Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/LinearMath/btImplicitQRSVD.h')
-rw-r--r--extern/bullet2/src/LinearMath/btImplicitQRSVD.h916
1 files changed, 916 insertions, 0 deletions
diff --git a/extern/bullet2/src/LinearMath/btImplicitQRSVD.h b/extern/bullet2/src/LinearMath/btImplicitQRSVD.h
new file mode 100644
index 00000000000..aaedc964f61
--- /dev/null
+++ b/extern/bullet2/src/LinearMath/btImplicitQRSVD.h
@@ -0,0 +1,916 @@
+/**
+ Bullet Continuous Collision Detection and Physics Library
+ Copyright (c) 2019 Google Inc. http://bulletphysics.org
+ This software is provided 'as-is', without any express or implied warranty.
+ In no event will the authors be held liable for any damages arising from the use of this software.
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it freely,
+ subject to the following restrictions:
+ 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ Copyright (c) 2016 Theodore Gast, Chuyuan Fu, Chenfanfu Jiang, Joseph Teran
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
+ this software and associated documentation files (the "Software"), to deal in
+ the Software without restriction, including without limitation the rights to
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+ of the Software, and to permit persons to whom the Software is furnished to do
+ so, subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in all
+ copies or substantial portions of the Software.
+
+ If the code is used in an article, the following paper shall be cited:
+ @techreport{qrsvd:2016,
+ title={Implicit-shifted Symmetric QR Singular Value Decomposition of 3x3 Matrices},
+ author={Gast, Theodore and Fu, Chuyuan and Jiang, Chenfanfu and Teran, Joseph},
+ year={2016},
+ institution={University of California Los Angeles}
+ }
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ SOFTWARE.
+**/
+
+#ifndef btImplicitQRSVD_h
+#define btImplicitQRSVD_h
+#include <limits>
+#include "btMatrix3x3.h"
+class btMatrix2x2
+{
+public:
+ btScalar m_00, m_01, m_10, m_11;
+ btMatrix2x2(): m_00(0), m_10(0), m_01(0), m_11(0)
+ {
+ }
+ btMatrix2x2(const btMatrix2x2& other): m_00(other.m_00),m_01(other.m_01),m_10(other.m_10),m_11(other.m_11)
+ {}
+ btScalar& operator()(int i, int j)
+ {
+ if (i == 0 && j == 0)
+ return m_00;
+ if (i == 1 && j == 0)
+ return m_10;
+ if (i == 0 && j == 1)
+ return m_01;
+ if (i == 1 && j == 1)
+ return m_11;
+ btAssert(false);
+ return m_00;
+ }
+ const btScalar& operator()(int i, int j) const
+ {
+ if (i == 0 && j == 0)
+ return m_00;
+ if (i == 1 && j == 0)
+ return m_10;
+ if (i == 0 && j == 1)
+ return m_01;
+ if (i == 1 && j == 1)
+ return m_11;
+ btAssert(false);
+ return m_00;
+ }
+ void setIdentity()
+ {
+ m_00 = 1;
+ m_11 = 1;
+ m_01 = 0;
+ m_10 = 0;
+ }
+};
+
+static inline btScalar copySign(btScalar x, btScalar y) {
+ if ((x < 0 && y > 0) || (x > 0 && y < 0))
+ return -x;
+ return x;
+}
+
+/**
+ Class for givens rotation.
+ Row rotation G*A corresponds to something like
+ c -s 0
+ ( s c 0 ) A
+ 0 0 1
+ Column rotation A G' corresponds to something like
+ c -s 0
+ A ( s c 0 )
+ 0 0 1
+
+ c and s are always computed so that
+ ( c -s ) ( a ) = ( * )
+ s c b ( 0 )
+
+ Assume rowi<rowk.
