Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/BulletSoftBody/btSoftBodyInternals.h')
-rw-r--r--extern/bullet2/src/BulletSoftBody/btSoftBodyInternals.h896
1 files changed, 896 insertions, 0 deletions
diff --git a/extern/bullet2/src/BulletSoftBody/btSoftBodyInternals.h b/extern/bullet2/src/BulletSoftBody/btSoftBodyInternals.h
new file mode 100644
index 00000000000..1a7be2cb840
--- /dev/null
+++ b/extern/bullet2/src/BulletSoftBody/btSoftBodyInternals.h
@@ -0,0 +1,896 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///btSoftBody implementation by Nathanael Presson
+
+#ifndef _BT_SOFT_BODY_INTERNALS_H
+#define _BT_SOFT_BODY_INTERNALS_H
+
+#include "btSoftBody.h"
+
+#include "LinearMath/btQuickprof.h"
+#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
+#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
+#include "BulletCollision/CollisionShapes/btConvexInternalShape.h"
+#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
+
+//
+// btSymMatrix
+//
+template <typename T>
+struct btSymMatrix
+{
+ btSymMatrix() : dim(0) {}
+ btSymMatrix(int n,const T& init=T()) { resize(n,init); }
+void resize(int n,const T& init=T()) { dim=n;store.resize((n*(n+1))/2,init); }
+int index(int c,int r) const { if(c>r) btSwap(c,r);btAssert(r<dim);return((r*(r+1))/2+c); }
+T& operator()(int c,int r) { return(store[index(c,r)]); }
+const T& operator()(int c,int r) const { return(store[index(c,r)]); }
+btAlignedObjectArray<T> store;
+int dim;
+};
+
+//
+// btSoftBodyCollisionShape
+//
+class btSoftBodyCollisionShape : public btConcaveShape
+{
+public:
+ btSoftBody* m_body;
+
+ btSoftBodyCollisionShape(btSoftBody* backptr)
+ {
+ m_body=backptr;
+ }
+
+ virtual ~btSoftBodyCollisionShape()
+ {
+
+ }
+
+ void processAllTriangles(btTriangleCallback* /*callback*/,const btVector3& /*aabbMin*/,const btVector3& /*aabbMax*/) const
+ {
+ //not yet
+ btAssert(0);
+ }
+
+ ///getAabb returns the axis aligned bounding box in the coordinate frame of the given transform t.
+ virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
+ {
+ /* t should be identity, but better be safe than...fast? */
+ const btVector3 mins=m_body->m_bounds[0];
+ const btVector3 maxs=m_body->m_bounds[1];
+ const btVector3 crns[]={t*btVector3(mins.x(),mins.y(),mins.z()),
+ t*btVector3(maxs.x(),mins.y(),mins.z()),
+ t*btVector3(maxs.x(),maxs.y(),mins.z()),
+ t*btVector3(mins.x(),maxs.y(),mins.z()),
+ t*btVector3(mins.x(),mins.y(),maxs.z()),
+ t*btVector3(maxs.x(),mins.y(),maxs.z()),
+ t*btVector3(maxs.x(),maxs.y(),maxs.z()),
+ t*btVector3(mins.x(),maxs.y(),maxs.z())};
+ aabbMin=aabbMax=crns[0];
+ for(int i=1;i<8;++i)
+ {
+ aabbMin.setMin(crns[i]);
+ aabbMax.setMax(crns[i]);
+ }
+ }
+
+ virtual int getShapeType() const
+ {
+ return SOFTBODY_SHAPE_PROXYTYPE;
+ }
+ virtual void setLocalScaling(const btVector3& /*scaling*/)
+ {
+ ///na
+ btAssert(0);
+ }
+ virtual const btVector3& getLocalScaling() const
+ {
