Constraint ctor
+
+ // row 0: the lower bound
+ jacobianA(0)[6 + link] = 1;
+
+ // row 1: the upper bound
+ jacobianB(1)[6 + link] = -1;
+}
+btMultiBodyJointLimitConstraint::~btMultiBodyJointLimitConstraint()
+{
+}
+
+int btMultiBodyJointLimitConstraint::getIslandIdA() const
+{
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ return -1;
+}
+
+int btMultiBodyJointLimitConstraint::getIslandIdB() const
+{
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ return -1;
+}
+
+
+void btMultiBodyJointLimitConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+ // only positions need to be updated -- data.m_jacobians and force
+ // directions were set in the ctor and never change.
+
+ // row 0: the lower bound
+ setPosition(0, m_bodyA->getJointPos(m_linkA) - m_lowerBound);
+
+ // row 1: the upper bound
+ setPosition(1, m_upperBound - m_bodyA->getJointPos(m_linkA));
+
+ for (int row=0;row<getNumRows();row++)
+ {
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+ constraintRow.m_multiBodyA = m_bodyA;
+ constraintRow.m_multiBodyB = m_bodyB;
+
+ btScalar rel_vel = fillConstraintRowMultiBodyMultiBody(constraintRow,data,jacobianA(row),jacobianB(row),infoGlobal,0,-m_maxAppliedImpulse,m_maxAppliedImpulse);
+ {
+ btScalar penetration = getPosition(row);
+ btScalar positionalError = 0.f;
+ btScalar velocityError = - rel_vel;// * damping;
+ btScalar erp = infoGlobal.m_erp2;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+ if (penetration>0)
+ {
+ positionalError = 0;
+ velocityError = -penetration / infoGlobal.m_timeStep;
+ } else
+ {
+ positionalError = -penetration * erp/infoGlobal.m_timeStep;
+ }
+
+ btScalar penetrationImpulse = positionalError*constraintRow.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ constraintRow.m_rhs = penetrationImpulse+velocityImpulse;
+ constraintRow.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ constraintRow.m_rhs = velocityImpulse;
+ constraintRow.m_rhsPenetration = penetrationImpulse;
+ }
+ }
+ }
+
+}
+
+
+
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h
new file mode 100644
index 00000000000..0c7fc170822
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h
@@ -0,0 +1,44 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_JOINT_LIMIT_CONSTRAINT_H
+#define BT_MULTIBODY_JOINT_LIMIT_CONSTRAINT_H
+
+#include "btMultiBodyConstraint.h"
+struct btSolverInfo;
+
+class btMultiBodyJointLimitConstraint : public btMultiBodyConstraint
+{
+protected:
+
+ btScalar m_lowerBound;
+ btScalar m_upperBound;
+public:
+
+ btMultiBodyJointLimitConstraint(btMultiBody* body, int link, btScalar lower, btScalar upper);
+ virtual ~btMultiBodyJointLimitConstraint();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+
+};
+
+#endif //BT_MULTIBODY_JOINT_LIMIT_CONSTRAINT_H
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp
new file mode 100644
index 00000000000..ab5a430231b
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp
@@ -0,0 +1,89 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyJointMotor.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+
+btMultiBodyJointMotor::btMultiBodyJointMotor(btMultiBody* body, int link, btScalar desiredVelocity, btScalar maxMotorImpulse)
+ :btMultiBodyConstraint(body,body,link,link,1,true),
+ m_desiredVelocity(desiredVelocity)
+{
+ m_maxAppliedImpulse = maxMotorImpulse;
+ // the data.m_jacobians never change, so may as well
+ // initialize them here
+
+ // note: we rely on the fact that data.m_jacobians are
+ // always initialized to zero by the Constraint ctor
+
+ // row 0: the lower bound
+ jacobianA(0)[6 + link] = 1;
+}
+btMultiBodyJointMotor::~btMultiBodyJointMotor()
+{
+}
+
+int btMultiBodyJointMotor::getIslandIdA() const
+{
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ return -1;
+}
+
+int btMultiBodyJointMotor::getIslandIdB() const
+{
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ return -1;
+}
+
+
+void btMultiBodyJointMotor::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+ // only positions need to be updated -- data.m_jacobians and force
+ // directions were set in the ctor and never change.
+
+
+
+ for (int row=0;row<getNumRows();row++)
+ {
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+
+ btScalar penetration = 0;
+ fillConstraintRowMultiBodyMultiBody(constraintRow,data,jacobianA(row),jacobianB(row),infoGlobal,m_desiredVelocity,-m_maxAppliedImpulse,m_maxAppliedImpulse);
+ }
+
+}
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h
new file mode 100644
index 00000000000..43869348141
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h
@@ -0,0 +1,47 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_JOINT_MOTOR_H
+#define BT_MULTIBODY_JOINT_MOTOR_H
+
+#include "btMultiBodyConstraint.h"
+struct btSolverInfo;
+
+class btMultiBodyJointMotor : public btMultiBodyConstraint
+{
+protected:
+
+
+ btScalar m_desiredVelocity;
+
+public:
+
+ btMultiBodyJointMotor(btMultiBody* body, int link, btScalar desiredVelocity, btScalar maxMotorImpulse);
+ virtual ~btMultiBodyJointMotor();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+
+};
+
+#endif //BT_MULTIBODY_JOINT_MOTOR_H
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLink.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLink.h
new file mode 100644
index 00000000000..fbd54c45db3
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLink.h
@@ -0,0 +1,110 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_LINK_H
+#define BT_MULTIBODY_LINK_H
+
+#include "LinearMath/btQuaternion.h"
+#include "LinearMath/btVector3.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+enum btMultiBodyLinkFlags
+{
+ BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION = 1
+};
+//
+// Link struct
+//
+
+struct btMultibodyLink
+{
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btScalar joint_pos; // qi
+
+ btScalar mass; // mass of link
+ btVector3 inertia; // inertia of link (local frame; diagonal)
+
+ int parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
+
+ btQuaternion zero_rot_parent_to_this; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
+
+ // "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
+ // for prismatic: axis_top = zero;
+ // axis_bottom = unit vector along the joint axis.
+ // for revolute: axis_top = unit vector along the rotation axis (u);
+ // axis_bottom = u cross d_vector.
+ btVector3 axis_top;
+ btVector3 axis_bottom;
+
+ btVector3 d_vector; // vector from the inboard joint pos to this link's COM. (local frame.) constant. set for revolute joints only.
+
+ // e_vector is constant, but depends on the joint type
+ // prismatic: vector from COM of parent to COM of this link, WHEN Q = 0. (local frame.)
+ // revolute: vector from parent's COM to the pivot point, in PARENT's frame.
+ btVector3 e_vector;
+
+ bool is_revolute; // true = revolute, false = prismatic
+
+ btQuaternion cached_rot_parent_to_this; // rotates vectors in parent frame to vectors in local frame
+ btVector3 cached_r_vector; // vector from COM of parent to COM of this link, in local frame.
+
+ btVector3 applied_force; // In WORLD frame
+ btVector3 applied_torque; // In WORLD frame
+ btScalar joint_torque;
+
+ class btMultiBodyLinkCollider* m_collider;
+ int m_flags;
+
+ // ctor: set some sensible defaults
+ btMultibodyLink()
+ : joint_pos(0),
+ mass(1),
+ parent(-1),
+ zero_rot_parent_to_this(1, 0, 0, 0),
+ is_revolute(false),
+ cached_rot_parent_to_this(1, 0, 0, 0),
+ joint_torque(0),
+ m_collider(0),
+ m_flags(0)
+ {
+ inertia.setValue(1, 1, 1);
+ axis_top.setValue(0, 0, 0);
+ axis_bottom.setValue(1, 0, 0);
+ d_vector.setValue(0, 0, 0);
+ e_vector.setValue(0, 0, 0);
+ cached_r_vector.setValue(0, 0, 0);
+ applied_force.setValue( 0, 0, 0);
+ applied_torque.setValue(0, 0, 0);
+ }
+
+ // routine to update cached_rot_parent_to_this and cached_r_vector
+ void updateCache()
+ {
+ if (is_revolute)
+ {
+ cached_rot_parent_to_this = btQuaternion(axis_top,-joint_pos) * zero_rot_parent_to_this;
+ cached_r_vector = d_vector + quatRotate(cached_rot_parent_to_this,e_vector);
+ } else
+ {
+ // cached_rot_parent_to_this never changes, so no need to update
+ cached_r_vector = e_vector + joint_pos * axis_bottom;
+ }
+ }
+};
+
+
+#endif //BT_MULTIBODY_LINK_H
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h
new file mode 100644
index 00000000000..27f12514a6d
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h
@@ -0,0 +1,92 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_FEATHERSTONE_LINK_COLLIDER_H
+#define BT_FEATHERSTONE_LINK_COLLIDER_H
+
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+#include "btMultiBody.h"
+
+class btMultiBodyLinkCollider : public btCollisionObject
+{
+//protected:
+public:
+
+ btMultiBody* m_multiBody;
+ int m_link;
+
+
+ btMultiBodyLinkCollider (btMultiBody* multiBody,int link)
+ :m_multiBody(multiBody),
+ m_link(link)
+ {
+ m_checkCollideWith = true;
+ //we need to remove the 'CF_STATIC_OBJECT' flag, otherwise links/base doesn't merge islands
+ //this means that some constraints might point to bodies that are not in the islands, causing crashes
+ //if (link>=0 || (multiBody && !multiBody->hasFixedBase()))
+ {
+ m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
+ }
+ // else
+ //{
+ // m_collisionFlags |= (btCollisionObject::CF_STATIC_OBJECT);
+ //}
+
+ m_internalType = CO_FEATHERSTONE_LINK;
+ }
+ static btMultiBodyLinkCollider* upcast(btCollisionObject* colObj)
+ {
+ if (colObj->getInternalType()&btCollisionObject::CO_FEATHERSTONE_LINK)
+ return (btMultiBodyLinkCollider*)colObj;
+ return 0;
+ }
+ static const btMultiBodyLinkCollider* upcast(const btCollisionObject* colObj)
+ {
+ if (colObj->getInternalType()&btCollisionObject::CO_FEATHERSTONE_LINK)
+ return (btMultiBodyLinkCollider*)colObj;
+ return 0;
+ }
+
+ virtual bool checkCollideWithOverride(const btCollisionObject* co) const
+ {
+ const btMultiBodyLinkCollider* other = btMultiBodyLinkCollider::upcast(co);
+ if (!other)
+ return true;
+ if (other->m_multiBody != this->m_multiBody)
+ return true;
+ if (!m_multiBody->hasSelfCollision())
+ return false;
+
+ //check if 'link' has collision disabled
+ if (m_link>=0)
+ {
+ const btMultibodyLink& link = m_multiBody->getLink(this->m_link);
+ if ((link.m_flags&BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION) && link.parent == other->m_link)
+ return false;
+ }
+
+ if (other->m_link>=0)
+ {
+ const btMultibodyLink& otherLink = other->m_multiBody->getLink(other->m_link);
+ if ((otherLink.m_flags& BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION) && otherLink.parent == this->m_link)
+ return false;
+ }
+ return true;
+ }
+};
+
+#endif //BT_FEATHERSTONE_LINK_COLLIDER_H
+
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp
new file mode 100644
index 00000000000..f6690049156
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp
@@ -0,0 +1,143 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyPoint2Point.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+
+btMultiBodyPoint2Point::btMultiBodyPoint2Point(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB)
+ :btMultiBodyConstraint(body,0,link,-1,3,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(bodyB),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB)
+{
+}
+
+btMultiBodyPoint2Point::btMultiBodyPoint2Point(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB)
+ :btMultiBodyConstraint(bodyA,bodyB,linkA,linkB,3,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(0),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB)
+{
+}
+
+
+btMultiBodyPoint2Point::~btMultiBodyPoint2Point()
+{
+}
+
+
+int btMultiBodyPoint2Point::getIslandIdA() const
+{
+ if (m_rigidBodyA)
+ return m_rigidBodyA->getIslandTag();
+
+ if (m_bodyA)
+ {
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+int btMultiBodyPoint2Point::getIslandIdB() const
+{
+ if (m_rigidBodyB)
+ return m_rigidBodyB->getIslandTag();
+ if (m_bodyB)
+ {
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+
+
+void btMultiBodyPoint2Point::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+
+// int i=1;
+ for (int i=0;i<3;i++)
+ {
+
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+
+ constraintRow.m_solverBodyIdA = data.m_fixedBodyId;
+ constraintRow.m_solverBodyIdB = data.m_fixedBodyId;
+
+
+ btVector3 contactNormalOnB(0,0,0);
+ contactNormalOnB[i] = -1;
+
+ btScalar penetration = 0;
+
+ // Convert local points back to world
+ btVector3 pivotAworld = m_pivotInA;
+ if (m_rigidBodyA)
+ {
+
+ constraintRow.m_solverBodyIdA = m_rigidBodyA->getCompanionId();
+ pivotAworld = m_rigidBodyA->getCenterOfMassTransform()*m_pivotInA;
+ } else
+ {
+ if (m_bodyA)
+ pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ }
+ btVector3 pivotBworld = m_pivotInB;
+ if (m_rigidBodyB)
+ {
+ constraintRow.m_solverBodyIdB = m_rigidBodyB->getCompanionId();
+ pivotBworld = m_rigidBodyB->getCenterOfMassTransform()*m_pivotInB;
+ } else
+ {
+ if (m_bodyB)
+ pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+
+ }
+ btScalar position = (pivotAworld-pivotBworld).dot(contactNormalOnB);
+ btScalar relaxation = 1.f;
+ fillMultiBodyConstraintMixed(constraintRow, data,
+ contactNormalOnB,
+ pivotAworld, pivotBworld,
+ position,
+ infoGlobal,
+ relaxation,
+ false);
+ constraintRow.m_lowerLimit = -m_maxAppliedImpulse;
+ constraintRow.m_upperLimit = m_maxAppliedImpulse;
+
+ }
+}
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h
new file mode 100644
index 00000000000..26ca12b406d
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h
@@ -0,0 +1,60 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_POINT2POINT_H
+#define BT_MULTIBODY_POINT2POINT_H
+
+#include "btMultiBodyConstraint.h"
+
+class btMultiBodyPoint2Point : public btMultiBodyConstraint
+{
+protected:
+
+ btRigidBody* m_rigidBodyA;
+ btRigidBody* m_rigidBodyB;
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+
+
+public:
+
+ btMultiBodyPoint2Point(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB);
+ btMultiBodyPoint2Point(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB);
+
+ virtual ~btMultiBodyPoint2Point();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ const btVector3& getPivotInB() const
+ {
+ return m_pivotInB;
+ }
+
+ void setPivotInB(const btVector3& pivotInB)
+ {
+ m_pivotInB = pivotInB;
+ }
+
+
+};
+
+#endif //BT_MULTIBODY_POINT2POINT_H
diff --git a/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h
new file mode 100644
index 00000000000..cf06dfb9ebf
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h
@@ -0,0 +1,82 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_SOLVER_CONSTRAINT_H
+#define BT_MULTIBODY_SOLVER_CONSTRAINT_H
+
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+class btMultiBody;
+#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
+#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
+
+///1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and friction constraints.