+ */
+
+class GivensRotation {
+public:
+ int rowi;
+ int rowk;
+ btScalar c;
+ btScalar s;
+
+ inline GivensRotation(int rowi_in, int rowk_in)
+ : rowi(rowi_in)
+ , rowk(rowk_in)
+ , c(1)
+ , s(0)
+ {
+ }
+
+ inline GivensRotation(btScalar a, btScalar b, int rowi_in, int rowk_in)
+ : rowi(rowi_in)
+ , rowk(rowk_in)
+ {
+ compute(a, b);
+ }
+
+ ~GivensRotation() {}
+
+ inline void transposeInPlace()
+ {
+ s = -s;
+ }
+
+ /**
+ Compute c and s from a and b so that
+ ( c -s ) ( a ) = ( * )
+ s c b ( 0 )
+ */
+ inline void compute(const btScalar a, const btScalar b)
+ {
+ btScalar d = a * a + b * b;
+ c = 1;
+ s = 0;
+ if (d > SIMD_EPSILON) {
+ btScalar sqrtd = btSqrt(d);
+ if (sqrtd>SIMD_EPSILON)
+ {
+ btScalar t = btScalar(1.0)/sqrtd;
+ c = a * t;
+ s = -b * t;
+ }
+ }
+ }
+
+ /**
+ This function computes c and s so that
+ ( c -s ) ( a ) = ( 0 )
+ s c b ( * )
+ */
+ inline void computeUnconventional(const btScalar a, const btScalar b)
+ {
+ btScalar d = a * a + b * b;
+ c = 0;
+ s = 1;
+ if (d > SIMD_EPSILON) {
+ btScalar t = btScalar(1.0)/btSqrt(d);
+ s = a * t;
+ c = b * t;
+ }
+ }
+ /**
+ Fill the R with the entries of this rotation
+ */
+ inline void fill(const btMatrix3x3& R) const
+ {
+ btMatrix3x3& A = const_cast<btMatrix3x3&>(R);
+ A.setIdentity();
+ A[rowi][rowi] = c;
+ A[rowk][rowi] = -s;
+ A[rowi][rowk] = s;
+ A[rowk][rowk] = c;
+ }
+
+ inline void fill(const btMatrix2x2& R) const
+ {
+ btMatrix2x2& A = const_cast<btMatrix2x2&>(R);
+ A(rowi,rowi) = c;
+ A(rowk,rowi) = -s;
+ A(rowi,rowk) = s;
+ A(rowk,rowk) = c;
+ }
+
+ /**
+ This function does something like
+ c -s 0
+ ( s c 0 ) A -> A
+ 0 0 1
+ It only affects row i and row k of A.
+ */
+ inline void rowRotation(btMatrix3x3& A) const
+ {
+ for (int j = 0; j < 3; j++) {
+ btScalar tau1 = A[rowi][j];
+ btScalar tau2 = A[rowk][j];
+ A[rowi][j] = c * tau1 - s * tau2;
+ A[rowk][j] = s * tau1 + c * tau2;
+ }
+ }
+ inline void rowRotation(btMatrix2x2& A) const
+ {
+ for (int j = 0; j < 2; j++) {
+ btScalar tau1 = A(rowi,j);
+ btScalar tau2 = A(rowk,j);
+ A(rowi,j) = c * tau1 - s * tau2;
+ A(rowk,j) = s * tau1 + c * tau2;
+ }
+ }
+
+ /**
+ This function does something like
+ c s 0
+ A ( -s c 0 ) -> A
+ 0 0 1
+ It only affects column i and column k of A.