+ static const btVector3 dummy(1,1,1);
+ return dummy;
+ }
+ virtual void calculateLocalInertia(btScalar /*mass*/,btVector3& /*inertia*/) const
+ {
+ ///not yet
+ btAssert(0);
+ }
+ virtual const char* getName()const
+ {
+ return "SoftBody";
+ }
+
+};
+
+//
+// btSoftClusterCollisionShape
+//
+class btSoftClusterCollisionShape : public btConvexInternalShape
+{
+public:
+ const btSoftBody::Cluster* m_cluster;
+
+ btSoftClusterCollisionShape (const btSoftBody::Cluster* cluster) : m_cluster(cluster) { setMargin(0); }
+
+
+ virtual btVector3 localGetSupportingVertex(const btVector3& vec) const
+ {
+ btSoftBody::Node* const * n=&m_cluster->m_nodes[0];
+ btScalar d=dot(vec,n[0]->m_x);
+ int j=0;
+ for(int i=1,ni=m_cluster->m_nodes.size();i<ni;++i)
+ {
+ const btScalar k=dot(vec,n[i]->m_x);
+ if(k>d) { d=k;j=i; }
+ }
+ return(n[j]->m_x);
+ }
+ virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const
+ {
+ return(localGetSupportingVertex(vec));
+ }
+ //notice that the vectors should be unit length
+ virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
+ {}
+
+
+ virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const
+ {}
+
+ virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
+ {}
+
+ virtual int getShapeType() const { return SOFTBODY_SHAPE_PROXYTYPE; }
+
+ //debugging
+ virtual const char* getName()const {return "SOFTCLUSTER";}
+
+ virtual void setMargin(btScalar margin)
+ {
+ btConvexInternalShape::setMargin(margin);
+ }
+ virtual btScalar getMargin() const
+ {
+ return getMargin();
+ }
+};
+
+//
+// Inline's
+//
+
+//
+template <typename T>
+static inline void ZeroInitialize(T& value)
+{
+static const T zerodummy;
+value=zerodummy;
+}
+//
+template <typename T>
+static inline bool CompLess(const T& a,const T& b)
+{ return(a<b); }
+//
+template <typename T>
+static inline bool CompGreater(const T& a,const T& b)
+{ return(a>b); }
+//
+template <typename T>
+static inline T Lerp(const T& a,const T& b,btScalar t)
+{ return(a+(b-a)*t); }
+//
+template <typename T>
+static inline T InvLerp(const T& a,const T& b,btScalar t)
+{ return((b+a*t-b*t)/(a*b)); }
+//
+static inline btMatrix3x3 Lerp( const btMatrix3x3& a,
+ const btMatrix3x3& b,
+ btScalar t)
+{
+btMatrix3x3 r;
+r[0]=Lerp(a[0],b[0],t);
+r[1]=Lerp(a[1],b[1],t);
+r[2]=Lerp(a[2],b[2],t);
+return(r);
+}
+//
+static inline btVector3 Clamp(const btVector3& v,btScalar maxlength)
+{
+const btScalar sql=v.length2();
+if(sql>(maxlength*maxlength))
+ return((v*maxlength)/btSqrt(sql));
+ else
+ return(v);
+}
+//
+template <typename T>
+static inline T Clamp(const T& x,const T& l,const T& h)
+{ return(x<l?l:x>h?h:x); }
+//
+template <typename T>
+static inline T Sq(const T& x)
+{ return(x*x); }
+//
+template <typename T>
+static inline T Cube(const T& x)
+{ return(x*x*x); }
+//
+template <typename T>
+static inline T Sign(const T& x)
+{ return((T)(x<0?-1:+1)); }
+//
+template <typename T>