+ATTRIBUTE_ALIGNED16 (struct) btMultiBodySolverConstraint
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+
+ int m_deltaVelAindex;//more generic version of m_relpos1CrossNormal/m_contactNormal1
+ btVector3 m_relpos1CrossNormal;
+ btVector3 m_contactNormal1;
+ int m_jacAindex;
+
+ int m_deltaVelBindex;
+ btVector3 m_relpos2CrossNormal;
+ btVector3 m_contactNormal2; //usually m_contactNormal2 == -m_contactNormal1, but not always
+ int m_jacBindex;
+
+ btVector3 m_angularComponentA;
+ btVector3 m_angularComponentB;
+
+ mutable btSimdScalar m_appliedPushImpulse;
+ mutable btSimdScalar m_appliedImpulse;
+
+ btScalar m_friction;
+ btScalar m_jacDiagABInv;
+ btScalar m_rhs;
+ btScalar m_cfm;
+
+ btScalar m_lowerLimit;
+ btScalar m_upperLimit;
+ btScalar m_rhsPenetration;
+ union
+ {
+ void* m_originalContactPoint;
+ btScalar m_unusedPadding4;
+ };
+
+ int m_overrideNumSolverIterations;
+ int m_frictionIndex;
+
+ int m_solverBodyIdA;
+ btMultiBody* m_multiBodyA;
+ int m_linkA;
+
+ int m_solverBodyIdB;
+ btMultiBody* m_multiBodyB;
+ int m_linkB;
+
+ enum btSolverConstraintType
+ {
+ BT_SOLVER_CONTACT_1D = 0,
+ BT_SOLVER_FRICTION_1D
+ };
+};
+
+typedef btAlignedObjectArray<btMultiBodySolverConstraint> btMultiBodyConstraintArray;
+
+#endif //BT_MULTIBODY_SOLVER_CONSTRAINT_H
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
new file mode 100644
index 00000000000..3bf7b5c1311
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
@@ -0,0 +1,2079 @@
+/*************************************************************************
+* *
+* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
+* All rights reserved. Email: russ@q12.org Web: www.q12.org *
+* *
+* This library is free software; you can redistribute it and/or *
+* modify it under the terms of EITHER: *
+* (1) The GNU Lesser General Public License as published by the Free *
+* Software Foundation; either version 2.1 of the License, or (at *
+* your option) any later version. The text of the GNU Lesser *
+* General Public License is included with this library in the *
+* file LICENSE.TXT. *
+* (2) The BSD-style license that is included with this library in *
+* the file LICENSE-BSD.TXT. *
+* *
+* This library is distributed in the hope that it will be useful, *
+* but WITHOUT ANY WARRANTY; without even the implied warranty of *
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
+* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
+* *
+*************************************************************************/
+
+/*
+
+
+THE ALGORITHM
+-------------
+
+solve A*x = b+w, with x and w subject to certain LCP conditions.
+each x(i),w(i) must lie on one of the three line segments in the following
+diagram. each line segment corresponds to one index set :
+
+ w(i)
+ /|\ | :
+ | | :
+ | |i in N :
+ w>0 | |state[i]=0 :
+ | | :
+ | | : i in C
+ w=0 + +-----------------------+
+ | : |
+ | : |
+ w<0 | : |i in N
+ | : |state[i]=1
+ | : |
+ | : |
+ +-------|-----------|-----------|----------> x(i)
+ lo 0 hi
+
+the Dantzig algorithm proceeds as follows:
+ for i=1:n
+ * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
+ negative towards the line. as this is done, the other (x(j),w(j))
+ for j<i are constrained to be on the line. if any (x,w) reaches the
+ end of a line segment then it is switched between index sets.
+ * i is added to the appropriate index set depending on what line segment
+ it hits.
+
+we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
+simpler, because the starting point for x(i),w(i) is always on the dotted
+line x=0 and x will only ever increase in one direction, so it can only hit
+two out of the three line segments.
+
+
+NOTES
+-----
+
+this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
+the implementation is split into an LCP problem object (btLCP) and an LCP
+driver function. most optimization occurs in the btLCP object.
+
+a naive implementation of the algorithm requires either a lot of data motion
+or a lot of permutation-array lookup, because we are constantly re-ordering
+rows and columns. to avoid this and make a more optimized algorithm, a
+non-trivial data structure is used to represent the matrix A (this is
+implemented in the fast version of the btLCP object).
+
+during execution of this algorithm, some indexes in A are clamped (set C),
+some are non-clamped (set N), and some are "don't care" (where x=0).
+A,x,b,w (and other problem vectors) are permuted such that the clamped
+indexes are first, the unclamped indexes are next, and the don't-care
+indexes are last. this permutation is recorded in the array `p'.
+initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
+the corresponding elements of p are swapped.
+
+because the C and N elements are grouped together in the rows of A, we can do
+lots of work with a fast dot product function. if A,x,etc were not permuted
+and we only had a permutation array, then those dot products would be much
+slower as we would have a permutation array lookup in some inner loops.
+
+A is accessed through an array of row pointers, so that element (i,j) of the
+permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
+we still have to actually move the data.
+
+during execution of this algorithm we maintain an L*D*L' factorization of
+the clamped submatrix of A (call it `AC') which is the top left nC*nC
+submatrix of A. there are two ways we could arrange the rows/columns in AC.
+
+(1) AC is always permuted such that L*D*L' = AC. this causes a problem
+when a row/column is removed from C, because then all the rows/columns of A
+between the deleted index and the end of C need to be rotated downward.
+this results in a lot of data motion and slows things down.
+(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
+itself a permutation of the underlying A). this is what we do - the
+permutation is recorded in the vector C. call this permutation A[C,C].
+when a row/column is removed from C, all we have to do is swap two
+rows/columns and manipulate C.
+
+*/
+
+
+#include "btDantzigLCP.h"
+
+#include <string.h>//memcpy
+
+bool s_error = false;
+
+//***************************************************************************
+// code generation parameters
+
+
+#define btLCP_FAST // use fast btLCP object
+
+// option 1 : matrix row pointers (less data copying)
+#define BTROWPTRS
+#define BTATYPE btScalar **
+#define BTAROW(i) (m_A[i])
+
+// option 2 : no matrix row pointers (slightly faster inner loops)
+//#define NOROWPTRS
+//#define BTATYPE btScalar *
+//#define BTAROW(i) (m_A+(i)*m_nskip)
+
+#define BTNUB_OPTIMIZATIONS
+
+
+
+/* solve L*X=B, with B containing 1 right hand sides.
+ * L is an n*n lower triangular matrix with ones on the diagonal.
+ * L is stored by rows and its leading dimension is lskip.
+ * B is an n*1 matrix that contains the right hand sides.
+ * B is stored by columns and its leading dimension is also lskip.
+ * B is overwritten with X.
+ * this processes blocks of 2*2.
+ * if this is in the factorizer source file, n must be a multiple of 2.
+ */
+
+static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex;
+ const btScalar *ell;
+ int i,j;
+ /* compute all 2 x 1 blocks of X */
+ for (i=0; i < n; i+=2) {
+ /* compute all 2 x 1 block of X, from rows i..i+2-1 */
+ /* set the Z matrix to 0 */
+ Z11=0;
+ Z21=0;
+ ell = L + i*lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j=i-2; j >= 0; j -= 2) {
+ /* compute outer product and add it to the Z matrix */
+ p1=ell[0];
+ q1=ex[0];
+ m11 = p1 * q1;
+ p2=ell[lskip1];
+ m21 = p2 * q1;
+ Z11 += m11;
+ Z21 += m21;
+ /* compute outer product and add it to the Z matrix */
+ p1=ell[1];
+ q1=ex[1];
+ m11 = p1 * q1;
+ p2=ell[1+lskip1];
+ m21 = p2 * q1;
+ /* advance pointers */
+ ell += 2;
+ ex += 2;
+ Z11 += m11;
+ Z21 += m21;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 2;
+ for (; j > 0; j--) {
+ /* compute outer product and add it to the Z matrix */
+ p1=ell[0];
+ q1=ex[0];
+ m11 = p1 * q1;
+ p2=ell[lskip1];
+ m21 = p2 * q1;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ Z11 += m11;
+ Z21 += m21;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ p1 = ell[lskip1];
+ Z21 = ex[1] - Z21 - p1*Z11;
+ ex[1] = Z21;
+ /* end of outer loop */
+ }
+}
+
+/* solve L*X=B, with B containing 2 right hand sides.
+ * L is an n*n lower triangular matrix with ones on the diagonal.
+ * L is stored by rows and its leading dimension is lskip.
+ * B is an n*2 matrix that contains the right hand sides.
+ * B is stored by columns and its leading dimension is also lskip.
+ * B is overwritten with X.
+ * this processes blocks of 2*2.
+ * if this is in the factorizer source file, n must be a multiple of 2.
