Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/bullet2/src/LinearMath/btTransformUtil.h')
-rw-r--r--extern/bullet2/src/LinearMath/btTransformUtil.h138
1 files changed, 138 insertions, 0 deletions
diff --git a/extern/bullet2/src/LinearMath/btTransformUtil.h b/extern/bullet2/src/LinearMath/btTransformUtil.h
new file mode 100644
index 00000000000..bc42fd166b6
--- /dev/null
+++ b/extern/bullet2/src/LinearMath/btTransformUtil.h
@@ -0,0 +1,138 @@
+/*
+Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#ifndef SIMD_TRANSFORM_UTIL_H
+#define SIMD_TRANSFORM_UTIL_H
+
+#include "btTransform.h"
+#define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI
+
+
+
+#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)
+
+#define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x)))) /* reciprocal square root */
+
+inline btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir)
+{
+ return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(),
+ supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(),
+ supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z());
+}
+
+
+inline void btPlaneSpace1 (const btVector3& n, btVector3& p, btVector3& q)
+{
+ if (btFabs(n.z()) > SIMDSQRT12) {
+ // choose p in y-z plane
+ btScalar a = n[1]*n[1] + n[2]*n[2];
+ btScalar k = btRecipSqrt (a);
+ p.setValue(0,-n[2]*k,n[1]*k);
+ // set q = n x p
+ q.setValue(a*k,-n[0]*p[2],n[0]*p[1]);
+ }
+ else {
+ // choose p in x-y plane
+ btScalar a = n.x()*n.x() + n.y()*n.y();
+ btScalar k = btRecipSqrt (a);
+ p.setValue(-n.y()*k,n.x()*k,0);
+ // set q = n x p
+ q.setValue(-n.z()*p.y(),n.z()*p.x(),a*k);
+ }
+}
+
+
+
+/// Utils related to temporal transforms
+class btTransformUtil
+{
+
+public:
+
+ static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform)
+ {
+ predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep);
+// #define QUATERNION_DERIVATIVE
+ #ifdef QUATERNION_DERIVATIVE
+ btQuaternion predictedOrn = curTrans.getRotation();
+ predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5));
+ predictedOrn.normalize();
+ #else
+ //exponential map
+ btVector3 axis;
+ btScalar fAngle = angvel.length();
+ //limit the angular motion
+ if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD)
+ {
+ fAngle = ANGULAR_MOTION_THRESHOLD / timeStep;
+ }
+
+ if ( fAngle < btScalar(0.001) )
+ {
+ // use Taylor's expansions of sync function
+ axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle );
+ }
+ else
+ {
+ // sync(fAngle) = sin(c*fAngle)/t
+ axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle );
+ }
+ btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) ));
+ btQuaternion orn0 = curTrans.getRotation();
+
+ btQuaternion predictedOrn = dorn * orn0;
+ predictedOrn.normalize();
+ #endif
+ predictedTransform.setRotation(predictedOrn);
+ }
+
+ static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
+ {
+ linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
+ btVector3 axis;
+ btScalar angle;
+ calculateDiffAxisAngle(transform0,transform1,axis,angle);
+ angVel = axis * angle / timeStep;
+ }
+
+ static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle)
+ {
+
+ #ifdef USE_QUATERNION_DIFF
+ btQuaternion orn0 = transform0.getRotation();
+ btQuaternion orn1a = transform1.getRotation();
+ btQuaternion orn1 = orn0.farthest(orn1a);
+ btQuaternion dorn = orn1 * orn0.inverse();
+#else
+ btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
+ btQuaternion dorn;
+ dmat.getRotation(dorn);
+#endif//USE_QUATERNION_DIFF
+
+ angle = dorn.getAngle();
+ axis = btVector3(dorn.x(),dorn.y(),dorn.z());
+ axis[3] = btScalar(0.);
+ //check for axis length
+ btScalar len = axis.length2();
+ if (len < SIMD_EPSILON*SIMD_EPSILON)
+ axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
+ else
+ axis /= btSqrt(len);
+ }
+
+};
+
+#endif //SIMD_TRANSFORM_UTIL_H
+