+static inline bool SameSign(const T& x,const T& y)
+{ return((x*y)>0); }
+//
+static inline btScalar ClusterMetric(const btVector3& x,const btVector3& y)
+{
+const btVector3 d=x-y;
+return(btFabs(d[0])+btFabs(d[1])+btFabs(d[2]));
+}
+//
+static inline btMatrix3x3 ScaleAlongAxis(const btVector3& a,btScalar s)
+{
+ const btScalar xx=a.x()*a.x();
+ const btScalar yy=a.y()*a.y();
+ const btScalar zz=a.z()*a.z();
+ const btScalar xy=a.x()*a.y();
+ const btScalar yz=a.y()*a.z();
+ const btScalar zx=a.z()*a.x();
+ btMatrix3x3 m;
+ m[0]=btVector3(1-xx+xx*s,xy*s-xy,zx*s-zx);
+ m[1]=btVector3(xy*s-xy,1-yy+yy*s,yz*s-yz);
+ m[2]=btVector3(zx*s-zx,yz*s-yz,1-zz+zz*s);
+ return(m);
+}
+//
+static inline btMatrix3x3 Cross(const btVector3& v)
+{
+ btMatrix3x3 m;
+ m[0]=btVector3(0,-v.z(),+v.y());
+ m[1]=btVector3(+v.z(),0,-v.x());
+ m[2]=btVector3(-v.y(),+v.x(),0);
+ return(m);
+}
+//
+static inline btMatrix3x3 Diagonal(btScalar x)
+{
+ btMatrix3x3 m;
+ m[0]=btVector3(x,0,0);
+ m[1]=btVector3(0,x,0);
+ m[2]=btVector3(0,0,x);
+ return(m);
+}
+//
+static inline btMatrix3x3 Add(const btMatrix3x3& a,
+ const btMatrix3x3& b)
+{
+ btMatrix3x3 r;
+ for(int i=0;i<3;++i) r[i]=a[i]+b[i];
+ return(r);
+}
+//
+static inline btMatrix3x3 Sub(const btMatrix3x3& a,
+ const btMatrix3x3& b)
+{
+ btMatrix3x3 r;
+ for(int i=0;i<3;++i) r[i]=a[i]-b[i];
+ return(r);
+}
+//
+static inline btMatrix3x3 Mul(const btMatrix3x3& a,
+ btScalar b)
+{
+ btMatrix3x3 r;
+ for(int i=0;i<3;++i) r[i]=a[i]*b;
+ return(r);
+}
+//
+static inline void Orthogonalize(btMatrix3x3& m)
+{
+m[2]=cross(m[0],m[1]).normalized();
+m[1]=cross(m[2],m[0]).normalized();
+m[0]=cross(m[1],m[2]).normalized();
+}
+//
+static inline btMatrix3x3 MassMatrix(btScalar im,const btMatrix3x3& iwi,const btVector3& r)
+{
+ const btMatrix3x3 cr=Cross(r);
+ return(Sub(Diagonal(im),cr*iwi*cr));
+}
+
+//
+static inline btMatrix3x3 ImpulseMatrix( btScalar dt,
+ btScalar ima,
+ btScalar imb,
+ const btMatrix3x3& iwi,
+ const btVector3& r)
+{
+ return(Diagonal(1/dt)*Add(Diagonal(ima),MassMatrix(imb,iwi,r)).inverse());
+}
+
+//
+static inline btMatrix3x3 ImpulseMatrix( btScalar ima,const btMatrix3x3& iia,const btVector3& ra,
+ btScalar imb,const btMatrix3x3& iib,const btVector3& rb)
+{
+return(Add(MassMatrix(ima,iia,ra),MassMatrix(imb,iib,rb)).inverse());
+}
+
+//
+static inline btMatrix3x3 AngularImpulseMatrix( const btMatrix3x3& iia,
+ const btMatrix3x3& iib)
+{
+return(Add(iia,iib).inverse());
+}
+
+//
+static inline btVector3 ProjectOnAxis( const btVector3& v,
+ const btVector3& a)
+{
+ return(a*dot(v,a));
+}
+//
+static inline btVector3 ProjectOnPlane( const btVector3& v,
+ const btVector3& a)
+{
+ return(v-ProjectOnAxis(v,a));
+}
+
+//
+static inline void ProjectOrigin( const btVector3& a,
+ const btVector3& b,
+ btVector3& prj,
+ btScalar& sqd)
+{
+const btVector3 d=b-a;
+const btScalar m2=d.length2();
+if(m2>SIMD_EPSILON)
+ {