+ */
+
+static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
+ const btScalar *ell;
+ int i,j;
+ /* compute all 2 x 2 blocks of X */
+ for (i=0; i < n; i+=2) {
+ /* compute all 2 x 2 block of X, from rows i..i+2-1 */
+ /* set the Z matrix to 0 */
+ Z11=0;
+ Z12=0;
+ Z21=0;
+ Z22=0;
+ ell = L + i*lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j=i-2; j >= 0; j -= 2) {
+ /* compute outer product and add it to the Z matrix */
+ p1=ell[0];
+ q1=ex[0];
+ m11 = p1 * q1;
+ q2=ex[lskip1];
+ m12 = p1 * q2;
+ p2=ell[lskip1];
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z12 += m12;
+ Z21 += m21;
+ Z22 += m22;
+ /* compute outer product and add it to the Z matrix */
+ p1=ell[1];
+ q1=ex[1];
+ m11 = p1 * q1;
+ q2=ex[1+lskip1];
+ m12 = p1 * q2;
+ p2=ell[1+lskip1];
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ /* advance pointers */
+ ell += 2;
+ ex += 2;
+ Z11 += m11;
+ Z12 += m12;
+ Z21 += m21;
+ Z22 += m22;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 2;
+ for (; j > 0; j--) {
+ /* compute outer product and add it to the Z matrix */
+ p1=ell[0];
+ q1=ex[0];
+ m11 = p1 * q1;
+ q2=ex[lskip1];
+ m12 = p1 * q2;
+ p2=ell[lskip1];
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ Z11 += m11;
+ Z12 += m12;
+ Z21 += m21;
+ Z22 += m22;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ Z12 = ex[lskip1] - Z12;
+ ex[lskip1] = Z12;
+ p1 = ell[lskip1];
+ Z21 = ex[1] - Z21 - p1*Z11;
+ ex[1] = Z21;
+ Z22 = ex[1+lskip1] - Z22 - p1*Z12;
+ ex[1+lskip1] = Z22;
+ /* end of outer loop */
+ }
+}
+
+
+void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
+{
+ int i,j;
+ btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
+ if (n < 1) return;
+
+ for (i=0; i<=n-2; i += 2) {
+ /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
+ btSolveL1_2 (A,A+i*nskip1,i,nskip1);
+ /* scale the elements in a 2 x i block at A(i,0), and also */
+ /* compute Z = the outer product matrix that we'll need. */
+ Z11 = 0;
+ Z21 = 0;
+ Z22 = 0;
+ ell = A+i*nskip1;
+ dee = d;
+ for (j=i-6; j >= 0; j -= 6) {
+ p1 = ell[0];
+ p2 = ell[nskip1];
+ dd = dee[0];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[0] = q1;
+ ell[nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[1];
+ p2 = ell[1+nskip1];
+ dd = dee[1];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[1] = q1;
+ ell[1+nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[2];
+ p2 = ell[2+nskip1];
+ dd = dee[2];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[2] = q1;
+ ell[2+nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[3];
+ p2 = ell[3+nskip1];
+ dd = dee[3];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[3] = q1;
+ ell[3+nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[4];
+ p2 = ell[4+nskip1];
+ dd = dee[4];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[4] = q1;
+ ell[4+nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[5];
+ p2 = ell[5+nskip1];
+ dd = dee[5];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[5] = q1;
+ ell[5+nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ ell += 6;
+ dee += 6;
+ }
+ /* compute left-over iterations */
+ j += 6;
+ for (; j > 0; j--) {
+ p1 = ell[0];
+ p2 = ell[nskip1];
+ dd = dee[0];
+ q1 = p1*dd;
+ q2 = p2*dd;
+ ell[0] = q1;
+ ell[nskip1] = q2;
+ m11 = p1*q1;
+ m21 = p2*q1;
+ m22 = p2*q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ ell++;
+ dee++;
+ }
+ /* solve for diagonal 2 x 2 block at A(i,i) */
+ Z11 = ell[0] - Z11;
+ Z21 = ell[nskip1] - Z21;
+ Z22 = ell[1+nskip1] - Z22;
+ dee = d + i;
+ /* factorize 2 x 2 block Z,dee */
+ /* factorize row 1 */
+ dee[0] = btRecip(Z11);
+ /* factorize row 2 */
+ sum = 0;
+ q1 = Z21;
+ q2 = q1 * dee[0];
+ Z21 = q2;
+ sum += q1*q2;
+ dee[1] = btRecip(Z22 - sum);
+ /* done factorizing 2 x 2 block */
+ ell[nskip1] = Z21;
+ }
+ /* compute the (less than 2) rows at the bottom */
+ switch (n-i) {
+ case 0:
+ break;
+
+ case 1:
+ btSolveL1_1 (A,A+i*nskip1,i,nskip1);
+ /* scale the elements in a 1 x i block at A(i,0), and also */
+ /* compute Z = the outer product matrix that we'll need. */
+ Z11 = 0;
+ ell = A+i*nskip1;
+ dee = d;
+ for (j=i-6; j >= 0; j -= 6) {
+ p1 = ell[0];
+ dd = dee[0];
+ q1 = p1*dd;
+ ell[0] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ p1 = ell[1];
+ dd = dee[1];
+ q1 = p1*dd;
+ ell[1] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ p1 = ell[2];
+ dd = dee[2];
+ q1 = p1*dd;
+ ell[2] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ p1 = ell[3];
+ dd = dee[3];
+ q1 = p1*dd;
+ ell[3] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ p1 = ell[4];
+ dd = dee[4];
+ q1 = p1*dd;
+ ell[4] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ p1 = ell[5];
+ dd = dee[5];
+ q1 = p1*dd;
+ ell[5] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ ell += 6;
+ dee += 6;
+ }
+ /* compute left-over iterations */
+ j += 6;
+ for (; j > 0; j--) {
+ p1 = ell[0];
+ dd = dee[0];
+ q1 = p1*dd;
+ ell[0] = q1;
+ m11 = p1*q1;
+ Z11 += m11;
+ ell++;
+ dee++;
+ }
+ /* solve for diagonal 1 x 1 block at A(i,i) */
+ Z11 = ell[0] - Z11;
+ dee = d + i;
+ /* factorize 1 x 1 block Z,dee */
+ /* factorize row 1 */
+ dee[0] = btRecip(Z11);
+ /* done factorizing 1 x 1 block */
+ break;
+
+ //default: *((char*)0)=0; /* this should never happen! */
+ }
+}
+
+/* solve L*X=B, with B containing 1 right hand sides.
+ * L is an n*n lower triangular matrix with ones on the diagonal.
+ * L is stored by rows and its leading dimension is lskip.
+ * B is an n*1 matrix that contains the right hand sides.
+ * B is stored by columns and its leading dimension is also lskip.
+ * B is overwritten with X.
+ * this processes blocks of 4*4.
+ * if this is in the factorizer source file, n must be a multiple of 4.
+ */
+
+void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex;
+ const btScalar *ell;
+ int lskip2,lskip3,i,j;
+ /* compute lskip values */
+ lskip2 = 2*lskip1;
+ lskip3 = 3*lskip1;
+ /* compute all 4 x 1 blocks of X */
+ for (i=0; i <= n-4; i+=4) {
+ /* compute all 4 x 1 block of X, from rows i..i+4-1 */
+ /* set the Z matrix to 0 */
+ Z11=0;
+ Z21=0;
+ Z31=0;
+ Z41=0;
+ ell = L + i*lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j=i-12; j >= 0; j -= 12) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ p2=ell[lskip1];
+ p3=ell[lskip2];
+ p4=ell[lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[1];
+ q1=ex[1];
+ p2=ell[1+lskip1];
+ p3=ell[1+lskip2];
+ p4=ell[1+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[2];
+ q1=ex[2];
+ p2=ell[2+lskip1];
+ p3=ell[2+lskip2];
+ p4=ell[2+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[3];
+ q1=ex[3];
+ p2=ell[3+lskip1];
+ p3=ell[3+lskip2];
+ p4=ell[3+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[4];
+ q1=ex[4];
+ p2=ell[4+lskip1];
+ p3=ell[4+lskip2];
+ p4=ell[4+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[5];
+ q1=ex[5];
+ p2=ell[5+lskip1];
+ p3=ell[5+lskip2];
+ p4=ell[5+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[6];
+ q1=ex[6];
+ p2=ell[6+lskip1];
+ p3=ell[6+lskip2];
+ p4=ell[6+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[7];
+ q1=ex[7];
+ p2=ell[7+lskip1];
+ p3=ell[7+lskip2];
+ p4=ell[7+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[8];
+ q1=ex[8];
+ p2=ell[8+lskip1];
+ p3=ell[8+lskip2];
+ p4=ell[8+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[9];
+ q1=ex[9];
+ p2=ell[9+lskip1];
+ p3=ell[9+lskip2];
+ p4=ell[9+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[10];
+ q1=ex[10];
+ p2=ell[10+lskip1];
+ p3=ell[10+lskip2];
+ p4=ell[10+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1=ell[11];
+ q1=ex[11];
+ p2=ell[11+lskip1];
+ p3=ell[11+lskip2];
+ p4=ell[11+lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* advance pointers */
+ ell += 12;
+ ex += 12;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 12;
+ for (; j > 0; j--) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ p2=ell[lskip1];
+ p3=ell[lskip2];
+ p4=ell[lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ p1 = ell[lskip1];
+ Z21 = ex[1] - Z21 - p1*Z11;
+ ex[1] = Z21;
+ p1 = ell[lskip2];
+ p2 = ell[1+lskip2];
+ Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21;
+ ex[2] = Z31;
+ p1 = ell[lskip3];
+ p2 = ell[1+lskip3];
+ p3 = ell[2+lskip3];
+ Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
+ ex[3] = Z41;
+ /* end of outer loop */
+ }
+ /* compute rows at end that are not a multiple of block size */
+ for (; i < n; i++) {
+ /* compute all 1 x 1 block of X, from rows i..i+1-1 */
+ /* set the Z matrix to 0 */
+ Z11=0;
+ ell = L + i*lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j=i-12; j >= 0; j -= 12) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[1];
+ q1=ex[1];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[2];
+ q1=ex[2];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[3];
+ q1=ex[3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[4];
+ q1=ex[4];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[5];
+ q1=ex[5];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[6];
+ q1=ex[6];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[7];
+ q1=ex[7];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[8];
+ q1=ex[8];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[9];
+ q1=ex[9];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[10];
+ q1=ex[10];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1=ell[11];
+ q1=ex[11];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* advance pointers */
+ ell += 12;
+ ex += 12;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 12;
+ for (; j > 0; j--) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ }
+}
+
+/* solve L^T * x=b, with b containing 1 right hand side.
+ * L is an n*n lower triangular matrix with ones on the diagonal.
+ * L is stored by rows and its leading dimension is lskip.
+ * b is an n*1 matrix that contains the right hand side.
+ * b is overwritten with x.
+ * this processes blocks of 4.
+ */
+
+void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex;
+ const btScalar *ell;
+ int lskip2,lskip3,i,j;
+ /* special handling for L and B because we're solving L1 *transpose* */
+ L = L + (n-1)*(lskip1+1);
+ B = B + n-1;
+ lskip1 = -lskip1;
+ /* compute lskip values */
+ lskip2 = 2*lskip1;
+ lskip3 = 3*lskip1;
+ /* compute all 4 x 1 blocks of X */
+ for (i=0; i <= n-4; i+=4) {
+ /* compute all 4 x 1 block of X, from rows i..i+4-1 */
+ /* set the Z matrix to 0 */
+ Z11=0;
+ Z21=0;
+ Z31=0;
+ Z41=0;
+ ell = L - i;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j=i-4; j >= 0; j -= 4) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ p2=ell[-1];
+ p3=ell[-2];
+ p4=ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[-1];
+ p2=ell[-1];
+ p3=ell[-2];
+ p4=ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[-2];
+ p2=ell[-1];
+ p3=ell[-2];
+ p4=ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[-3];
+ p2=ell[-1];
+ p3=ell[-2];
+ p4=ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ ex -= 4;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 4;
+ for (; j > 0; j--) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ p2=ell[-1];
+ p3=ell[-2];
+ p4=ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ ex -= 1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ p1 = ell[-1];
+ Z21 = ex[-1] - Z21 - p1*Z11;
+ ex[-1] = Z21;
+ p1 = ell[-2];
+ p2 = ell[-2+lskip1];
+ Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21;
+ ex[-2] = Z31;
+ p1 = ell[-3];
+ p2 = ell[-3+lskip1];
+ p3 = ell[-3+lskip2];
+ Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
+ ex[-3] = Z41;
+ /* end of outer loop */
+ }
+ /* compute rows at end that are not a multiple of block size */
+ for (; i < n; i++) {
+ /* compute all 1 x 1 block of X, from rows i..i+1-1 */
+ /* set the Z matrix to 0 */
+ Z11=0;
+ ell = L - i;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j=i-4; j >= 0; j -= 4) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[-1];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[-2];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ ex -= 4;
+ Z11 += m11;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 4;
+ for (; j > 0; j--) {
+ /* load p and q values */
+ p1=ell[0];
+ q1=ex[0];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ ex -= 1;
+ Z11 += m11;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ }
+}
+
+
+
+void btVectorScale (btScalar *a, const btScalar *d, int n)
+{
+ btAssert (a && d && n >= 0);
+ for (int i=0; i<n; i++) {
+ a[i] *= d[i];
+ }
+}
+
+void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
+{
+ btAssert (L && d && b && n > 0 && nskip >= n);
+ btSolveL1 (L,b,n,nskip);
+ btVectorScale (b,d,n);
+ btSolveL1T (L,b,n,nskip);
+}
+
+
+
+//***************************************************************************
+
+// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
+// A is nskip. this only references and swaps the lower triangle.
+// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
+// rows will be swapped by exchanging row pointers. otherwise the data will
+// be copied.
+
+static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip,
+ int do_fast_row_swaps)
+{
+ btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
+ nskip >= n && i1 < i2);
+
+# ifdef BTROWPTRS
+ btScalar *A_i1 = A[i1];
+ btScalar *A_i2 = A[i2];
+ for (int i=i1+1; i<i2; ++i) {
+ btScalar *A_i_i1 = A[i] + i1;
+ A_i1[i] = *A_i_i1;
+ *A_i_i1 = A_i2[i];
+ }
+ A_i1[i2] = A_i1[i1];
+ A_i1[i1] = A_i2[i1];
+ A_i2[i1] = A_i2[i2];
+ // swap rows, by swapping row pointers
+ if (do_fast_row_swaps) {
+ A[i1] = A_i2;
+ A[i2] = A_i1;
+ }
+ else {
+ // Only swap till i2 column to match A plain storage variant.