+ */
+ inline void columnRotation(btMatrix3x3& A) const
+ {
+ for (int j = 0; j < 3; j++) {
+ btScalar tau1 = A[j][rowi];
+ btScalar tau2 = A[j][rowk];
+ A[j][rowi] = c * tau1 - s * tau2;
+ A[j][rowk] = s * tau1 + c * tau2;
+ }
+ }
+ inline void columnRotation(btMatrix2x2& A) const
+ {
+ for (int j = 0; j < 2; j++) {
+ btScalar tau1 = A(j,rowi);
+ btScalar tau2 = A(j,rowk);
+ A(j,rowi) = c * tau1 - s * tau2;
+ A(j,rowk) = s * tau1 + c * tau2;
+ }
+ }
+
+ /**
+ Multiply givens must be for same row and column
+ **/
+ inline void operator*=(const GivensRotation& A)
+ {
+ btScalar new_c = c * A.c - s * A.s;
+ btScalar new_s = s * A.c + c * A.s;
+ c = new_c;
+ s = new_s;
+ }
+
+ /**
+ Multiply givens must be for same row and column
+ **/
+ inline GivensRotation operator*(const GivensRotation& A) const
+ {
+ GivensRotation r(*this);
+ r *= A;
+ return r;
+ }
+};
+
+/**
+ \brief zero chasing the 3X3 matrix to bidiagonal form
+ original form of H: x x 0
+ x x x
+ 0 0 x
+ after zero chase:
+ x x 0
+ 0 x x
+ 0 0 x
+ */
+inline void zeroChase(btMatrix3x3& H, btMatrix3x3& U, btMatrix3x3& V)
+{
+
+ /**
+ Reduce H to of form
+ x x +
+ 0 x x
+ 0 0 x
+ */
+ GivensRotation r1(H[0][0], H[1][0], 0, 1);
+ /**
+ Reduce H to of form
+ x x 0
+ 0 x x
+ 0 + x
+ Can calculate r2 without multiplying by r1 since both entries are in first two
+ rows thus no need to divide by sqrt(a^2+b^2)
+ */
+ GivensRotation r2(1, 2);
+ if (H[1][0] != 0)
+ r2.compute(H[0][0] * H[0][1] + H[1][0] * H[1][1], H[0][0] * H[0][2] + H[1][0] * H[1][2]);
+ else
+ r2.compute(H[0][1], H[0][2]);
+
+ r1.rowRotation(H);
+
+ /* GivensRotation<T> r2(H(0, 1), H(0, 2), 1, 2); */
+ r2.columnRotation(H);
+ r2.columnRotation(V);
+
+ /**
+ Reduce H to of form
+ x x 0
+ 0 x x
+ 0 0 x
+ */
+ GivensRotation r3(H[1][1], H[2][1], 1, 2);
+ r3.rowRotation(H);
+
+ // Save this till end for better cache coherency
+ // r1.rowRotation(u_transpose);
+ // r3.rowRotation(u_transpose);
+ r1.columnRotation(U);
+ r3.columnRotation(U);
+}
+
+/**
+ \brief make a 3X3 matrix to upper bidiagonal form
+ original form of H: x x x
+ x x x
+ x x x
+ after zero chase:
+ x x 0
+ 0 x x
+ 0 0 x
+ */
+inline void makeUpperBidiag(btMatrix3x3& H, btMatrix3x3& U, btMatrix3x3& V)
+{
+ U.setIdentity();
+ V.setIdentity();
+
+ /**
+ Reduce H to of form
+ x x x
+ x x x
+ 0 x x
+ */
+
+ GivensRotation r(H[1][0], H[2][0], 1, 2);
+ r.rowRotation(H);
+ // r.rowRotation(u_transpose);
+ r.columnRotation(U);
+ // zeroChase(H, u_transpose, V);
+ zeroChase(H, U, V);
+}
+
+/**
+ \brief make a 3X3 matrix to lambda shape
+ original form of H: x x x
+ * x x x
+ * x x x
+ after :
+ * x 0 0
+ * x x 0
+ * x 0 x
+ */
+inline void makeLambdaShape(btMatrix3x3& H, btMatrix3x3& U, btMatrix3x3& V)
+{
+ U.setIdentity();
+ V.setIdentity();
+
+ /**
+ Reduce H to of form
+ * x x 0
+ * x x x
+ * x x x
+ */
+
+ GivensRotation r1(H[0][1], H[0][2], 1, 2);
+ r1.columnRotation(H);
+ r1.columnRotation(V);
+
+ /**
+ Reduce H to of form
+ * x x 0
+ * x x 0
+ * x x x
+ */
+
+ r1.computeUnconventional(H[1][2], H[2][2]);
+ r1.rowRotation(H);
+ r1.columnRotation(U);
+
+ /**
+ Reduce H to of form
+ * x x 0
+ * x x 0
+ * x 0 x
+ */
+
+ GivensRotation r2(H[2][0], H[2][1], 0, 1);
+ r2.columnRotation(H);
+ r2.columnRotation(V);
+
+ /**
+ Reduce H to of form
+ * x 0 0
+ * x x 0
+ * x 0 x
+ */
+ r2.computeUnconventional(H[0][1], H[1][1]);
+ r2.rowRotation(H);
+ r2.columnRotation(U);
+}
+
+/**
+ \brief 2x2 polar decomposition.
+ \param[in] A matrix.
+ \param[out] R Robustly a rotation matrix.
+ \param[out] S_Sym Symmetric. Whole matrix is stored
+
+ Polar guarantees negative sign is on the small magnitude singular value.