+ const btScalar t=Clamp<btScalar>(-dot(a,d)/m2,0,1);
+ const btVector3 p=a+d*t;
+ const btScalar l2=p.length2();
+ if(l2<sqd)
+ {
+ prj=p;
+ sqd=l2;
+ }
+ }
+}
+//
+static inline void ProjectOrigin( const btVector3& a,
+ const btVector3& b,
+ const btVector3& c,
+ btVector3& prj,
+ btScalar& sqd)
+{
+const btVector3& q=cross(b-a,c-a);
+const btScalar m2=q.length2();
+if(m2>SIMD_EPSILON)
+ {
+ const btVector3 n=q/btSqrt(m2);
+ const btScalar k=dot(a,n);
+ const btScalar k2=k*k;
+ if(k2<sqd)
+ {
+ const btVector3 p=n*k;
+ if( (dot(cross(a-p,b-p),q)>0)&&
+ (dot(cross(b-p,c-p),q)>0)&&
+ (dot(cross(c-p,a-p),q)>0))
+ {
+ prj=p;
+ sqd=k2;
+ }
+ else
+ {
+ ProjectOrigin(a,b,prj,sqd);
+ ProjectOrigin(b,c,prj,sqd);
+ ProjectOrigin(c,a,prj,sqd);
+ }
+ }
+ }
+}
+
+//
+template <typename T>
+static inline T BaryEval( const T& a,
+ const T& b,
+ const T& c,
+ const btVector3& coord)
+{
+ return(a*coord.x()+b*coord.y()+c*coord.z());
+}
+//
+static inline btVector3 BaryCoord( const btVector3& a,
+ const btVector3& b,
+ const btVector3& c,
+ const btVector3& p)
+{
+const btScalar w[]={ cross(a-p,b-p).length(),
+ cross(b-p,c-p).length(),
+ cross(c-p,a-p).length()};
+const btScalar isum=1/(w[0]+w[1]+w[2]);
+return(btVector3(w[1]*isum,w[2]*isum,w[0]*isum));
+}
+
+//
+static btScalar ImplicitSolve( btSoftBody::ImplicitFn* fn,
+ const btVector3& a,
+ const btVector3& b,
+ const btScalar accuracy,
+ const int maxiterations=256)
+{
+btScalar span[2]={0,1};
+btScalar values[2]={fn->Eval(a),fn->Eval(b)};
+if(values[0]>values[1])
+ {
+ btSwap(span[0],span[1]);
+ btSwap(values[0],values[1]);
+ }
+if(values[0]>-accuracy) return(-1);
+if(values[1]<+accuracy) return(-1);
+for(int i=0;i<maxiterations;++i)
+ {
+ const btScalar t=Lerp(span[0],span[1],values[0]/(values[0]-values[1]));
+ const btScalar v=fn->Eval(Lerp(a,b,t));
+ if((t<=0)||(t>=1)) break;
+ if(btFabs(v)<accuracy) return(t);
+ if(v<0)
+ { span[0]=t;values[0]=v; }
+ else
+ { span[1]=t;values[1]=v; }
+ }
+return(-1);
+}
+
+//
+static inline btVector3 NormalizeAny(const btVector3& v)
+{
+ const btScalar l=v.length();
+ if(l>SIMD_EPSILON)
+ return(v/l);
+ else
+ return(btVector3(0,0,0));
+}
+
+//
+static inline btDbvtVolume VolumeOf( const btSoftBody::Face& f,
+ btScalar margin)
+{
+const btVector3* pts[]={ &f.m_n[0]->m_x,
+ &f.m_n[1]->m_x,
+ &f.m_n[2]->m_x};
+btDbvtVolume vol=btDbvtVolume::FromPoints(pts,3);
+vol.Expand(btVector3(margin,margin,margin));
+return(vol);
+}
+
+//
+static inline btVector3 CenterOf( const btSoftBody::Face& f)
+{
+return((f.m_n[0]->m_x+f.m_n[1]->m_x+f.m_n[2]->m_x)/3);
+}
+
+//
+static inline btScalar AreaOf( const btVector3& x0,
+ const btVector3& x1,
+ const btVector3& x2)
+{
+ const btVector3 a=x1-x0;
+ const btVector3 b=x2-x0;
+ const btVector3 cr=cross(a,b);
+ const btScalar area=cr.length();
+ return(area);
+}
+
+//
+static inline btScalar VolumeOf( const btVector3& x0,
+ const btVector3& x1,
+ const btVector3& x2,