+ for (int k = 0; k <= i2; ++k) {
+ btScalar tmp = A_i1[k];
+ A_i1[k] = A_i2[k];
+ A_i2[k] = tmp;
+ }
+ }
+ // swap columns the hard way
+ for (int j=i2+1; j<n; ++j) {
+ btScalar *A_j = A[j];
+ btScalar tmp = A_j[i1];
+ A_j[i1] = A_j[i2];
+ A_j[i2] = tmp;
+ }
+# else
+ btScalar *A_i1 = A+i1*nskip;
+ btScalar *A_i2 = A+i2*nskip;
+ for (int k = 0; k < i1; ++k) {
+ btScalar tmp = A_i1[k];
+ A_i1[k] = A_i2[k];
+ A_i2[k] = tmp;
+ }
+ btScalar *A_i = A_i1 + nskip;
+ for (int i=i1+1; i<i2; A_i+=nskip, ++i) {
+ btScalar tmp = A_i2[i];
+ A_i2[i] = A_i[i1];
+ A_i[i1] = tmp;
+ }
+ {
+ btScalar tmp = A_i1[i1];
+ A_i1[i1] = A_i2[i2];
+ A_i2[i2] = tmp;
+ }
+ btScalar *A_j = A_i2 + nskip;
+ for (int j=i2+1; j<n; A_j+=nskip, ++j) {
+ btScalar tmp = A_j[i1];
+ A_j[i1] = A_j[i2];
+ A_j[i2] = tmp;
+ }
+# endif
+}
+
+
+// swap two indexes in the n*n LCP problem. i1 must be <= i2.
+
+static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
+ btScalar *hi, int *p, bool *state, int *findex,
+ int n, int i1, int i2, int nskip,
+ int do_fast_row_swaps)
+{
+ btScalar tmpr;
+ int tmpi;
+ bool tmpb;
+ btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
+ if (i1==i2) return;
+
+ btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
+
+ tmpr = x[i1];
+ x[i1] = x[i2];
+ x[i2] = tmpr;
+
+ tmpr = b[i1];
+ b[i1] = b[i2];
+ b[i2] = tmpr;
+
+ tmpr = w[i1];
+ w[i1] = w[i2];
+ w[i2] = tmpr;
+
+ tmpr = lo[i1];
+ lo[i1] = lo[i2];
+ lo[i2] = tmpr;
+
+ tmpr = hi[i1];
+ hi[i1] = hi[i2];
+ hi[i2] = tmpr;
+
+ tmpi = p[i1];
+ p[i1] = p[i2];
+ p[i2] = tmpi;
+
+ tmpb = state[i1];
+ state[i1] = state[i2];
+ state[i2] = tmpb;
+
+ if (findex) {
+ tmpi = findex[i1];
+ findex[i1] = findex[i2];
+ findex[i2] = tmpi;
+ }
+}
+
+
+
+
+//***************************************************************************
+// btLCP manipulator object. this represents an n*n LCP problem.
+//
+// two index sets C and N are kept. each set holds a subset of
+// the variable indexes 0..n-1. an index can only be in one set.
+// initially both sets are empty.
+//
+// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
+
+//***************************************************************************
+// fast implementation of btLCP. see the above definition of btLCP for
+// interface comments.
+//
+// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
+// permuted as the other vectors/matrices are permuted.
+//
+// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
+// contiguous indexes. the don't-care indexes follow N.
+//
+// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
+// added or removed from the set C the factorization is updated.
+// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
+// the leading dimension of the matrix L is always `nskip'.
+//
+// at the start there may be other indexes that are unbounded but are not
+// included in `nub'. btLCP will permute the matrix so that absolutely all
+// unbounded vectors are at the start. thus there may be some initial
+// permutation.
+//
+// the algorithms here assume certain patterns, particularly with respect to
+// index transfer.
+
+#ifdef btLCP_FAST
+
+struct btLCP
+{
+ const int m_n;
+ const int m_nskip;
+ int m_nub;
+ int m_nC, m_nN; // size of each index set
+ BTATYPE const m_A; // A rows
+ btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi; // permuted LCP problem data
+ btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
+ btScalar *const m_Dell, *const m_ell, *const m_tmp;
+ bool *const m_state;
+ int *const m_findex, *const m_p, *const m_C;
+
+ btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
+ btScalar *_lo, btScalar *_hi, btScalar *_L, btScalar *_d,
+ btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
+ bool *_state, int *_findex, int *_p, int *_C, btScalar **Arows);
+ int getNub() const { return m_nub; }
+ void transfer_i_to_C (int i);
+ void transfer_i_to_N (int i) { m_nN++; } // because we can assume C and N span 1:i-1
+ void transfer_i_from_N_to_C (int i);
+ void transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch);
+ int numC() const { return m_nC; }
+ int numN() const { return m_nN; }
+ int indexC (int i) const { return i; }
+ int indexN (int i) const { return i+m_nC; }
+ btScalar Aii (int i) const { return BTAROW(i)[i]; }
+ btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); }
+ btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); }
+ void pN_equals_ANC_times_qC (btScalar *p, btScalar *q);
+ void pN_plusequals_ANi (btScalar *p, int i, int sign=1);
+ void pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q);
+ void pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q);
+ void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0);
+ void unpermute();
+};
+
+
+btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
+ btScalar *_lo, btScalar *_hi, btScalar *_L, btScalar *_d,
+ btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
+ bool *_state, int *_findex, int *_p, int *_C, btScalar **Arows):
+ m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
+# ifdef BTROWPTRS
+ m_A(Arows),
+#else
+ m_A(_Adata),
+#endif
+ m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi),
+ m_L(_L), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
+ m_state(_state), m_findex(_findex), m_p(_p), m_C(_C)
+{
+ {
+ btSetZero (m_x,m_n);
+ }
+
+ {
+# ifdef BTROWPTRS
+ // make matrix row pointers
+ btScalar *aptr = _Adata;
+ BTATYPE A = m_A;
+ const int n = m_n, nskip = m_nskip;
+ for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
+# endif
+ }
+
+ {
+ int *p = m_p;
+ const int n = m_n;
+ for (int k=0; k<n; ++k) p[k]=k; // initially unpermuted
+ }
+
+ /*
+ // for testing, we can do some random swaps in the area i > nub
+ {
+ const int n = m_n;
+ const int nub = m_nub;
+ if (nub < n) {
+ for (int k=0; k<100; k++) {
+ int i1,i2;
+ do {
+ i1 = dRandInt(n-nub)+nub;
+ i2 = dRandInt(n-nub)+nub;
+ }
+ while (i1 > i2);
+ //printf ("--> %d %d\n",i1,i2);
+ btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
+ }
+ }
+ */
+
+ // permute the problem so that *all* the unbounded variables are at the
+ // start, i.e. look for unbounded variables not included in `nub'. we can
+ // potentially push up `nub' this way and get a bigger initial factorization.
+ // note that when we swap rows/cols here we must not just swap row pointers,
+ // as the initial factorization relies on the data being all in one chunk.
+ // variables that have findex >= 0 are *not* considered to be unbounded even
+ // if lo=-inf and hi=inf - this is because these limits may change during the
+ // solution process.
+
+ {
+ int *findex = m_findex;
+ btScalar *lo = m_lo, *hi = m_hi;
+ const int n = m_n;
+ for (int k = m_nub; k<n; ++k) {
+ if (findex && findex[k] >= 0) continue;
+ if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) {
+ btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0);
+ m_nub++;
+ }
+ }
+ }
+
+ // if there are unbounded variables at the start, factorize A up to that
+ // point and solve for x. this puts all indexes 0..nub-1 into C.
+ if (m_nub > 0) {
+ const int nub = m_nub;
+ {
+ btScalar *Lrow = m_L;
+ const int nskip = m_nskip;
+ for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar));
+ }
+ btFactorLDLT (m_L,m_d,nub,m_nskip);
+ memcpy (m_x,m_b,nub*sizeof(btScalar));
+ btSolveLDLT (m_L,m_d,m_x,nub,m_nskip);
+ btSetZero (m_w,nub);
+ {
+ int *C = m_C;
+ for (int k=0; k<nub; ++k) C[k] = k;
+ }
+ m_nC = nub;
+ }
+
+ // permute the indexes > nub such that all findex variables are at the end
+ if (m_findex) {
+ const int nub = m_nub;
+ int *findex = m_findex;
+ int num_at_end = 0;
+ for (int k=m_n-1; k >= nub; k--) {
+ if (findex[k] >= 0) {
+ btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1);
+ num_at_end++;
+ }
+ }
+ }
+
+ // print info about indexes
+ /*
+ {
+ const int n = m_n;
+ const int nub = m_nub;
+ for (int k=0; k<n; k++) {
+ if (k<nub) printf ("C");
+ else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
+ else printf (".");
+ }
+ printf ("\n");
+ }
+ */
+}
+
+
+void btLCP::transfer_i_to_C (int i)
+{
+ {
+ if (m_nC > 0) {
+ // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
+ {
+ const int nC = m_nC;
+ btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell;
+ for (int j=0; j<nC; ++j) Ltgt[j] = ell[j];
+ }
+ const int nC = m_nC;
+ m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
+ }
+ else {
+ m_d[0] = btRecip (BTAROW(i)[i]);
+ }
+
+ btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
+
+ const int nC = m_nC;
+ m_C[nC] = nC;
+ m_nC = nC + 1; // nC value is outdated after this line
+ }
+
+}
+
+
+void btLCP::transfer_i_from_N_to_C (int i)
+{
+ {
+ if (m_nC > 0) {
+ {
+ btScalar *const aptr = BTAROW(i);
+ btScalar *Dell = m_Dell;
+ const int *C = m_C;
+# ifdef BTNUB_OPTIMIZATIONS
+ // if nub>0, initial part of aptr unpermuted
+ const int nub = m_nub;
+ int j=0;
+ for ( ; j<nub; ++j) Dell[j] = aptr[j];
+ const int nC = m_nC;
+ for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
+# else
+ const int nC = m_nC;
+ for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
+# endif
+ }
+ btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
+ {
+ const int nC = m_nC;
+ btScalar *const Ltgt = m_L + nC*m_nskip;
+ btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
+ for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
+ }
+ const int nC = m_nC;
+ m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
+ }
+ else {
+ m_d[0] = btRecip (BTAROW(i)[i]);
+ }
+
+ btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
+
+ const int nC = m_nC;
+ m_C[nC] = nC;
+ m_nN--;
+ m_nC = nC + 1; // nC value is outdated after this line
+ }
+
+ // @@@ TO DO LATER
+ // if we just finish here then we'll go back and re-solve for
+ // delta_x. but actually we can be more efficient and incrementally
+ // update delta_x here. but if we do this, we wont have ell and Dell
+ // to use in updating the factorization later.