+ S is guaranteed to be the closest one to identity.
+ R is guaranteed to be the closest rotation to A.
+ */
+inline void polarDecomposition(const btMatrix2x2& A,
+ GivensRotation& R,
+ const btMatrix2x2& S_Sym)
+{
+ btScalar a = (A(0, 0) + A(1, 1)), b = (A(1, 0) - A(0, 1));
+ btScalar denominator = btSqrt(a*a+b*b);
+ R.c = (btScalar)1;
+ R.s = (btScalar)0;
+ if (denominator > SIMD_EPSILON) {
+ /*
+ No need to use a tolerance here because x(0) and x(1) always have
+ smaller magnitude then denominator, therefore overflow never happens.
+ In Bullet, we use a tolerance anyway.
+ */
+ R.c = a / denominator;
+ R.s = -b / denominator;
+ }
+ btMatrix2x2& S = const_cast<btMatrix2x2&>(S_Sym);
+ S = A;
+ R.rowRotation(S);
+}
+
+inline void polarDecomposition(const btMatrix2x2& A,
+ const btMatrix2x2& R,
+ const btMatrix2x2& S_Sym)
+{
+ GivensRotation r(0, 1);
+ polarDecomposition(A, r, S_Sym);
+ r.fill(R);
+}
+
+/**
+ \brief 2x2 SVD (singular value decomposition) A=USV'
+ \param[in] A Input matrix.
+ \param[out] U Robustly a rotation matrix in Givens form
+ \param[out] Sigma matrix of singular values sorted with decreasing magnitude. The second one can be negative.
+ \param[out] V Robustly a rotation matrix in Givens form
+ */
+inline void singularValueDecomposition(
+ const btMatrix2x2& A,
+ GivensRotation& U,
+ const btMatrix2x2& Sigma,
+ GivensRotation& V,
+ const btScalar tol = 64 * std::numeric_limits<btScalar>::epsilon())
+{
+ btMatrix2x2& sigma = const_cast<btMatrix2x2&>(Sigma);
+ sigma.setIdentity();
+ btMatrix2x2 S_Sym;
+ polarDecomposition(A, U, S_Sym);
+ btScalar cosine, sine;
+ btScalar x = S_Sym(0, 0);
+ btScalar y = S_Sym(0, 1);
+ btScalar z = S_Sym(1, 1);
+ if (y == 0) {
+ // S is already diagonal
+ cosine = 1;
+ sine = 0;
+ sigma(0,0) = x;
+ sigma(1,1) = z;
+ }
+ else {
+ btScalar tau = 0.5 * (x - z);
+ btScalar val = tau * tau + y * y;
+ if (val > SIMD_EPSILON)
+ {
+ btScalar w = btSqrt(val);
+ // w > y > 0
+ btScalar t;
+ if (tau > 0) {
+ // tau + w > w > y > 0 ==> division is safe
+ t = y / (tau + w);
+ }
+ else {
+ // tau - w < -w < -y < 0 ==> division is safe
+ t = y / (tau - w);
+ }
+ cosine = btScalar(1) / btSqrt(t * t + btScalar(1));
+ sine = -t * cosine;
+ /*
+ V = [cosine -sine; sine cosine]
+ Sigma = V'SV. Only compute the diagonals for efficiency.
+ Also utilize symmetry of S and don't form V yet.
+ */
+ btScalar c2 = cosine * cosine;
+ btScalar csy = 2 * cosine * sine * y;
+ btScalar s2 = sine * sine;
+ sigma(0,0) = c2 * x - csy + s2 * z;
+ sigma(1,1) = s2 * x + csy + c2 * z;
+ } else
+ {
+ cosine = 1;
+ sine = 0;
+ sigma(0,0) = x;
+ sigma(1,1) = z;
+ }
+ }
+
+ // Sorting
+ // Polar already guarantees negative sign is on the small magnitude singular value.
+ if (sigma(0,0) < sigma(1,1)) {
+ std::swap(sigma(0,0), sigma(1,1));
+ V.c = -sine;
+ V.s = cosine;
+ }
+ else {
+ V.c = cosine;
+ V.s = sine;
+ }
+ U *= V;
+}
+
+/**
+ \brief 2x2 SVD (singular value decomposition) A=USV'
+ \param[in] A Input matrix.
