Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/LinearMath/btQuaternion.h')
-rw-r--r--extern/bullet2/src/LinearMath/btQuaternion.h497
1 files changed, 472 insertions, 25 deletions
diff --git a/extern/bullet2/src/LinearMath/btQuaternion.h b/extern/bullet2/src/LinearMath/btQuaternion.h
index ee79f6eaeee..7d7f25fb4d3 100644
--- a/extern/bullet2/src/LinearMath/btQuaternion.h
+++ b/extern/bullet2/src/LinearMath/btQuaternion.h
@@ -21,24 +21,65 @@ subject to the following restrictions:
#include "btVector3.h"
#include "btQuadWord.h"
+
+
+
+
+#ifdef BT_USE_SSE
+
+const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
+
+#endif
+
+#if defined(BT_USE_SSE) || defined(BT_USE_NEON)
+
+const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
+const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
+
+#endif
+
/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
class btQuaternion : public btQuadWord {
public:
/**@brief No initialization constructor */
btQuaternion() {}
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON)
+ // Set Vector
+ SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
+ {
+ mVec128 = vec;
+ }
+
+ // Copy constructor
+ SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
+ {
+ mVec128 = rhs.mVec128;
+ }
+
+ // Assignment Operator
+ SIMD_FORCE_INLINE btQuaternion&
+ operator=(const btQuaternion& v)
+ {
+ mVec128 = v.mVec128;
+
+ return *this;
+ }
+
+#endif
+
// template <typename btScalar>
// explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
/**@brief Constructor from scalars */
- btQuaternion(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w)
- : btQuadWord(x, y, z, w)
+ btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
+ : btQuadWord(_x, _y, _z, _w)
{}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
- btQuaternion(const btVector3& axis, const btScalar& angle)
+ btQuaternion(const btVector3& _axis, const btScalar& _angle)
{
- setRotation(axis, angle);
+ setRotation(_axis, _angle);
}
/**@brief Constructor from Euler angles
* @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
@@ -55,13 +96,13 @@ public:
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
- void setRotation(const btVector3& axis, const btScalar& angle)
+ void setRotation(const btVector3& axis, const btScalar& _angle)
{
btScalar d = axis.length();
btAssert(d != btScalar(0.0));
- btScalar s = btSin(angle * btScalar(0.5)) / d;
+ btScalar s = btSin(_angle * btScalar(0.5)) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
- btCos(angle * btScalar(0.5)));
+ btCos(_angle * btScalar(0.5)));
}
/**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
@@ -107,7 +148,16 @@ public:
* @param q The quaternion to add to this one */
SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
{
- m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3];
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_add_ps(mVec128, q.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vaddq_f32(mVec128, q.mVec128);
+#else
+ m_floats[0] += q.x();
+ m_floats[1] += q.y();
+ m_floats[2] += q.z();
+ m_floats[3] += q.m_floats[3];
+#endif
return *this;
}
@@ -115,15 +165,35 @@ public:
* @param q The quaternion to subtract from this one */
btQuaternion& operator-=(const btQuaternion& q)
{
- m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3];
- return *this;
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_sub_ps(mVec128, q.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vsubq_f32(mVec128, q.mVec128);
+#else
+ m_floats[0] -= q.x();
+ m_floats[1] -= q.y();
+ m_floats[2] -= q.z();
+ m_floats[3] -= q.m_floats[3];
+#endif
+ return *this;
}
/**@brief Scale this quaternion
* @param s The scalar to scale by */
btQuaternion& operator*=(const btScalar& s)
{
- m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s;
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0); // (S S S S)
+ mVec128 = _mm_mul_ps(mVec128, vs);
+#elif defined(BT_USE_NEON)
+ mVec128 = vmulq_n_f32(mVec128, s);
+#else
+ m_floats[0] *= s;
+ m_floats[1] *= s;
+ m_floats[2] *= s;
+ m_floats[3] *= s;
+#endif
return *this;
}
@@ -132,17 +202,111 @@ public:
* Equivilant to this = this * q */
btQuaternion& operator*=(const btQuaternion& q)
{
- setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vQ2 = q.get128();
+
+ __m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0));
+ __m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));
+
+ A1 = A1 * B1;
+
+ __m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1));
+ __m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
+
+ A2 = A2 * B2;
+
+ B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2));
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
+
+ B1 = B1 * B2; // A3 *= B3
+
+ mVec128 = bt_splat_ps(mVec128, 3); // A0
+ mVec128 = mVec128 * vQ2; // A0 * B0
+
+ A1 = A1 + A2; // AB12
+ mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ mVec128 = mVec128+ A1; // AB03 + AB12
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t vQ1 = mVec128;
+ float32x4_t vQ2 = q.get128();
+ float32x4_t A0, A1, B1, A2, B2, A3, B3;
+ float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
+
+ {
+ float32x2x2_t tmp;
+ tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
+
+ tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+ }
+ vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
+