+ const btVector3& x3)
+{
+ const btVector3 a=x1-x0;
+ const btVector3 b=x2-x0;
+ const btVector3 c=x3-x0;
+ return(dot(a,cross(b,c)));
+}
+
+//
+static void EvaluateMedium( const btSoftBodyWorldInfo* wfi,
+ const btVector3& x,
+ btSoftBody::sMedium& medium)
+{
+ medium.m_velocity = btVector3(0,0,0);
+ medium.m_pressure = 0;
+ medium.m_density = wfi->air_density;
+ if(wfi->water_density>0)
+ {
+ const btScalar depth=-(dot(x,wfi->water_normal)+wfi->water_offset);
+ if(depth>0)
+ {
+ medium.m_density = wfi->water_density;
+ medium.m_pressure = depth*wfi->water_density*wfi->m_gravity.length();
+ }
+ }
+}
+
+//
+static inline void ApplyClampedForce( btSoftBody::Node& n,
+ const btVector3& f,
+ btScalar dt)
+{
+ const btScalar dtim=dt*n.m_im;
+ if((f*dtim).length2()>n.m_v.length2())
+ {/* Clamp */
+ n.m_f-=ProjectOnAxis(n.m_v,f.normalized())/dtim;
+ }
+ else
+ {/* Apply */
+ n.m_f+=f;
+ }
+}
+
+//
+static inline int MatchEdge( const btSoftBody::Node* a,
+ const btSoftBody::Node* b,
+ const btSoftBody::Node* ma,
+ const btSoftBody::Node* mb)
+{
+if((a==ma)&&(b==mb)) return(0);
+if((a==mb)&&(b==ma)) return(1);
+return(-1);
+}
+
+//
+// btEigen : Extract eigen system,
+// straitforward implementation of http://math.fullerton.edu/mathews/n2003/JacobiMethodMod.html
+// outputs are NOT sorted.
+//
+struct btEigen
+{
+static int system(btMatrix3x3& a,btMatrix3x3* vectors,btVector3* values=0)
+ {
+ static const int maxiterations=16;
+ static const btScalar accuracy=(btScalar)0.0001;
+ btMatrix3x3& v=*vectors;
+ int iterations=0;
+ vectors->setIdentity();
+ do {
+ int p=0,q=1;
+ if(btFabs(a[p][q])<btFabs(a[0][2])) { p=0;q=2; }
+ if(btFabs(a[p][q])<btFabs(a[1][2])) { p=1;q=2; }
+ if(btFabs(a[p][q])>accuracy)
+ {
+ const btScalar w=(a[q][q]-a[p][p])/(2*a[p][q]);
+ const btScalar z=btFabs(w);
+ const btScalar t=w/(z*(btSqrt(1+w*w)+z));
+ if(t==t)/* [WARNING] let hope that one does not get thrown aways by some compilers... */
+ {
+ const btScalar c=1/btSqrt(t*t+1);
+ const btScalar s=c*t;
+ mulPQ(a,c,s,p,q);
+ mulTPQ(a,c,s,p,q);
+ mulPQ(v,c,s,p,q);
+ } else break;
+ } else break;
+ } while((++iterations)<maxiterations);
+ if(values)
+ {
+ *values=btVector3(a[0][0],a[1][1],a[2][2]);
+ }
+ return(iterations);
+ }
+private:
+static inline void mulTPQ(btMatrix3x3& a,btScalar c,btScalar s,int p,int q)
+ {
+ const btScalar m[2][3]={ {a[p][0],a[p][1],a[p][2]},
+ {a[q][0],a[q][1],a[q][2]}};
+ int i;
+
+ for(i=0;i<3;++i) a[p][i]=c*m[0][i]-s*m[1][i];
+ for(i=0;i<3;++i) a[q][i]=c*m[1][i]+s*m[0][i];
+ }
+static inline void mulPQ(btMatrix3x3& a,btScalar c,btScalar s,int p,int q)
+ {
+ const btScalar m[2][3]={ {a[0][p],a[1][p],a[2][p]},
+ {a[0][q],a[1][q],a[2][q]}};
+ int i;
+
+ for(i=0;i<3;++i) a[i][p]=c*m[0][i]-s*m[1][i];
+ for(i=0;i<3;++i) a[i][q]=c*m[1][i]+s*m[0][i];
+ }
+};
+
+//
+// Polar decomposition,
+// "Computing the Polar Decomposition with Applications", Nicholas J. Higham, 1986.