+ \param[out] U Robustly a rotation matrix.
+ \param[out] Sigma Vector of singular values sorted with decreasing magnitude. The second one can be negative.
+ \param[out] V Robustly a rotation matrix.
+ */
+inline void singularValueDecomposition(
+ const btMatrix2x2& A,
+ const btMatrix2x2& U,
+ const btMatrix2x2& Sigma,
+ const btMatrix2x2& V,
+ const btScalar tol = 64 * std::numeric_limits<btScalar>::epsilon())
+{
+ GivensRotation gv(0, 1);
+ GivensRotation gu(0, 1);
+ singularValueDecomposition(A, gu, Sigma, gv);
+
+ gu.fill(U);
+ gv.fill(V);
+}
+
+/**
+ \brief compute wilkinsonShift of the block
+ a1 b1
+ b1 a2
+ based on the wilkinsonShift formula
+ mu = c + d - sign (d) \ sqrt (d*d + b*b), where d = (a-c)/2
+
+ */
+inline btScalar wilkinsonShift(const btScalar a1, const btScalar b1, const btScalar a2)
+{
+ btScalar d = (btScalar)0.5 * (a1 - a2);
+ btScalar bs = b1 * b1;
+ btScalar val = d * d + bs;
+ if (val>SIMD_EPSILON)
+ {
+ btScalar denom = btFabs(d) + btSqrt(val);
+
+ btScalar mu = a2 - copySign(bs / (denom), d);
+ // T mu = a2 - bs / ( d + sign_d*sqrt (d*d + bs));
+ return mu;
+ }
+ return a2;
+}
+
+/**
+ \brief Helper function of 3X3 SVD for processing 2X2 SVD
+ */
+template <int t>
+inline void process(btMatrix3x3& B, btMatrix3x3& U, btVector3& sigma, btMatrix3x3& V)
+{
+ int other = (t == 1) ? 0 : 2;
+ GivensRotation u(0, 1);
+ GivensRotation v(0, 1);
+ sigma[other] = B[other][other];
+
+ btMatrix2x2 B_sub, sigma_sub;
+ if (t == 0)
+ {
+ B_sub.m_00 = B[0][0];
+ B_sub.m_10 = B[1][0];
+ B_sub.m_01 = B[0][1];
+ B_sub.m_11 = B[1][1];
+ sigma_sub.m_00 = sigma[0];
+ sigma_sub.m_11 = sigma[1];
+// singularValueDecomposition(B.template block<2, 2>(t, t), u, sigma.template block<2, 1>(t, 0), v);
+ singularValueDecomposition(B_sub, u, sigma_sub, v);
+ B[0][0] = B_sub.m_00;
+ B[1][0] = B_sub.m_10;
+ B[0][1] = B_sub.m_01;
+ B[1][1] = B_sub.m_11;
+ sigma[0] = sigma_sub.m_00;
+ sigma[1] = sigma_sub.m_11;
+ }
+ else
+ {
+ B_sub.m_00 = B[1][1];
+ B_sub.m_10 = B[2][1];
+ B_sub.m_01 = B[1][2];
+ B_sub.m_11 = B[2][2];
+ sigma_sub.m_00 = sigma[1];
+ sigma_sub.m_11 = sigma[2];
+ // singularValueDecomposition(B.template block<2, 2>(t, t), u, sigma.template block<2, 1>(t, 0), v);
+ singularValueDecomposition(B_sub, u, sigma_sub, v);
+ B[1][1] = B_sub.m_00;
+ B[2][1] = B_sub.m_10;
+ B[1][2] = B_sub.m_01;
+ B[2][2] = B_sub.m_11;
+ sigma[1] = sigma_sub.m_00;
+ sigma[2] = sigma_sub.m_11;
+ }
+ u.rowi += t;