+
+}
+
+void btRemoveRowCol (btScalar *A, int n, int nskip, int r)
+{
+ btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
+ if (r >= n-1) return;
+ if (r > 0) {
+ {
+ const size_t move_size = (n-r-1)*sizeof(btScalar);
+ btScalar *Adst = A + r;
+ for (int i=0; i<r; Adst+=nskip,++i) {
+ btScalar *Asrc = Adst + 1;
+ memmove (Adst,Asrc,move_size);
+ }
+ }
+ {
+ const size_t cpy_size = r*sizeof(btScalar);
+ btScalar *Adst = A + r * nskip;
+ for (int i=r; i<(n-1); ++i) {
+ btScalar *Asrc = Adst + nskip;
+ memcpy (Adst,Asrc,cpy_size);
+ Adst = Asrc;
+ }
+ }
+ }
+ {
+ const size_t cpy_size = (n-r-1)*sizeof(btScalar);
+ btScalar *Adst = A + r * (nskip + 1);
+ for (int i=r; i<(n-1); ++i) {
+ btScalar *Asrc = Adst + (nskip + 1);
+ memcpy (Adst,Asrc,cpy_size);
+ Adst = Asrc - 1;
+ }
+ }
+}
+
+
+
+
+void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch)
+{
+ btAssert (L && d && a && n > 0 && nskip >= n);
+
+ if (n < 2) return;
+ scratch.resize(2*nskip);
+ btScalar *W1 = &scratch[0];
+
+ btScalar *W2 = W1 + nskip;
+
+ W1[0] = btScalar(0.0);
+ W2[0] = btScalar(0.0);
+ for (int j=1; j<n; ++j) {
+ W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12);
+ }
+ btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12);
+ btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12);
+
+ btScalar alpha1 = btScalar(1.0);
+ btScalar alpha2 = btScalar(1.0);
+
+ {
+ btScalar dee = d[0];
+ btScalar alphanew = alpha1 + (W11*W11)*dee;
+ btAssert(alphanew != btScalar(0.0));
+ dee /= alphanew;
+ btScalar gamma1 = W11 * dee;
+ dee *= alpha1;
+ alpha1 = alphanew;
+ alphanew = alpha2 - (W21*W21)*dee;
+ dee /= alphanew;
+ //btScalar gamma2 = W21 * dee;
+ alpha2 = alphanew;
+ btScalar k1 = btScalar(1.0) - W21*gamma1;
+ btScalar k2 = W21*gamma1*W11 - W21;
+ btScalar *ll = L + nskip;
+ for (int p=1; p<n; ll+=nskip, ++p) {
+ btScalar Wp = W1[p];
+ btScalar ell = *ll;
+ W1[p] = Wp - W11*ell;
+ W2[p] = k1*Wp + k2*ell;
+ }
+ }
+
+ btScalar *ll = L + (nskip + 1);
+ for (int j=1; j<n; ll+=nskip+1, ++j) {
+ btScalar k1 = W1[j];
+ btScalar k2 = W2[j];
+
+ btScalar dee = d[j];
+ btScalar alphanew = alpha1 + (k1*k1)*dee;
+ btAssert(alphanew != btScalar(0.0));
+ dee /= alphanew;
+ btScalar gamma1 = k1 * dee;
+ dee *= alpha1;
+ alpha1 = alphanew;
+ alphanew = alpha2 - (k2*k2)*dee;
+ dee /= alphanew;
+ btScalar gamma2 = k2 * dee;
+ dee *= alpha2;
+ d[j] = dee;
+ alpha2 = alphanew;
+
+ btScalar *l = ll + nskip;
+ for (int p=j+1; p<n; l+=nskip, ++p) {
+ btScalar ell = *l;
+ btScalar Wp = W1[p] - k1 * ell;
+ ell += gamma1 * Wp;
+ W1[p] = Wp;
+ Wp = W2[p] - k2 * ell;
+ ell -= gamma2 * Wp;
+ W2[p] = Wp;
+ *l = ell;
+ }
+ }
+}
+
+
+#define _BTGETA(i,j) (A[i][j])
+//#define _GETA(i,j) (A[(i)*nskip+(j)])
+#define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
+
+inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
+{
+ return nskip * 2 * sizeof(btScalar);
+}
+
+
+void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d,
+ int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch)
+{
+ btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
+ n1 >= n2 && nskip >= n1);
+ #ifdef BT_DEBUG
+ for (int i=0; i<n2; ++i)
+ btAssert(p[i] >= 0 && p[i] < n1);
+ #endif
+
+ if (r==n2-1) {
+ return; // deleting last row/col is easy
+ }
+ else {
+ size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
+ btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
+ scratch.resize(nskip * 2+n2);
+ btScalar *tmp = &scratch[0];
+ if (r==0) {
+ btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
+ const int p_0 = p[0];
+ for (int i=0; i<n2; ++i) {
+ a[i] = -BTGETA(p[i],p_0);
+ }
+ a[0] += btScalar(1.0);
+ btLDLTAddTL (L,d,a,n2,nskip,scratch);
+ }
+ else {
+ btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
+ {
+ btScalar *Lcurr = L + r*nskip;
+ for (int i=0; i<r; ++Lcurr, ++i) {
+ btAssert(d[i] != btScalar(0.0));
+ t[i] = *Lcurr / d[i];
+ }
+ }
+ btScalar *a = t + r;
+ {
+ btScalar *Lcurr = L + r*nskip;
+ const int *pp_r = p + r, p_r = *pp_r;
+ const int n2_minus_r = n2-r;
+ for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) {
+ a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r);
+ }
+ }
+ a[0] += btScalar(1.0);
+ btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch);
+ }
+ }
+
+ // snip out row/column r from L and d
+ btRemoveRowCol (L,n2,nskip,r);
+ if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar));
+}
+
+
+void btLCP::transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch)
+{
+ {
+ int *C = m_C;
+ // remove a row/column from the factorization, and adjust the
+ // indexes (black magic!)
+ int last_idx = -1;
+ const int nC = m_nC;
+ int j = 0;
+ for ( ; j<nC; ++j) {
+ if (C[j]==nC-1) {
+ last_idx = j;
+ }
+ if (C[j]==i) {
+ btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch);
+ int k;
+ if (last_idx == -1) {
+ for (k=j+1 ; k<nC; ++k) {
+ if (C[k]==nC-1) {
+ break;
+ }
+ }
+ btAssert (k < nC);
+ }
+ else {
+ k = last_idx;
+ }
+ C[k] = C[j];
+ if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
+ break;
+ }
+ }
+ btAssert (j < nC);
+
+ btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,i,nC-1,m_nskip,1);
+
+ m_nN++;
+ m_nC = nC - 1; // nC value is outdated after this line
+ }
+
+}
+
+
+void btLCP::pN_equals_ANC_times_qC (btScalar *p, btScalar *q)
+{
+ // we could try to make this matrix-vector multiplication faster using
+ // outer product matrix tricks, e.g. with the dMultidotX() functions.
+ // but i tried it and it actually made things slower on random 100x100
+ // problems because of the overhead involved. so we'll stick with the
+ // simple method for now.
+ const int nC = m_nC;
+ btScalar *ptgt = p + nC;
+ const int nN = m_nN;
+ for (int i=0; i<nN; ++i) {
+ ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC);
+ }
+}
+
+
+void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign)
+{
+ const int nC = m_nC;
+ btScalar *aptr = BTAROW(i) + nC;
+ btScalar *ptgt = p + nC;
+ if (sign > 0) {
+ const int nN = m_nN;
+ for (int j=0; j<nN; ++j) ptgt[j] += aptr[j];
+ }
+ else {
+ const int nN = m_nN;
+ for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j];
+ }
+}
+
+void btLCP::pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q)
+{
+ const int nC = m_nC;
+ for (int i=0; i<nC; ++i) {
+ p[i] += s*q[i];
+ }
+}
+
+void btLCP::pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q)
+{
+ const int nC = m_nC;
+ btScalar *ptgt = p + nC, *qsrc = q + nC;
+ const int nN = m_nN;
+ for (int i=0; i<nN; ++i) {
+ ptgt[i] += s*qsrc[i];
+ }
+}
+
+void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer)
+{
+ // the `Dell' and `ell' that are computed here are saved. if index i is
+ // later added to the factorization then they can be reused.
+ //
+ // @@@ question: do we need to solve for entire delta_x??? yes, but
+ // only if an x goes below 0 during the step.
+
+ if (m_nC > 0) {
+ {
+ btScalar *Dell = m_Dell;
+ int *C = m_C;
+ btScalar *aptr = BTAROW(i);
+# ifdef BTNUB_OPTIMIZATIONS
+ // if nub>0, initial part of aptr[] is guaranteed unpermuted
+ const int nub = m_nub;
+ int j=0;
+ for ( ; j<nub; ++j) Dell[j] = aptr[j];
+ const int nC = m_nC;
+ for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
+# else
+ const int nC = m_nC;
+ for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
+# endif
+ }
+ btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
+ {
+ btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
+ const int nC = m_nC;
+ for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j];
+ }
+
+ if (!only_transfer) {
+ btScalar *tmp = m_tmp, *ell = m_ell;
+ {
+ const int nC = m_nC;
+ for (int j=0; j<nC; ++j) tmp[j] = ell[j];
+ }
+ btSolveL1T (m_L,tmp,m_nC,m_nskip);
+ if (dir > 0) {
+ int *C = m_C;
+ btScalar *tmp = m_tmp;
+ const int nC = m_nC;
+ for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j];
+ } else {
+ int *C = m_C;
+ btScalar *tmp = m_tmp;
+ const int nC = m_nC;
+ for (int j=0; j<nC; ++j) a[C[j]] = tmp[j];
+ }
+ }
+ }
+}
+
+
+void btLCP::unpermute()
+{
+ // now we have to un-permute x and w
+ {
+ memcpy (m_tmp,m_x,m_n*sizeof(btScalar));
+ btScalar *x = m_x, *tmp = m_tmp;
+ const int *p = m_p;
+ const int n = m_n;
+ for (int j=0; j<n; ++j) x[p[j]] = tmp[j];
+ }
+ {
+ memcpy (m_tmp,m_w,m_n*sizeof(btScalar));
+ btScalar *w = m_w, *tmp = m_tmp;
+ const int *p = m_p;
+ const int n = m_n;
+ for (int j=0; j<n; ++j) w[p[j]] = tmp[j];
+ }
+}
+
+#endif // btLCP_FAST
+
+
+//***************************************************************************
+// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
+
+bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b,
+ btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem)
+{
+ s_error = false;
+
+// printf("btSolveDantzigLCP n=%d\n",n);
+ btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
+ btAssert(outer_w);
+
+#ifdef BT_DEBUG
+ {
+ // check restrictions on lo and hi
+ for (int k=0; k<n; ++k)
+ btAssert (lo[k] <= 0 && hi[k] >= 0);
+ }
+# endif
+
+
+ // if all the variables are unbounded then we can just factor, solve,
+ // and return
+ if (nub >= n)
+ {
+
+
+ int nskip = (n);
+ btFactorLDLT (A, outer_w, n, nskip);
+ btSolveLDLT (A, outer_w, b, n, nskip);
+ memcpy (x, b, n*sizeof(btScalar));
+
+ return !s_error;
+ }
+
+ const int nskip = (n);
+ scratchMem.L.resize(n*nskip);
+
+ scratchMem.d.resize(n);
+
+ btScalar *w = outer_w;
+ scratchMem.delta_w.resize(n);
+ scratchMem.delta_x.resize(n);
+ scratchMem.Dell.resize(n);
+ scratchMem.ell.resize(n);
+ scratchMem.Arows.resize(n);
+ scratchMem.p.resize(n);
+ scratchMem.C.resize(n);
+
+ // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
+ scratchMem.state.resize(n);
+
+
+ // create LCP object. note that tmp is set to delta_w to save space, this
+ // optimization relies on knowledge of how tmp is used, so be careful!
+ btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]);
+ int adj_nub = lcp.getNub();
+
+ // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
+ // LCP conditions then i is added to the appropriate index set. otherwise
+ // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
+ // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
+ // while driving x(i) we maintain the LCP conditions on the other variables
+ // 0..i-1. we do this by watching out for other x(i),w(i) values going
+ // outside the valid region, and then switching them between index sets
+ // when that happens.
+
+ bool hit_first_friction_index = false;
+ for (int i=adj_nub; i<n; ++i)
+ {
+ s_error = false;
+ // the index i is the driving index and indexes i+1..n-1 are "dont care",
+ // i.e. when we make changes to the system those x's will be zero and we
+ // don't care what happens to those w's. in other words, we only consider
+ // an (i+1)*(i+1) sub-problem of A*x=b+w.
+
+ // if we've hit the first friction index, we have to compute the lo and
+ // hi values based on the values of x already computed. we have been
+ // permuting the indexes, so the values stored in the findex vector are
+ // no longer valid. thus we have to temporarily unpermute the x vector.
+ // for the purposes of this computation, 0*infinity = 0 ... so if the
+ // contact constraint's normal force is 0, there should be no tangential
+ // force applied.
+
+ if (!hit_first_friction_index && findex && findex[i] >= 0) {
+ // un-permute x into delta_w, which is not being used at the moment
+ for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
+
+ // set lo and hi values
+ for (int k=i; k<n; ++k) {
+ btScalar wfk = scratchMem.delta_w[findex[k]];
+ if (wfk == 0) {
+ hi[k] = 0;
+ lo[k] = 0;
+ }
+ else {
+ hi[k] = btFabs (hi[k] * wfk);
+ lo[k] = -hi[k];
+ }
+ }
+ hit_first_friction_index = true;
+ }
+
+ // thus far we have not even been computing the w values for indexes
+ // greater than i, so compute w[i] now.
+ w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];
+
+ // if lo=hi=0 (which can happen for tangential friction when normals are
+ // 0) then the index will be assigned to set N with some state. however,
+ // set C's line has zero size, so the index will always remain in set N.
+ // with the "normal" switching logic, if w changed sign then the index
+ // would have to switch to set C and then back to set N with an inverted
+ // state. this is pointless, and also computationally expensive. to
+ // prevent this from happening, we use the rule that indexes with lo=hi=0
+ // will never be checked for set changes. this means that the state for
+ // these indexes may be incorrect, but that doesn't matter.
+
+ // see if x(i),w(i) is in a valid region
+ if (lo[i]==0 && w[i] >= 0) {
+ lcp.transfer_i_to_N (i);
+ scratchMem.state[i] = false;
+ }
+ else if (hi[i]==0 && w[i] <= 0) {
+ lcp.transfer_i_to_N (i);
+ scratchMem.state[i] = true;
+ }
+ else if (w[i]==0) {
+ // this is a degenerate case. by the time we get to this test we know
+ // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
+ // and similarly that hi > 0. this means that the line segment
+ // corresponding to set C is at least finite in extent, and we are on it.
+ // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
+ lcp.solve1 (&scratchMem.delta_x[0],i,0,1);
+
+ lcp.transfer_i_to_C (i);
+ }
+ else {
+ // we must push x(i) and w(i)
+ for (;;) {
+ int dir;
+ btScalar dirf;
+ // find direction to push on x(i)
+ if (w[i] <= 0) {
+ dir = 1;
+ dirf = btScalar(1.0);
+ }
+ else {
+ dir = -1;
+ dirf = btScalar(-1.0);
+ }
+
+ // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
+ lcp.solve1 (&scratchMem.delta_x[0],i,dir);
+
+ // note that delta_x[i] = dirf, but we wont bother to set it
+
+ // compute: delta_w = A*delta_x ... note we only care about
+ // delta_w(N) and delta_w(i), the rest is ignored
+ lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]);
+ lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir);
+ scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf;
+
+ // find largest step we can take (size=s), either to drive x(i),w(i)
+ // to the valid LCP region or to drive an already-valid variable
+ // outside the valid region.