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
+ B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
+
+ A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+
+ A1 = vmulq_f32(A1, B1);
+ A2 = vmulq_f32(A2, B2);
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+ A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+ A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+ A0 = vaddq_f32(A0, A1); // AB03 + AB12
+
+ mVec128 = A0;
+#else
+ setValue(
+ m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
+#endif
return *this;
}
/**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
btScalar dot(const btQuaternion& q) const
{
- return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3];
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vd;
+
+ vd = _mm_mul_ps(mVec128, q.mVec128);
+
+ __m128 t = _mm_movehl_ps(vd, vd);
+ vd = _mm_add_ps(vd, t);
+ t = _mm_shuffle_ps(vd, vd, 0x55);
+ vd = _mm_add_ss(vd, t);
+
+ return _mm_cvtss_f32(vd);
+#elif defined(BT_USE_NEON)
+ float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
+ float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
+ x = vpadd_f32(x, x);
+ return vget_lane_f32(x, 0);
+#else
+ return m_floats[0] * q.x() +
+ m_floats[1] * q.y() +
+ m_floats[2] * q.z() +
+ m_floats[3] * q.m_floats[3];
+#endif
}
/**@brief Return the length squared of the quaternion */
@@ -161,7 +325,25 @@ public:
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
btQuaternion& normalize()
{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vd;
+
+ vd = _mm_mul_ps(mVec128, mVec128);
+
+ __m128 t = _mm_movehl_ps(vd, vd);
+ vd = _mm_add_ps(vd, t);
+ t = _mm_shuffle_ps(vd, vd, 0x55);
+ vd = _mm_add_ss(vd, t);
+
+ vd = _mm_sqrt_ss(vd);
+ vd = _mm_div_ss(vOnes, vd);
+ vd = bt_pshufd_ps(vd, 0); // splat
+ mVec128 = _mm_mul_ps(mVec128, vd);
+
+ return *this;
+#else
return *this /= length();
+#endif
}
/**@brief Return a scaled version of this quaternion
@@ -169,10 +351,18 @@ public:
SIMD_FORCE_INLINE btQuaternion
operator*(const btScalar& s) const
{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
+
+ return btQuaternion(_mm_mul_ps(mVec128, vs));
+#elif defined(BT_USE_NEON)
+ return btQuaternion(vmulq_n_f32(mVec128, s));
+#else
return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
+#endif
}
-
/**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
btQuaternion operator/(const btScalar& s) const
@@ -223,7 +413,13 @@ public:
/**@brief Return the inverse of this quaternion */
btQuaternion inverse() const
{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btQuaternion(_mm_xor_ps(mVec128, vQInv));
+#elif defined(BT_USE_NEON)
+ return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
+#else
return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
+#endif
}
/**@brief Return the sum of this quaternion and the other
@@ -231,8 +427,14 @@ public:
SIMD_FORCE_INLINE btQuaternion
operator+(const btQuaternion& q2) const
{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
+#elif defined(BT_USE_NEON)
+ return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
+#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
+#endif
}
/**@brief Return the difference between this quaternion and the other
@@ -240,16 +442,28 @@ public:
SIMD_FORCE_INLINE btQuaternion
operator-(const btQuaternion& q2) const
{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
+#elif defined(BT_USE_NEON)
+ return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
+#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
+#endif
}
/**@brief Return the negative of this quaternion
* This simply negates each element */
SIMD_FORCE_INLINE btQuaternion operator-() const
{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
+#elif defined(BT_USE_NEON)
+ return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) );
+#else
const btQuaternion& q2 = *this;
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
+#endif
}
/**@todo document this and it's use */
SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
@@ -284,7 +498,7 @@ public:
btAssert(magnitude > btScalar(0));
btScalar product = dot(q) / magnitude;
- if (btFabs(product) != btScalar(1))
+ if (btFabs(product) < btScalar(1))
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
@@ -323,29 +537,257 @@ public:
/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
-operator*(const btQuaternion& q1, const btQuaternion& q2) {
- return btQuaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
+operator*(const btQuaternion& q1, const btQuaternion& q2)
+{
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vQ1 = q1.get128();
+ __m128 vQ2 = q2.get128();
+ __m128 A0, A1, B1, A2, B2;
+
+ A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x // vtrn
+ B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X // vdup vext
+
+ A1 = A1 * B1;
+
+ A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z X Y // vext
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup
+
+ A2 = A2 * B2;
+
+ B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn
+
+ B1 = B1 * B2; // A3 *= B3
+
+ A0 = bt_splat_ps(vQ1, 3); // A0
+ A0 = A0 * vQ2; // A0 * B0
+
+ A1 = A1 + A2; // AB12
+ A0 = A0 - B1; // AB03 = AB0 - AB3
+
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ A0 = A0 + A1; // AB03 + AB12
+
+ return btQuaternion(A0);