+ u.rowk += t;
+ v.rowi += t;
+ v.rowk += t;
+ u.columnRotation(U);
+ v.columnRotation(V);
+}
+
+/**
+ \brief Helper function of 3X3 SVD for flipping signs due to flipping signs of sigma
+ */
+inline void flipSign(int i, btMatrix3x3& U, btVector3& sigma)
+{
+ sigma[i] = -sigma[i];
+ U[0][i] = -U[0][i];
+ U[1][i] = -U[1][i];
+ U[2][i] = -U[2][i];
+}
+
+inline void flipSign(int i, btMatrix3x3& U)
+{
+ U[0][i] = -U[0][i];
+ U[1][i] = -U[1][i];
+ U[2][i] = -U[2][i];
+}
+
+inline void swapCol(btMatrix3x3& A, int i, int j)
+{
+ for (int d = 0; d < 3; ++d)
+ std::swap(A[d][i], A[d][j]);
+}
+/**
+ \brief Helper function of 3X3 SVD for sorting singular values
+ */
+inline void sort(btMatrix3x3& U, btVector3& sigma, btMatrix3x3& V, int t)
+{
+ if (t == 0)
+ {
+ // Case: sigma(0) > |sigma(1)| >= |sigma(2)|
+ if (btFabs(sigma[1]) >= btFabs(sigma[2])) {
+ if (sigma[1] < 0) {
+ flipSign(1, U, sigma);
+ flipSign(2, U, sigma);
+ }
+ return;
+ }
+
+ //fix sign of sigma for both cases
+ if (sigma[2] < 0) {
+ flipSign(1, U, sigma);
+ flipSign(2, U, sigma);
+ }
+
+ //swap sigma(1) and sigma(2) for both cases
+ std::swap(sigma[1], sigma[2]);
+ // swap the col 1 and col 2 for U,V
+ swapCol(U,1,2);
+ swapCol(V,1,2);
+
+ // Case: |sigma(2)| >= sigma(0) > |simga(1)|
+ if (sigma[1] > sigma[0]) {
+ std::swap(sigma[0], sigma[1]);
+ swapCol(U,0,1);
+ swapCol(V,0,1);
+ }
+
+ // Case: sigma(0) >= |sigma(2)| > |simga(1)|
+ else {
+ flipSign(2, U);
+ flipSign(2, V);
+ }
+ }
+ else if (t == 1)
+ {
+ // Case: |sigma(0)| >= sigma(1) > |sigma(2)|
+ if (btFabs(sigma[0]) >= sigma[1]) {
+ if (sigma[0] < 0) {
+ flipSign(0, U, sigma);
+ flipSign(2, U, sigma);
+ }
+ return;
+ }
+
+ //swap sigma(0) and sigma(1) for both cases
+ std::swap(sigma[0], sigma[1]);
+ swapCol(U, 0, 1);
+ swapCol(V, 0, 1);
+
+ // Case: sigma(1) > |sigma(2)| >= |sigma(0)|
+ if (btFabs(sigma[1]) < btFabs(sigma[2])) {
+ std::swap(sigma[1], sigma[2]);
+ swapCol(U, 1, 2);
+ swapCol(V, 1, 2);
+ }
+
+ // Case: sigma(1) >= |sigma(0)| > |sigma(2)|
+ else {
+ flipSign(1, U);
+ flipSign(1, V);
+ }
+
+ // fix sign for both cases
+ if (sigma[1] < 0) {
+ flipSign(1, U, sigma);
+ flipSign(2, U, sigma);
+ }
+ }
+}
+
+/**
+ \brief 3X3 SVD (singular value decomposition) A=USV'
+ \param[in] A Input matrix.
+ \param[out] U is a rotation matrix.
+ \param[out] sigma Diagonal matrix, sorted with decreasing magnitude. The third one can be negative.
+ \param[out] V is a rotation matrix.