+
+ int cmd = 1; // index switching command
+ int si = 0; // si = index to switch if cmd>3
+ btScalar s = -w[i]/scratchMem.delta_w[i];
+ if (dir > 0) {
+ if (hi[i] < BT_INFINITY) {
+ btScalar s2 = (hi[i]-x[i])*dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
+ if (s2 < s) {
+ s = s2;
+ cmd = 3;
+ }
+ }
+ }
+ else {
+ if (lo[i] > -BT_INFINITY) {
+ btScalar s2 = (lo[i]-x[i])*dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
+ if (s2 < s) {
+ s = s2;
+ cmd = 2;
+ }
+ }
+ }
+
+ {
+ const int numN = lcp.numN();
+ for (int k=0; k < numN; ++k) {
+ const int indexN_k = lcp.indexN(k);
+ if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) {
+ // don't bother checking if lo=hi=0
+ if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
+ btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
+ if (s2 < s) {
+ s = s2;
+ cmd = 4;
+ si = indexN_k;
+ }
+ }
+ }
+ }
+
+ {
+ const int numC = lcp.numC();
+ for (int k=adj_nub; k < numC; ++k) {
+ const int indexC_k = lcp.indexC(k);
+ if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) {
+ btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
+ if (s2 < s) {
+ s = s2;
+ cmd = 5;
+ si = indexC_k;
+ }
+ }
+ if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) {
+ btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
+ if (s2 < s) {
+ s = s2;
+ cmd = 6;
+ si = indexC_k;
+ }
+ }
+ }
+ }
+
+ //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
+ // "C->NL","C->NH"};
+ //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
+
+ // if s <= 0 then we've got a problem. if we just keep going then
+ // we're going to get stuck in an infinite loop. instead, just cross
+ // our fingers and exit with the current solution.
+ if (s <= btScalar(0.0))
+ {
+// printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
+ if (i < n) {
+ btSetZero (x+i,n-i);
+ btSetZero (w+i,n-i);
+ }
+ s_error = true;
+ break;
+ }
+
+ // apply x = x + s * delta_x
+ lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]);
+ x[i] += s * dirf;
+
+ // apply w = w + s * delta_w
+ lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]);
+ w[i] += s * scratchMem.delta_w[i];
+
+// void *tmpbuf;
+ // switch indexes between sets if necessary
+ switch (cmd) {
+ case 1: // done
+ w[i] = 0;
+ lcp.transfer_i_to_C (i);
+ break;
+ case 2: // done
+ x[i] = lo[i];
+ scratchMem.state[i] = false;
+ lcp.transfer_i_to_N (i);
+ break;
+ case 3: // done
+ x[i] = hi[i];
+ scratchMem.state[i] = true;
+ lcp.transfer_i_to_N (i);
+ break;
+ case 4: // keep going
+ w[si] = 0;
+ lcp.transfer_i_from_N_to_C (si);
+ break;
+ case 5: // keep going
+ x[si] = lo[si];
+ scratchMem.state[si] = false;
+ lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
+ break;
+ case 6: // keep going
+ x[si] = hi[si];
+ scratchMem.state[si] = true;
+ lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
+ break;
+ }
+
+ if (cmd <= 3) break;
+ } // for (;;)
+ } // else
+
+ if (s_error)
+ {
+ break;
+ }
+ } // for (int i=adj_nub; i<n; ++i)
+
+ lcp.unpermute();
+
+
+ return !s_error;
+}
+
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.h b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.h
new file mode 100644
index 00000000000..903832770ae
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigLCP.h
@@ -0,0 +1,77 @@
+/*************************************************************************
+ * *
+ * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
+ * All rights reserved. Email: russ@q12.org Web: www.q12.org *
+ * *
+ * This library is free software; you can redistribute it and/or *
+ * modify it under the terms of *
+ * The BSD-style license that is included with this library in *
+ * the file LICENSE-BSD.TXT. *
+ * *
+ * This library is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
+ * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
+ * *
+ *************************************************************************/
+
+/*
+
+given (A,b,lo,hi), solve the LCP problem: A*x = b+w, where each x(i),w(i)
+satisfies one of
+ (1) x = lo, w >= 0
+ (2) x = hi, w <= 0
+ (3) lo < x < hi, w = 0
+A is a matrix of dimension n*n, everything else is a vector of size n*1.
+lo and hi can be +/- dInfinity as needed. the first `nub' variables are
+unbounded, i.e. hi and lo are assumed to be +/- dInfinity.
+
+we restrict lo(i) <= 0 and hi(i) >= 0.
+
+the original data (A,b) may be modified by this function.
+
+if the `findex' (friction index) parameter is nonzero, it points to an array
+of index values. in this case constraints that have findex[i] >= 0 are
+special. all non-special constraints are solved for, then the lo and hi values
+for the special constraints are set:
+ hi[i] = abs( hi[i] * x[findex[i]] )
+ lo[i] = -hi[i]
+and the solution continues. this mechanism allows a friction approximation
+to be implemented. the first `nub' variables are assumed to have findex < 0.
+
+*/
+
+
+#ifndef _BT_LCP_H_
+#define _BT_LCP_H_
+
+#include <stdlib.h>
+#include <stdio.h>
+#include <assert.h>
+
+
+#include "LinearMath/btScalar.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+struct btDantzigScratchMemory
+{
+ btAlignedObjectArray<btScalar> m_scratch;
+ btAlignedObjectArray<btScalar> L;
+ btAlignedObjectArray<btScalar> d;
+ btAlignedObjectArray<btScalar> delta_w;
+ btAlignedObjectArray<btScalar> delta_x;
+ btAlignedObjectArray<btScalar> Dell;
+ btAlignedObjectArray<btScalar> ell;
+ btAlignedObjectArray<btScalar*> Arows;
+ btAlignedObjectArray<int> p;
+ btAlignedObjectArray<int> C;
+ btAlignedObjectArray<bool> state;
+};
+
+//return false if solving failed
+bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
+ int nub, btScalar *lo, btScalar *hi, int *findex,btDantzigScratchMemory& scratch);
+
+
+
+#endif //_BT_LCP_H_
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigSolver.h b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigSolver.h
new file mode 100644
index 00000000000..2a2f2d3d32d
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btDantzigSolver.h
@@ -0,0 +1,112 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+#ifndef BT_DANTZIG_SOLVER_H
+#define BT_DANTZIG_SOLVER_H
+
+#include "btMLCPSolverInterface.h"
+#include "btDantzigLCP.h"
+
+
+class btDantzigSolver : public btMLCPSolverInterface
+{
+protected:
+
+ btScalar m_acceptableUpperLimitSolution;
+
+ btAlignedObjectArray<char> m_tempBuffer;
+
+ btAlignedObjectArray<btScalar> m_A;
+ btAlignedObjectArray<btScalar> m_b;
+ btAlignedObjectArray<btScalar> m_x;
+ btAlignedObjectArray<btScalar> m_lo;
+ btAlignedObjectArray<btScalar> m_hi;
+ btAlignedObjectArray<int> m_dependencies;
+ btDantzigScratchMemory m_scratchMemory;
+public:
+
+ btDantzigSolver()
+ :m_acceptableUpperLimitSolution(btScalar(1000))
+ {
+ }
+
+ virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ {
+ bool result = true;
+ int n = b.rows();
+ if (n)
+ {
+ int nub = 0;
+ btAlignedObjectArray<btScalar> ww;
+ ww.resize(n);
+
+
+ const btScalar* Aptr = A.getBufferPointer();
+ m_A.resize(n*n);
+ for (int i=0;i<n*n;i++)
+ {
+ m_A[i] = Aptr[i];
+
+ }
+
+ m_b.resize(n);
+ m_x.resize(n);
+ m_lo.resize(n);
+ m_hi.resize(n);
+ m_dependencies.resize(n);
+ for (int i=0;i<n;i++)
+ {
+ m_lo[i] = lo[i];
+ m_hi[i] = hi[i];
+ m_b[i] = b[i];
+ m_x[i] = x[i];
+ m_dependencies[i] = limitDependency[i];
+ }
+
+
+ result = btSolveDantzigLCP (n,&m_A[0],&m_x[0],&m_b[0],&ww[0],nub,&m_lo[0],&m_hi[0],&m_dependencies[0],m_scratchMemory);
+ if (!result)
+ return result;
+
+// printf("numAllocas = %d\n",numAllocas);
+ for (int i=0;i<n;i++)
+ {
+ volatile btScalar xx = m_x[i];
+ if (xx != m_x[i])
+ return false;
+ if (x[i] >= m_acceptableUpperLimitSolution)
+ {
+ return false;
+ }
+
+ if (x[i] <= -m_acceptableUpperLimitSolution)
+ {
+ return false;
+ }
+ }
+
+ for (int i=0;i<n;i++)
+ {
+ x[i] = m_x[i];
+ }
+
+ }
+
+ return result;
+ }
+};
+
+#endif //BT_DANTZIG_SOLVER_H
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
new file mode 100644
index 00000000000..8888d3961f5
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
@@ -0,0 +1,626 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+#include "btMLCPSolver.h"
+#include "LinearMath/btMatrixX.h"
+#include "LinearMath/btQuickprof.h"
+#include "btSolveProjectedGaussSeidel.h"
+
+btMLCPSolver::btMLCPSolver( btMLCPSolverInterface* solver)
+:m_solver(solver),
+m_fallback(0)
+{
+}
+
+btMLCPSolver::~btMLCPSolver()
+{
+}
+
+bool gUseMatrixMultiply = false;
+bool interleaveContactAndFriction = false;
+
+btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodiesUnUsed, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies, numBodiesUnUsed, manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ {
+ BT_PROFILE("gather constraint data");
+
+ int numFrictionPerContact = m_tmpSolverContactConstraintPool.size()==m_tmpSolverContactFrictionConstraintPool.size()? 1 : 2;
+
+
+ int numBodies = m_tmpSolverBodyPool.size();
+ m_allConstraintArray.resize(0);
+ m_limitDependencies.resize(m_tmpSolverNonContactConstraintPool.size()+m_tmpSolverContactConstraintPool.size()+m_tmpSolverContactFrictionConstraintPool.size());
+ btAssert(m_limitDependencies.size() == m_tmpSolverNonContactConstraintPool.size()+m_tmpSolverContactConstraintPool.size()+m_tmpSolverContactFrictionConstraintPool.size());
+ // printf("m_limitDependencies.size() = %d\n",m_limitDependencies.size());
+
+ int dindex = 0;
+ for (int i=0;i<m_tmpSolverNonContactConstraintPool.size();i++)
+ {
+ m_allConstraintArray.push_back(m_tmpSolverNonContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ }
+
+ ///The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
+
+ int firstContactConstraintOffset=dindex;
+
+ if (interleaveContactAndFriction)
+ {
+ for (int i=0;i<m_tmpSolverContactConstraintPool.size();i++)
+ {
+ m_allConstraintArray.push_back(m_tmpSolverContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ m_allConstraintArray.push_back(m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact]);
+ int findex = (m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact].m_frictionIndex*(1+numFrictionPerContact));
+ m_limitDependencies[dindex++] = findex +firstContactConstraintOffset;
+ if (numFrictionPerContact==2)
+ {
+ m_allConstraintArray.push_back(m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact+1]);
+ m_limitDependencies[dindex++] = findex+firstContactConstraintOffset;
+ }
+ }
+ } else
+ {
+ for (int i=0;i<m_tmpSolverContactConstraintPool.size();i++)
+ {
+ m_allConstraintArray.push_back(m_tmpSolverContactConstraintPool[i]);
+ m_limitDependencies[dindex++] = -1;
+ }
+ for (int i=0;i<m_tmpSolverContactFrictionConstraintPool.size();i++)
+ {
+ m_allConstraintArray.push_back(m_tmpSolverContactFrictionConstraintPool[i]);
+ m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex+firstContactConstraintOffset;