+//
+static inline int PolarDecompose( const btMatrix3x3& m,btMatrix3x3& q,btMatrix3x3& s)
+{
+ static const btScalar half=(btScalar)0.5;
+ static const btScalar accuracy=(btScalar)0.0001;
+ static const int maxiterations=16;
+ int i=0;
+ btScalar det=0;
+ q = Mul(m,1/btVector3(m[0][0],m[1][1],m[2][2]).length());
+ det = q.determinant();
+ if(!btFuzzyZero(det))
+ {
+ for(;i<maxiterations;++i)
+ {
+ q=Mul(Add(q,Mul(q.adjoint(),1/det).transpose()),half);
+ const btScalar ndet=q.determinant();
+ if(Sq(ndet-det)>accuracy) det=ndet; else break;
+ }
+ /* Final orthogonalization */
+ Orthogonalize(q);
+ /* Compute 'S' */
+ s=q.transpose()*m;
+ }
+ else
+ {
+ q.setIdentity();
+ s.setIdentity();
+ }
+return(i);
+}
+
+//
+// btSoftColliders
+//
+struct btSoftColliders
+{
+ //
+ // ClusterBase
+ //
+ struct ClusterBase : btDbvt::ICollide
+ {
+ btScalar erp;
+ btScalar idt;
+ btScalar margin;
+ btScalar friction;
+ btScalar threshold;
+ ClusterBase()
+ {
+ erp =(btScalar)1;
+ idt =0;
+ margin =0;
+ friction =0;
+ threshold =(btScalar)0;
+ }
+ bool SolveContact( const btGjkEpaSolver2::sResults& res,
+ btSoftBody::Body ba,btSoftBody::Body bb,
+ btSoftBody::CJoint& joint)
+ {
+ if(res.distance<margin)
+ {
+ const btVector3 ra=res.witnesses[0]-ba.xform().getOrigin();
+ const btVector3 rb=res.witnesses[1]-bb.xform().getOrigin();
+ const btVector3 va=ba.velocity(ra);
+ const btVector3 vb=bb.velocity(rb);
+ const btVector3 vrel=va-vb;
+ const btScalar rvac=dot(vrel,res.normal);
+ const btScalar depth=res.distance-margin;
+ const btVector3 iv=res.normal*rvac;
+ const btVector3 fv=vrel-iv;
+ joint.m_bodies[0] = ba;
+ joint.m_bodies[1] = bb;
+ joint.m_refs[0] = ra*ba.xform().getBasis();
+ joint.m_refs[1] = rb*bb.xform().getBasis();
+ joint.m_rpos[0] = ra;
+ joint.m_rpos[1] = rb;
+ joint.m_cfm = 1;
+ joint.m_erp = 1;
+ joint.m_life = 0;
+ joint.m_maxlife = 0;
+ joint.m_split = 1;
+ joint.m_drift = depth*res.normal;
+ joint.m_normal = res.normal;
+ joint.m_delete = false;
+ joint.m_friction = fv.length2()<(-rvac*friction)?1:friction;
+ joint.m_massmatrix = ImpulseMatrix( ba.invMass(),ba.invWorldInertia(),joint.m_rpos[0],
+ bb.invMass(),bb.invWorldInertia(),joint.m_rpos[1]);
+ return(true);
+ }
+ return(false);
+ }
+ };
+ //
+ // CollideCL_RS
+ //
+ struct CollideCL_RS : ClusterBase
+ {
+ btSoftBody* psb;
+ btRigidBody* prb;
+ void Process(const btDbvtNode* leaf)
+ {
+ btSoftBody::Cluster* cluster=(btSoftBody::Cluster*)leaf->data;
+ btSoftClusterCollisionShape cshape(cluster);