+ */
+inline int singularValueDecomposition(const btMatrix3x3& A,
+ btMatrix3x3& U,
+ btVector3& sigma,
+ btMatrix3x3& V,
+ btScalar tol = 128*std::numeric_limits<btScalar>::epsilon())
+{
+// using std::fabs;
+ btMatrix3x3 B = A;
+ U.setIdentity();
+ V.setIdentity();
+
+ makeUpperBidiag(B, U, V);
+
+ int count = 0;
+ btScalar mu = (btScalar)0;
+ GivensRotation r(0, 1);
+
+ btScalar alpha_1 = B[0][0];
+ btScalar beta_1 = B[0][1];
+ btScalar alpha_2 = B[1][1];
+ btScalar alpha_3 = B[2][2];
+ btScalar beta_2 = B[1][2];
+ btScalar gamma_1 = alpha_1 * beta_1;
+ btScalar gamma_2 = alpha_2 * beta_2;
+ btScalar val = alpha_1 * alpha_1 + alpha_2 * alpha_2 + alpha_3 * alpha_3 + beta_1 * beta_1 + beta_2 * beta_2;
+ if (val > SIMD_EPSILON)
+ {
+ tol *= btMax((btScalar)0.5 * btSqrt(val), (btScalar)1);
+ }
+ /**
+ Do implicit shift QR until A^T A is block diagonal
+ */
+ int max_count = 100;
+
+ while (btFabs(beta_2) > tol && btFabs(beta_1) > tol
+ && btFabs(alpha_1) > tol && btFabs(alpha_2) > tol
+ && btFabs(alpha_3) > tol
+ && count < max_count) {
+ mu = wilkinsonShift(alpha_2 * alpha_2 + beta_1 * beta_1, gamma_2, alpha_3 * alpha_3 + beta_2 * beta_2);
+
+ r.compute(alpha_1 * alpha_1 - mu, gamma_1);
+ r.columnRotation(B);
+
+ r.columnRotation(V);
+ zeroChase(B, U, V);
+
+ alpha_1 = B[0][0];
+ beta_1 = B[0][1];
+ alpha_2 = B[1][1];
+ alpha_3 = B[2][2];
+ beta_2 = B[1][2];
+ gamma_1 = alpha_1 * beta_1;
+ gamma_2 = alpha_2 * beta_2;
+ count++;
+ }
+ /**
+ Handle the cases of one of the alphas and betas being 0
+ Sorted by ease of handling and then frequency
+ of occurrence
+
+ If B is of form
+ x x 0
+ 0 x 0
+ 0 0 x
+ */
+ if (btFabs(beta_2) <= tol) {
+ process<0>(B, U, sigma, V);
+ sort(U, sigma, V,0);
+ }
+ /**
+ If B is of form
+ x 0 0
+ 0 x x
+ 0 0 x
+ */
+ else if (btFabs(beta_1) <= tol) {
+ process<1>(B, U, sigma, V);
+ sort(U, sigma, V,1);
+ }
+ /**
+ If B is of form
+ x x 0
+ 0 0 x
+ 0 0 x
+ */
+ else if (btFabs(alpha_2) <= tol) {
+ /**
+ Reduce B to
+ x x 0
+ 0 0 0
+ 0 0 x
+ */
+ GivensRotation r1(1, 2);
+ r1.computeUnconventional(B[1][2], B[2][2]);
+ r1.rowRotation(B);
+ r1.columnRotation(U);
+
+ process<0>(B, U, sigma, V);
+ sort(U, sigma, V, 0);
+ }
+ /**
+ If B is of form
+ x x 0
+ 0 x x
+ 0 0 0
+ */
+ else if (btFabs(alpha_3) <= tol) {
+ /**
+ Reduce B to
+ x x +
+ 0 x 0
+ 0 0 0
+ */
+ GivensRotation r1(1, 2);
+ r1.compute(B[1][1], B[1][2]);
+ r1.columnRotation(B);
+ r1.columnRotation(V);
+ /**
+ Reduce B to
+ x x 0
+ + x 0
+ 0 0 0
+ */
+ GivensRotation r2(0, 2);
+ r2.compute(B[0][0], B[0][2]);
+ r2.columnRotation(B);
+ r2.columnRotation(V);
+
+ process<0>(B, U, sigma, V);
+ sort(U, sigma, V, 0);
+ }
+ /**
+ If B is of form
+ 0 x 0
+ 0 x x
+ 0 0 x
+ */
+ else if (btFabs(alpha_1) <= tol) {
+ /**
+ Reduce B to
+ 0 0 +
+ 0 x x
+ 0 0 x
+ */
+ GivensRotation r1(0, 1);
+ r1.computeUnconventional(B[0][1], B[1][1]);
+ r1.rowRotation(B);
+ r1.columnRotation(U);
+
+ /**
+ Reduce B to
+ 0 0 0
+ 0 x x
+ 0 + x
+ */
+ GivensRotation r2(0, 2);
+ r2.computeUnconventional(B[0][2], B[2][2]);
+ r2.rowRotation(B);
+ r2.columnRotation(U);
+
+ process<1>(B, U, sigma, V);
+ sort(U, sigma, V, 1);
+ }
+
+ return count;
+}
+#endif /* btImplicitQRSVD_h */