+ }
+
+ }
+
+
+ if (!m_allConstraintArray.size())
+ {
+ m_A.resize(0,0);
+ m_b.resize(0);
+ m_x.resize(0);
+ m_lo.resize(0);
+ m_hi.resize(0);
+ return 0.f;
+ }
+ }
+
+
+ if (gUseMatrixMultiply)
+ {
+ BT_PROFILE("createMLCP");
+ createMLCP(infoGlobal);
+ }
+ else
+ {
+ BT_PROFILE("createMLCPFast");
+ createMLCPFast(infoGlobal);
+ }
+
+ return 0.f;
+}
+
+bool btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
+{
+ bool result = true;
+
+ if (m_A.rows()==0)
+ return true;
+
+ //if using split impulse, we solve 2 separate (M)LCPs
+ if (infoGlobal.m_splitImpulse)
+ {
+ btMatrixXu Acopy = m_A;
+ btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
+// printf("solve first LCP\n");
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
+ if (result)
+ result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo,m_hi, limitDependenciesCopy,infoGlobal.m_numIterations );
+
+ } else
+ {
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
+ }
+ return result;
+}
+
+struct btJointNode
+{
+ int jointIndex; // pointer to enclosing dxJoint object
+ int otherBodyIndex; // *other* body this joint is connected to
+ int nextJointNodeIndex;//-1 for null
+ int constraintRowIndex;
+};
+
+
+
+void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
+{
+ int numContactRows = interleaveContactAndFriction ? 3 : 1;
+
+ int numConstraintRows = m_allConstraintArray.size();
+ int n = numConstraintRows;
+ {
+ BT_PROFILE("init b (rhs)");
+ m_b.resize(numConstraintRows);
+ m_bSplit.resize(numConstraintRows);
+ //m_b.setZero();
+ for (int i=0;i<numConstraintRows ;i++)
+ {
+ if (m_allConstraintArray[i].m_jacDiagABInv)
+ {
+ m_b[i]=m_allConstraintArray[i].m_rhs/m_allConstraintArray[i].m_jacDiagABInv;
+ m_bSplit[i] = m_allConstraintArray[i].m_rhsPenetration/m_allConstraintArray[i].m_jacDiagABInv;
+ }
+
+ }
+ }
+
+ btScalar* w = 0;
+ int nub = 0;
+
+ m_lo.resize(numConstraintRows);
+ m_hi.resize(numConstraintRows);
+
+ {
+ BT_PROFILE("init lo/ho");
+
+ for (int i=0;i<numConstraintRows;i++)
+ {
+ if (0)//m_limitDependencies[i]>=0)
+ {
+ m_lo[i] = -BT_INFINITY;
+ m_hi[i] = BT_INFINITY;
+ } else
+ {
+ m_lo[i] = m_allConstraintArray[i].m_lowerLimit;
+ m_hi[i] = m_allConstraintArray[i].m_upperLimit;
+ }
+ }
+ }
+
+ //
+ int m=m_allConstraintArray.size();
+
+ int numBodies = m_tmpSolverBodyPool.size();
+ btAlignedObjectArray<int> bodyJointNodeArray;
+ {
+ BT_PROFILE("bodyJointNodeArray.resize");
+ bodyJointNodeArray.resize(numBodies,-1);
+ }
+ btAlignedObjectArray<btJointNode> jointNodeArray;
+ {
+ BT_PROFILE("jointNodeArray.reserve");
+ jointNodeArray.reserve(2*m_allConstraintArray.size());
+ }
+
+ static btMatrixXu J3;
+ {
+ BT_PROFILE("J3.resize");
+ J3.resize(2*m,8);
+ }
+ static btMatrixXu JinvM3;
+ {
+ BT_PROFILE("JinvM3.resize/setZero");
+
+ JinvM3.resize(2*m,8);
+ JinvM3.setZero();
+ J3.setZero();
+ }
+ int cur=0;
+ int rowOffset = 0;
+ static btAlignedObjectArray<int> ofs;
+ {
+ BT_PROFILE("ofs resize");
+ ofs.resize(0);
+ ofs.resizeNoInitialize(m_allConstraintArray.size());
+ }
+ {
+ BT_PROFILE("Compute J and JinvM");
+ int c=0;
+
+ int numRows = 0;
+
+ for (int i=0;i<m_allConstraintArray.size();i+=numRows,c++)
+ {
+ ofs[c] = rowOffset;
+ int sbA = m_allConstraintArray[i].m_solverBodyIdA;
+ int sbB = m_allConstraintArray[i].m_solverBodyIdB;
+ btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i<m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows ;
+ if (orgBodyA)
+ {
+ {
+ int slotA=-1;
+ //find free jointNode slot for sbA
+ slotA =jointNodeArray.size();
+ jointNodeArray.expand();//NonInitializing();
+ int prevSlot = bodyJointNodeArray[sbA];
+ bodyJointNodeArray[sbA] = slotA;
+ jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
+ jointNodeArray[slotA].jointIndex = c;
+ jointNodeArray[slotA].constraintRowIndex = i;
+ jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
+ }
+ for (int row=0;row<numRows;row++,cur++)
+ {
+ btVector3 normalInvMass = m_allConstraintArray[i+row].m_contactNormal1 * orgBodyA->getInvMass();
+ btVector3 relPosCrossNormalInvInertia = m_allConstraintArray[i+row].m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
+
+ for (int r=0;r<3;r++)
+ {
+ J3.setElem(cur,r,m_allConstraintArray[i+row].m_contactNormal1[r]);
+ J3.setElem(cur,r+4,m_allConstraintArray[i+row].m_relpos1CrossNormal[r]);
+ JinvM3.setElem(cur,r,normalInvMass[r]);
+ JinvM3.setElem(cur,r+4,relPosCrossNormalInvInertia[r]);
+ }
+ J3.setElem(cur,3,0);
+ JinvM3.setElem(cur,3,0);
+ J3.setElem(cur,7,0);
+ JinvM3.setElem(cur,7,0);
+ }
+ } else
+ {
+ cur += numRows;
+ }
+ if (orgBodyB)
+ {
+
+ {
+ int slotB=-1;
+ //find free jointNode slot for sbA
+ slotB =jointNodeArray.size();
+ jointNodeArray.expand();//NonInitializing();
+ int prevSlot = bodyJointNodeArray[sbB];
+ bodyJointNodeArray[sbB] = slotB;
+ jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
+ jointNodeArray[slotB].jointIndex = c;
+ jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
+ jointNodeArray[slotB].constraintRowIndex = i;
+ }
+
+ for (int row=0;row<numRows;row++,cur++)
+ {
+ btVector3 normalInvMassB = m_allConstraintArray[i+row].m_contactNormal2*orgBodyB->getInvMass();
+ btVector3 relPosInvInertiaB = m_allConstraintArray[i+row].m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
+
+ for (int r=0;r<3;r++)
+ {
+ J3.setElem(cur,r,m_allConstraintArray[i+row].m_contactNormal2[r]);
+ J3.setElem(cur,r+4,m_allConstraintArray[i+row].m_relpos2CrossNormal[r]);
+ JinvM3.setElem(cur,r,normalInvMassB[r]);
+ JinvM3.setElem(cur,r+4,relPosInvInertiaB[r]);
+ }
+ J3.setElem(cur,3,0);
+ JinvM3.setElem(cur,3,0);
+ J3.setElem(cur,7,0);
+ JinvM3.setElem(cur,7,0);
+ }
+ }
+ else
+ {
+ cur += numRows;
+ }
+ rowOffset+=numRows;
+
+ }
+
+ }
+
+
+ //compute JinvM = J*invM.
+ const btScalar* JinvM = JinvM3.getBufferPointer();
+
+ const btScalar* Jptr = J3.getBufferPointer();
+ {
+ BT_PROFILE("m_A.resize");
+ m_A.resize(n,n);
+ }
+
+ {
+ BT_PROFILE("m_A.setZero");
+ m_A.setZero();
+ }
+ int c=0;
+ {
+ int numRows = 0;
+ BT_PROFILE("Compute A");
+ for (int i=0;i<m_allConstraintArray.size();i+= numRows,c++)
+ {
+ int row__ = ofs[c];
+ int sbA = m_allConstraintArray[i].m_solverBodyIdA;
+ int sbB = m_allConstraintArray[i].m_solverBodyIdB;
+ btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i<m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows ;
+
+ const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
+
+ {
+ int startJointNodeA = bodyJointNodeArray[sbA];
+ while (startJointNodeA>=0)
+ {
+ int j0 = jointNodeArray[startJointNodeA].jointIndex;
+ int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
+ if (j0<c)
+ {
+
+ int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintArray[cr0].m_solverBodyIdB == sbA) ? 8*numRowsOther : 0;
+ //printf("%d joint i %d and j0: %d: ",count++,i,j0);
+ m_A.multiplyAdd2_p8r ( JinvMrow,
+ Jptr + 2*8*(size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__,ofs[j0]);
+ }
+ startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
+ }
+ }
+
+ {
+ int startJointNodeB = bodyJointNodeArray[sbB];
+ while (startJointNodeB>=0)
+ {
+ int j1 = jointNodeArray[startJointNodeB].jointIndex;
+ int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
+
+ if (j1<c)
+ {
+ int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintArray[cj1].m_solverBodyIdB == sbB) ? 8*numRowsOther : 0;
+ m_A.multiplyAdd2_p8r ( JinvMrow + 8*(size_t)numRows,
+ Jptr + 2*8*(size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__,ofs[j1]);
+ }
+ startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
+ }
+ }
+ }
+
+ {
+ BT_PROFILE("compute diagonal");
+ // compute diagonal blocks of m_A
+
+ int row__ = 0;
+ int numJointRows = m_allConstraintArray.size();
+
+ int jj=0;
+ for (;row__<numJointRows;)
+ {
+
+ int sbA = m_allConstraintArray[row__].m_solverBodyIdA;
+ int sbB = m_allConstraintArray[row__].m_solverBodyIdB;
+ btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+
+ const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
+
+ const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
+ const btScalar *Jrow = Jptr + 2*8*(size_t)row__;
+ m_A.multiply2_p8r (JinvMrow, Jrow, infom, infom, row__,row__);
+ if (orgBodyB)
+ {
+ m_A.multiplyAdd2_p8r (JinvMrow + 8*(size_t)infom, Jrow + 8*(size_t)infom, infom, infom, row__,row__);
+ }
+ row__ += infom;
+ jj++;
+ }
+ }
+ }
+
+ ///todo: use proper cfm values from the constraints (getInfo2)
+ if (1)
+ {
+ // add cfm to the diagonal of m_A
+ for ( int i=0; i<m_A.rows(); ++i)
+ {
+ float cfm = 0.00001f;
+ m_A.setElem(i,i,m_A(i,i)+ cfm / infoGlobal.m_timeStep);
+ }
+ }
+
+ ///fill the upper triangle of the matrix, to make it symmetric
+ {
+ BT_PROFILE("fill the upper triangle ");
+ m_A.copyLowerToUpperTriangle();
+ }
+
+ {
+ BT_PROFILE("resize/init x");
+ m_x.resize(numConstraintRows);
+ m_xSplit.resize(numConstraintRows);
+
+ if (infoGlobal.m_solverMode&SOLVER_USE_WARMSTARTING)
+ {
+ for (int i=0;i<m_allConstraintArray.size();i++)
+ {
+ const btSolverConstraint& c = m_allConstraintArray[i];
+ m_x[i]=c.m_appliedImpulse;
+ m_xSplit[i] = c.m_appliedPushImpulse;
+ }
+ } else
+ {
+ m_x.setZero();
+ m_xSplit.setZero();
+ }
+ }
+
+}
+
+void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
+{
+ int numBodies = this->m_tmpSolverBodyPool.size();
+ int numConstraintRows = m_allConstraintArray.size();
+
+ m_b.resize(numConstraintRows);
+ if (infoGlobal.m_splitImpulse)
+ m_bSplit.resize(numConstraintRows);
+
+ for (int i=0;i<numConstraintRows ;i++)
+ {
+ if (m_allConstraintArray[i].m_jacDiagABInv)
+ {
+ m_b[i]=m_allConstraintArray[i].m_rhs/m_allConstraintArray[i].m_jacDiagABInv;
+ if (infoGlobal.m_splitImpulse)
+ m_bSplit[i] = m_allConstraintArray[i].m_rhsPenetration/m_allConstraintArray[i].m_jacDiagABInv;
+ }
+ }
+
+ static btMatrixXu Minv;
+ Minv.resize(6*numBodies,6*numBodies);
+ Minv.setZero();
+ for (int i=0;i<numBodies;i++)
+ {
+ const btSolverBody& rb = m_tmpSolverBodyPool[i];
+ const btVector3& invMass = rb.m_invMass;
+ setElem(Minv,i*6+0,i*6+0,invMass[0]);
+ setElem(Minv,i*6+1,i*6+1,invMass[1]);
+ setElem(Minv,i*6+2,i*6+2,invMass[2]);
+ btRigidBody* orgBody = m_tmpSolverBodyPool[i].m_originalBody;
+
+ for (int r=0;r<3;r++)
+ for (int c=0;c<3;c++)
+ setElem(Minv,i*6+3+r,i*6+3+c,orgBody? orgBody->getInvInertiaTensorWorld()[r][c] : 0);
+ }
+
+ static btMatrixXu J;
+ J.resize(numConstraintRows,6*numBodies);
+ J.setZero();
+
+ m_lo.resize(numConstraintRows);
+ m_hi.resize(numConstraintRows);
+
+ for (int i=0;i<numConstraintRows;i++)
+ {
+
+ m_lo[i] = m_allConstraintArray[i].m_lowerLimit;
+ m_hi[i] = m_allConstraintArray[i].m_upperLimit;
+
+ int bodyIndex0 = m_allConstraintArray[i].m_solverBodyIdA;
+ int bodyIndex1 = m_allConstraintArray[i].m_solverBodyIdB;
+ if (m_tmpSolverBodyPool[bodyIndex0].m_originalBody)
+ {