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t vQ1 = q1.get128();
+ float32x4_t vQ2 = q2.get128();
+ float32x4_t A0, A1, B1, A2, B2, A3, B3;
+ float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
+
+ {
+ float32x2x2_t tmp;
+ tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
+
+ tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+ }
+ vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
+
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
+ B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
+
+ A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+
+ A1 = vmulq_f32(A1, B1);
+ A2 = vmulq_f32(A2, B2);
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+ A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+ A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+ A0 = vaddq_f32(A0, A1); // AB03 + AB12
+
+ return btQuaternion(A0);
+
+#else
+ return btQuaternion(
+ q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
+#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
- return btQuaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
- q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
- q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vQ1 = q.get128();
+ __m128 vQ2 = w.get128();
+ __m128 A1, B1, A2, B2, A3, B3;
+
+ A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0));
+ B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0));
+
+ A1 = A1 * B1;
+
+ A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
+
+ A2 = A2 * B2;
+
+ A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
+ B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
+
+ A3 = A3 * B3; // A3 *= B3
+
+ A1 = A1 + A2; // AB12
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ A1 = A1 - A3; // AB123 = AB12 - AB3
+
+ return btQuaternion(A1);
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t vQ1 = q.get128();
+ float32x4_t vQ2 = w.get128();
+ float32x4_t A1, B1, A2, B2, A3, B3;
+ float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
+
+ vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
+ {
+ float32x2x2_t tmp;
+
+ tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+
+ tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
+ }
+
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
+ B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
+
+ A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+
+ A1 = vmulq_f32(A1, B1);
+ A2 = vmulq_f32(A2, B2);
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+
+ A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
+
+ return btQuaternion(A1);
+
+#else
+ return btQuaternion(
+ q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
+ q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
+ q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
+#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
- return btQuaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
- w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
- w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vQ1 = w.get128();
+ __m128 vQ2 = q.get128();
+ __m128 A1, B1, A2, B2, A3, B3;
+
+ A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x
+ B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X
+
+ A1 = A1 * B1;
+
+ A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
+
+ A2 = A2 *B2;
+
+ A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
+ B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
+
+ A3 = A3 * B3; // A3 *= B3
+
+ A1 = A1 + A2; // AB12
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ A1 = A1 - A3; // AB123 = AB12 - AB3
+
+ return btQuaternion(A1);
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t vQ1 = w.get128();
+ float32x4_t vQ2 = q.get128();
+ float32x4_t A1, B1, A2, B2, A3, B3;
+ float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
+
+ {
+ float32x2x2_t tmp;
+
+ tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
+
+ tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+ }
+ vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
+
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
+ B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
+
+ A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+
+ A1 = vmulq_f32(A1, B1);
+ A2 = vmulq_f32(A2, B2);
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+
+ A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
+
+ return btQuaternion(A1);
+
+#else
+ return btQuaternion(
+ +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
+ +w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
+ +w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
+#endif
}
/**@brief Calculate the dot product between two quaternions */
@@ -365,7 +807,7 @@ length(const btQuaternion& q)
/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
-angle(const btQuaternion& q1, const btQuaternion& q2)
+btAngle(const btQuaternion& q1, const btQuaternion& q2)
{
return q1.angle(q2);
}
@@ -393,7 +835,13 @@ quatRotate(const btQuaternion& rotation, const btVector3& v)
{
btQuaternion q = rotation * v;
q *= rotation.inverse();
+#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
+#elif defined(BT_USE_NEON)
+ return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
+#else
return btVector3(q.getX(),q.getY(),q.getZ());
+#endif
}
SIMD_FORCE_INLINE btQuaternion
@@ -427,4 +875,3 @@ shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
-