+ const btConvexShape* rshape=(const btConvexShape*)prb->getCollisionShape();
+ btGjkEpaSolver2::sResults res;
+ if(btGjkEpaSolver2::SignedDistance( &cshape,btTransform::getIdentity(),
+ rshape,prb->getInterpolationWorldTransform(),
+ btVector3(1,0,0),res))
+ {
+ btSoftBody::CJoint joint;
+ if(SolveContact(res,cluster,prb,joint))
+ {
+ btSoftBody::CJoint* pj=new(btAlignedAlloc(sizeof(btSoftBody::CJoint),16)) btSoftBody::CJoint();
+ *pj=joint;psb->m_joints.push_back(pj);
+ if(prb->isStaticOrKinematicObject())
+ {
+ pj->m_erp *= psb->m_cfg.kSKHR_CL;
+ pj->m_split *= psb->m_cfg.kSK_SPLT_CL;
+ }
+ else
+ {
+ pj->m_erp *= psb->m_cfg.kSRHR_CL;
+ pj->m_split *= psb->m_cfg.kSR_SPLT_CL;
+ }
+ }
+ }
+ }
+ void Process(btSoftBody* ps,btRigidBody* pr)
+ {
+ psb = ps;
+ prb = pr;
+ idt = ps->m_sst.isdt;
+ margin = ps->getCollisionShape()->getMargin()+
+ pr->getCollisionShape()->getMargin();
+ friction = btMin(psb->m_cfg.kDF,prb->getFriction());
+ btVector3 mins;
+ btVector3 maxs;
+
+ ATTRIBUTE_ALIGNED16(btDbvtVolume) volume;
+ pr->getCollisionShape()->getAabb(pr->getInterpolationWorldTransform(),mins,maxs);
+ volume=btDbvtVolume::FromMM(mins,maxs);
+ volume.Expand(btVector3(1,1,1)*margin);
+ btDbvt::collideTV(ps->m_cdbvt.m_root,volume,*this);
+ }
+ };
+ //
+ // CollideCL_SS
+ //
+ struct CollideCL_SS : ClusterBase
+ {
+ btSoftBody* bodies[2];
+ void Process(const btDbvtNode* la,const btDbvtNode* lb)
+ {
+ btSoftBody::Cluster* cla=(btSoftBody::Cluster*)la->data;
+ btSoftBody::Cluster* clb=(btSoftBody::Cluster*)lb->data;
+ btSoftClusterCollisionShape csa(cla);
+ btSoftClusterCollisionShape csb(clb);
+ btGjkEpaSolver2::sResults res;
+ if(btGjkEpaSolver2::SignedDistance( &csa,btTransform::getIdentity(),
+ &csb,btTransform::getIdentity(),
+ cla->m_com-clb->m_com,res))
+ {
+ btSoftBody::CJoint joint;
+ if(SolveContact(res,cla,clb,joint))
+ {
+ btSoftBody::CJoint* pj=new(btAlignedAlloc(sizeof(btSoftBody::CJoint),16)) btSoftBody::CJoint();
+ *pj=joint;bodies[0]->m_joints.push_back(pj);
+ pj->m_erp *= btMax(bodies[0]->m_cfg.kSSHR_CL,bodies[1]->m_cfg.kSSHR_CL);
+ pj->m_split *= (bodies[0]->m_cfg.kSS_SPLT_CL+bodies[1]->m_cfg.kSS_SPLT_CL)/2;
+ }
+ }
+ }
+ void Process(btSoftBody* psa,btSoftBody* psb)
+ {
+ idt = psa->m_sst.isdt;
+ margin = (psa->getCollisionShape()->getMargin()+psb->getCollisionShape()->getMargin())/2;
+ friction = btMin(psa->m_cfg.kDF,psb->m_cfg.kDF);
+ bodies[0] = psa;
+ bodies[1] = psb;
+ btDbvt::collideTT(psa->m_cdbvt.m_root,psb->m_cdbvt.m_root,*this);
+ }
+ };
+ //
+ // CollideSDF_RS
+ //
+ struct CollideSDF_RS : btDbvt::ICollide