+ setElem(J,i,6*bodyIndex0+0,m_allConstraintArray[i].m_contactNormal1[0]);
+ setElem(J,i,6*bodyIndex0+1,m_allConstraintArray[i].m_contactNormal1[1]);
+ setElem(J,i,6*bodyIndex0+2,m_allConstraintArray[i].m_contactNormal1[2]);
+ setElem(J,i,6*bodyIndex0+3,m_allConstraintArray[i].m_relpos1CrossNormal[0]);
+ setElem(J,i,6*bodyIndex0+4,m_allConstraintArray[i].m_relpos1CrossNormal[1]);
+ setElem(J,i,6*bodyIndex0+5,m_allConstraintArray[i].m_relpos1CrossNormal[2]);
+ }
+ if (m_tmpSolverBodyPool[bodyIndex1].m_originalBody)
+ {
+ setElem(J,i,6*bodyIndex1+0,m_allConstraintArray[i].m_contactNormal2[0]);
+ setElem(J,i,6*bodyIndex1+1,m_allConstraintArray[i].m_contactNormal2[1]);
+ setElem(J,i,6*bodyIndex1+2,m_allConstraintArray[i].m_contactNormal2[2]);
+ setElem(J,i,6*bodyIndex1+3,m_allConstraintArray[i].m_relpos2CrossNormal[0]);
+ setElem(J,i,6*bodyIndex1+4,m_allConstraintArray[i].m_relpos2CrossNormal[1]);
+ setElem(J,i,6*bodyIndex1+5,m_allConstraintArray[i].m_relpos2CrossNormal[2]);
+ }
+ }
+
+ static btMatrixXu J_transpose;
+ J_transpose= J.transpose();
+
+ static btMatrixXu tmp;
+
+ {
+ {
+ BT_PROFILE("J*Minv");
+ tmp = J*Minv;
+
+ }
+ {
+ BT_PROFILE("J*tmp");
+ m_A = tmp*J_transpose;
+ }
+ }
+
+ if (1)
+ {
+ ///todo: use proper cfm values from the constraints (getInfo2)
+ // add cfm to the diagonal of m_A
+ for ( int i=0; i<m_A.rows(); ++i)
+ {
+ float cfm = 0.0001f;
+ m_A.setElem(i,i,m_A(i,i)+ cfm / infoGlobal.m_timeStep);
+ }
+ }
+
+ m_x.resize(numConstraintRows);
+ if (infoGlobal.m_splitImpulse)
+ m_xSplit.resize(numConstraintRows);
+// m_x.setZero();
+
+ for (int i=0;i<m_allConstraintArray.size();i++)
+ {
+ const btSolverConstraint& c = m_allConstraintArray[i];
+ m_x[i]=c.m_appliedImpulse;
+ if (infoGlobal.m_splitImpulse)
+ m_xSplit[i] = c.m_appliedPushImpulse;
+ }
+
+}
+
+
+btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ bool result = true;
+ {
+ BT_PROFILE("solveMLCP");
+// printf("m_A(%d,%d)\n", m_A.rows(),m_A.cols());
+ result = solveMLCP(infoGlobal);
+ }
+
+ //check if solution is valid, and otherwise fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations
+ if (result)
+ {
+ BT_PROFILE("process MLCP results");
+ for (int i=0;i<m_allConstraintArray.size();i++)
+ {
+ {
+ btSolverConstraint& c = m_allConstraintArray[i];
+ int sbA = c.m_solverBodyIdA;
+ int sbB = c.m_solverBodyIdB;
+ btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
+ btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
+
+ solverBodyA.internalApplyImpulse(c.m_contactNormal1*solverBodyA.internalGetInvMass(),c.m_angularComponentA,m_x[i]);
+ solverBodyB.internalApplyImpulse(c.m_contactNormal2*solverBodyB.internalGetInvMass(),c.m_angularComponentB,m_x[i]);
+ if (infoGlobal.m_splitImpulse)
+ {
+ solverBodyA.internalApplyPushImpulse(c.m_contactNormal1*solverBodyA.internalGetInvMass(),c.m_angularComponentA,m_xSplit[i]);
+ solverBodyB.internalApplyPushImpulse(c.m_contactNormal2*solverBodyB.internalGetInvMass(),c.m_angularComponentB,m_xSplit[i]);
+ c.m_appliedPushImpulse = m_xSplit[i];
+ }
+ c.m_appliedImpulse = m_x[i];
+ }
+ }
+ }
+ else
+ {
+ m_fallback++;
+ btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+ }
+
+ return 0.f;
+} \ No newline at end of file
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.h b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.h
new file mode 100644
index 00000000000..a5dae2d28f6
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolver.h
@@ -0,0 +1,81 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+#ifndef BT_MLCP_SOLVER_H
+#define BT_MLCP_SOLVER_H
+
+#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
+#include "LinearMath/btMatrixX.h"
+#include "BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h"
+
+class btMLCPSolver : public btSequentialImpulseConstraintSolver
+{
+
+protected:
+
+ btMatrixXu m_A;
+ btVectorXu m_b;
+ btVectorXu m_x;
+ btVectorXu m_lo;
+ btVectorXu m_hi;
+
+ ///when using 'split impulse' we solve two separate (M)LCPs
+ btVectorXu m_bSplit;
+ btVectorXu m_xSplit;
+ btVectorXu m_bSplit1;
+ btVectorXu m_xSplit2;
+
+ btAlignedObjectArray<int> m_limitDependencies;
+ btConstraintArray m_allConstraintArray;
+ btMLCPSolverInterface* m_solver;
+ int m_fallback;
+
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ virtual void createMLCP(const btContactSolverInfo& infoGlobal);
+ virtual void createMLCPFast(const btContactSolverInfo& infoGlobal);
+
+ //return true is it solves the problem successfully
+ virtual bool solveMLCP(const btContactSolverInfo& infoGlobal);
+
+public:
+
+ btMLCPSolver( btMLCPSolverInterface* solver);
+ virtual ~btMLCPSolver();
+
+ void setMLCPSolver(btMLCPSolverInterface* solver)
+ {
+ m_solver = solver;
+ }
+
+ int getNumFallbacks() const
+ {
+ return m_fallback;
+ }
+ void setNumFallbacks(int num)
+ {
+ m_fallback = num;
+ }
+
+ virtual btConstraintSolverType getSolverType() const
+ {
+ return BT_MLCP_SOLVER;
+ }
+
+};
+
+
+#endif //BT_MLCP_SOLVER_H
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
new file mode 100644
index 00000000000..25bb3f6d327
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
@@ -0,0 +1,33 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+#ifndef BT_MLCP_SOLVER_INTERFACE_H
+#define BT_MLCP_SOLVER_INTERFACE_H
+
+#include "LinearMath/btMatrixX.h"
+
+class btMLCPSolverInterface
+{
+public:
+ virtual ~btMLCPSolverInterface()
+ {
+ }
+
+ //return true is it solves the problem successfully
+ virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)=0;
+};
+
+#endif //BT_MLCP_SOLVER_INTERFACE_H
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btPATHSolver.h b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btPATHSolver.h
new file mode 100644
index 00000000000..9ec31a6d4e4
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btPATHSolver.h
@@ -0,0 +1,151 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+
+#ifndef BT_PATH_SOLVER_H
+#define BT_PATH_SOLVER_H
+
+//#define BT_USE_PATH
+#ifdef BT_USE_PATH
+
+extern "C" {
+#include "PATH/SimpleLCP.h"
+#include "PATH/License.h"
+#include "PATH/Error_Interface.h"
+};
+ void __stdcall MyError(Void *data, Char *msg)
+{
+ printf("Path Error: %s\n",msg);
+}
+ void __stdcall MyWarning(Void *data, Char *msg)
+{
+ printf("Path Warning: %s\n",msg);
+}
+
+Error_Interface e;
+
+
+
+#include "btMLCPSolverInterface.h"
+#include "Dantzig/lcp.h"
+
+class btPathSolver : public btMLCPSolverInterface
+{
+public:
+
+ btPathSolver()
+ {
+ License_SetString("2069810742&Courtesy_License&&&USR&2013&14_12_2011&1000&PATH&GEN&31_12_2013&0_0_0&0&0_0");
+ e.error_data = 0;
+ e.warning = MyWarning;
+ e.error = MyError;
+ Error_SetInterface(&e);
+ }
+
+
+ virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ {
+ MCP_Termination status;
+
+
+ int numVariables = b.rows();
+ if (0==numVariables)
+ return true;
+
+ /* - variables - the number of variables in the problem
+ - m_nnz - the number of nonzeros in the M matrix
+ - m_i - a vector of size m_nnz containing the row indices for M
+ - m_j - a vector of size m_nnz containing the column indices for M
+ - m_ij - a vector of size m_nnz containing the data for M
+ - q - a vector of size variables
+ - lb - a vector of size variables containing the lower bounds on x
+ - ub - a vector of size variables containing the upper bounds on x
+ */
+ btAlignedObjectArray<double> values;
+ btAlignedObjectArray<int> rowIndices;
+ btAlignedObjectArray<int> colIndices;
+
+ for (int i=0;i<A.rows();i++)
+ {
+ for (int j=0;j<A.cols();j++)
+ {
+ if (A(i,j)!=0.f)
+ {
+ //add 1, because Path starts at 1, instead of 0
+ rowIndices.push_back(i+1);
+ colIndices.push_back(j+1);
+ values.push_back(A(i,j));
+ }
+ }
+ }
+ int numNonZero = rowIndices.size();
+ btAlignedObjectArray<double> zResult;
+ zResult.resize(numVariables);
+ btAlignedObjectArray<double> rhs;
+ btAlignedObjectArray<double> upperBounds;
+ btAlignedObjectArray<double> lowerBounds;
+ for (int i=0;i<numVariables;i++)
+ {
+ upperBounds.push_back(hi[i]);
+ lowerBounds.push_back(lo[i]);
+ rhs.push_back(-b[i]);
+ }
+
+
+ SimpleLCP(numVariables,numNonZero,&rowIndices[0],&colIndices[0],&values[0],&rhs[0],&lowerBounds[0],&upperBounds[0], &status, &zResult[0]);
+
+ if (status != MCP_Solved)
+ {
+ static const char* gReturnMsgs[] = {
+ "Invalid return",
+ "MCP_Solved: The problem was solved",
+ "MCP_NoProgress: A stationary point was found",
+ "MCP_MajorIterationLimit: Major iteration limit met",
+ "MCP_MinorIterationLimit: Cumulative minor iteration limit met",
+ "MCP_TimeLimit: Ran out of time",
+ "MCP_UserInterrupt: Control-C, typically",
+ "MCP_BoundError: Problem has a bound error",
+ "MCP_DomainError: Could not find starting point",
+ "MCP_Infeasible: Problem has no solution",
+ "MCP_Error: An error occurred within the code",
+ "MCP_LicenseError: License could not be found",
+ "MCP_OK"
+ };
+
+ printf("ERROR: The PATH MCP solver failed: %s\n", gReturnMsgs[(unsigned int)status]);// << std::endl;
+ printf("using Projected Gauss Seidel fallback\n");
+
+ return false;
+ } else
+ {
+ for (int i=0;i<numVariables;i++)
+ {
+ x[i] = zResult[i];
+ //check for #NAN
+ if (x[i] != zResult[i])
+ return false;
+ }
+ return true;
+
+ }
+
+ }
+};
+
+#endif //BT_USE_PATH
+
+
+#endif //BT_PATH_SOLVER_H
diff --git a/extern/bullet2/src/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
new file mode 100644
index 00000000000..44fbfeadddc
--- /dev/null
+++ b/extern/bullet2/src/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
@@ -0,0 +1,80 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///original version written by Erwin Coumans, October 2013
+
+#ifndef BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
+#define BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
+
+
+#include "btMLCPSolverInterface.h"
+
+class btSolveProjectedGaussSeidel : public btMLCPSolverInterface
+{
+public:
+ virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ {
+ //A is a m-n matrix, m rows, n columns
+ btAssert(A.rows() == b.rows());
+
+ int i, j, numRows = A.rows();
+
+ float delta;
+
+ for (int k = 0; k <numIterations; k++)
+ {
+ for (i = 0; i <numRows; i++)
+ {
+ delta = 0.0f;
+ if (useSparsity)
+ {
+ for (int h=0;h<A.m_rowNonZeroElements1[i].size();h++)
+ {
+ int j = A.m_rowNonZeroElements1[i][h];
+ if (j != i)//skip main diagonal
+ {
+ delta += A(i,j) * x[j];
+ }
+ }
+ } else
+ {
+ for (j = 0; j <i; j++)
+ delta += A(i,j) * x[j];
+ for (j = i+1; j<numRows; j++)
+ delta += A(i,j) * x[j];
+ }
+
+ float aDiag = A(i,i);
+ x [i] = (b [i] - delta) / A(i,i);
+ float s = 1.f;
+
+ if (limitDependency[i]>=0)
+ {
+ s = x[limitDependency[i]];
+ if (s<0)
+ s=1;
+ }
+
+ if (x[i]<lo[i]*s)
+ x[i]=lo[i]*s;
+ if (x[i]>hi[i]*s)
+ x[i]=hi[i]*s;
+ }
+ }
+ return true;
+ }
+
+};
+
+#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H