+ {
+ void Process(const btDbvtNode* leaf)
+ {
+ btSoftBody::Node* node=(btSoftBody::Node*)leaf->data;
+ DoNode(*node);
+ }
+ void DoNode(btSoftBody::Node& n) const
+ {
+ const btScalar m=n.m_im>0?dynmargin:stamargin;
+ btSoftBody::RContact c;
+ if( (!n.m_battach)&&
+ psb->checkContact(prb,n.m_x,m,c.m_cti))
+ {
+ const btScalar ima=n.m_im;
+ const btScalar imb=prb->getInvMass();
+ const btScalar ms=ima+imb;
+ if(ms>0)
+ {
+ const btTransform& wtr=prb->getInterpolationWorldTransform();
+ const btMatrix3x3& iwi=prb->getInvInertiaTensorWorld();
+ const btVector3 ra=n.m_x-wtr.getOrigin();
+ const btVector3 va=prb->getVelocityInLocalPoint(ra)*psb->m_sst.sdt;
+ const btVector3 vb=n.m_x-n.m_q;
+ const btVector3 vr=vb-va;
+ const btScalar dn=dot(vr,c.m_cti.m_normal);
+ const btVector3 fv=vr-c.m_cti.m_normal*dn;
+ const btScalar fc=psb->m_cfg.kDF*prb->getFriction();
+ c.m_node = &n;
+ c.m_c0 = ImpulseMatrix(psb->m_sst.sdt,ima,imb,iwi,ra);
+ c.m_c1 = ra;
+ c.m_c2 = ima*psb->m_sst.sdt;
+ c.m_c3 = fv.length2()<(btFabs(dn)*fc)?0:1-fc;
+ c.m_c4 = prb->isStaticOrKinematicObject()?psb->m_cfg.kKHR:psb->m_cfg.kCHR;
+ psb->m_rcontacts.push_back(c);
+ prb->activate();
+ }
+ }
+ }
+ btSoftBody* psb;
+ btRigidBody* prb;
+ btScalar dynmargin;
+ btScalar stamargin;
+ };
+ //
+ // CollideVF_SS
+ //
+ struct CollideVF_SS : btDbvt::ICollide
+ {
+ void Process(const btDbvtNode* lnode,
+ const btDbvtNode* lface)
+ {
+ btSoftBody::Node* node=(btSoftBody::Node*)lnode->data;
+ btSoftBody::Face* face=(btSoftBody::Face*)lface->data;
+ btVector3 o=node->m_x;
+ btVector3 p;
+ btScalar d=SIMD_INFINITY;
+ ProjectOrigin( face->m_n[0]->m_x-o,
+ face->m_n[1]->m_x-o,
+ face->m_n[2]->m_x-o,
+ p,d);
+ const btScalar m=mrg+(o-node->m_q).length()*2;
+ if(d<(m*m))
+ {
+ const btSoftBody::Node* n[]={face->m_n[0],face->m_n[1],face->m_n[2]};
+ const btVector3 w=BaryCoord(n[0]->m_x,n[1]->m_x,n[2]->m_x,p+o);
+ const btScalar ma=node->m_im;
+ btScalar mb=BaryEval(n[0]->m_im,n[1]->m_im,n[2]->m_im,w);
+ if( (n[0]->m_im<=0)||
+ (n[1]->m_im<=0)||
+ (n[2]->m_im<=0))
+ {
+ mb=0;
+ }
+ const btScalar ms=ma+mb;
+ if(ms>0)
+ {
+ btSoftBody::SContact c;
+ c.m_normal = p/-btSqrt(d);
+ c.m_margin = m;
+ c.m_node = node;
+ c.m_face = face;
+ c.m_weights = w;
+ c.m_friction = btMax(psb[0]->m_cfg.kDF,psb[1]->m_cfg.kDF);
+ c.m_cfm[0] = ma/ms*psb[0]->m_cfg.kSHR;
+ c.m_cfm[1] = mb/ms*psb[1]->m_cfg.kSHR;
+ psb[0]->m_scontacts.push_back(c);
+ }
+ }
+ }
+ btSoftBody* psb[2];
+ btScalar mrg;
+ };
+};
+
+#endif //_BT_SOFT_BODY_INTERNALS_H