Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/carve-util.cc')
-rw-r--r--extern/carve/carve-util.cc778
1 files changed, 778 insertions, 0 deletions
diff --git a/extern/carve/carve-util.cc b/extern/carve/carve-util.cc
new file mode 100644
index 00000000000..b1f9ffbb769
--- /dev/null
+++ b/extern/carve/carve-util.cc
@@ -0,0 +1,778 @@
+/*
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2014 Blender Foundation.
+ * All rights reserved.
+ *
+ * Contributor(s): Blender Foundation,
+ * Sergey Sharybin
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "carve-util.h"
+#include "carve-capi.h"
+
+#include <cfloat>
+#include <carve/csg.hpp>
+#include <carve/csg_triangulator.hpp>
+#include <carve/rtree.hpp>
+
+using carve::csg::Intersections;
+using carve::geom::aabb;
+using carve::geom::RTreeNode;
+using carve::geom3d::Vector;
+using carve::math::Matrix3;
+using carve::mesh::Face;
+using carve::mesh::MeshSet;
+using carve::triangulate::triangulate;
+
+typedef std::map< MeshSet<3>::mesh_t*, RTreeNode<3, Face<3> *> * > RTreeCache;
+typedef std::map< MeshSet<3>::mesh_t*, bool > IntersectCache;
+
+namespace {
+
+// Functions adopted from BLI_math.h to use Carve Vector and Matrix.
+
+void axis_angle_normalized_to_mat3(const Vector &normal,
+ const double angle,
+ Matrix3 *matrix)
+{
+ double nsi[3], co, si, ico;
+
+ /* now convert this to a 3x3 matrix */
+ co = cos(angle);
+ si = sin(angle);
+
+ ico = (1.0 - co);
+ nsi[0] = normal[0] * si;
+ nsi[1] = normal[1] * si;
+ nsi[2] = normal[2] * si;
+
+ matrix->m[0][0] = ((normal[0] * normal[0]) * ico) + co;
+ matrix->m[0][1] = ((normal[0] * normal[1]) * ico) + nsi[2];
+ matrix->m[0][2] = ((normal[0] * normal[2]) * ico) - nsi[1];
+ matrix->m[1][0] = ((normal[0] * normal[1]) * ico) - nsi[2];
+ matrix->m[1][1] = ((normal[1] * normal[1]) * ico) + co;
+ matrix->m[1][2] = ((normal[1] * normal[2]) * ico) + nsi[0];
+ matrix->m[2][0] = ((normal[0] * normal[2]) * ico) + nsi[1];
+ matrix->m[2][1] = ((normal[1] * normal[2]) * ico) - nsi[0];
+ matrix->m[2][2] = ((normal[2] * normal[2]) * ico) + co;
+}
+
+void axis_angle_to_mat3(const Vector &axis,
+ const double angle,
+ Matrix3 *matrix)
+{
+ if (axis.length2() < FLT_EPSILON) {
+ *matrix = Matrix3();
+ return;
+ }
+
+ Vector nor = axis;
+ nor.normalize();
+
+ axis_angle_normalized_to_mat3(nor, angle, matrix);
+}
+
+inline double saacos(double fac)
+{
+ if (fac <= -1.0) return M_PI;
+ else if (fac >= 1.0) return 0.0;
+ else return acos(fac);
+}
+
+bool axis_dominant_v3_to_m3(const Vector &normal,
+ Matrix3 *matrix)
+{
+ Vector up;
+ Vector axis;
+ double angle;
+
+ up.x = 0.0;
+ up.y = 0.0;
+ up.z = 1.0;
+
+ axis = carve::geom::cross(normal, up);
+ angle = saacos(carve::geom::dot(normal, up));
+
+ if (angle >= FLT_EPSILON) {
+ if (axis.length2() < FLT_EPSILON) {
+ axis[0] = 0.0;
+ axis[1] = 1.0;
+ axis[2] = 0.0;
+ }
+
+ axis_angle_to_mat3(axis, angle, matrix);
+ return true;
+ }
+ else {
+ *matrix = Matrix3();
+ return false;
+ }
+}
+
+void meshset_minmax(const MeshSet<3> *mesh,
+ Vector *min,
+ Vector *max)
+{
+ for (uint i = 0; i < mesh->vertex_storage.size(); ++i) {
+ min->x = std::min(min->x, mesh->vertex_storage[i].v.x);
+ min->y = std::min(min->y, mesh->vertex_storage[i].v.y);
+ min->z = std::min(min->z, mesh->vertex_storage[i].v.z);
+ max->x = std::max(max->x, mesh->vertex_storage[i].v.x);
+ max->y = std::max(max->y, mesh->vertex_storage[i].v.y);
+ max->z = std::max(max->z, mesh->vertex_storage[i].v.z);
+ }
+}
+
+} // namespace
+
+void carve_getRescaleMinMax(const MeshSet<3> *left,
+ const MeshSet<3> *right,
+ Vector *min,
+ Vector *max)
+{
+ min->x = max->x = left->vertex_storage[0].v.x;
+ min->y = max->y = left->vertex_storage[0].v.y;
+ min->z = max->z = left->vertex_storage[0].v.z;
+
+ meshset_minmax(left, min, max);
+ meshset_minmax(right, min, max);
+
+ // Make sure we don't scale object with zero scale.
+ if (std::abs(min->x - max->x) < carve::EPSILON) {
+ min->x = -1.0;
+ max->x = 1.0;
+ }
+ if (std::abs(min->y - max->y) < carve::EPSILON) {
+ min->y = -1.0;
+ max->y = 1.0;
+ }
+ if (std::abs(min->z - max->z) < carve::EPSILON) {
+ min->z = -1.0;
+ max->z = 1.0;
+ }
+}
+
+namespace {
+
+void copyMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes,
+ std::vector<MeshSet<3>::mesh_t*> *new_meshes)
+{
+ std::vector<MeshSet<3>::mesh_t*>::const_iterator it = meshes.begin();
+ new_meshes->reserve(meshes.size());
+ for (; it != meshes.end(); it++) {
+ MeshSet<3>::mesh_t *mesh = *it;
+ MeshSet<3>::mesh_t *new_mesh = new MeshSet<3>::mesh_t(mesh->faces);
+
+ new_meshes->push_back(new_mesh);
+ }
+}
+
+MeshSet<3> *meshSetFromMeshes(const std::vector<MeshSet<3>::mesh_t*> &meshes)
+{
+ std::vector<MeshSet<3>::mesh_t*> new_meshes;
+
+ copyMeshes(meshes, &new_meshes);
+
+ return new MeshSet<3>(new_meshes);
+}
+
+MeshSet<3> *meshSetFromTwoMeshes(const std::vector<MeshSet<3>::mesh_t*> &left_meshes,
+ const std::vector<MeshSet<3>::mesh_t*> &right_meshes)
+{
+ std::vector<MeshSet<3>::mesh_t*> new_meshes;
+
+ copyMeshes(left_meshes, &new_meshes);
+ copyMeshes(right_meshes, &new_meshes);
+
+ return new MeshSet<3>(new_meshes);
+}
+
+bool checkEdgeFaceIntersections_do(Intersections &intersections,
+ MeshSet<3>::face_t *face_a,
+ MeshSet<3>::edge_t *edge_b)
+{
+ if (intersections.intersects(edge_b, face_a))
+ return true;
+
+ carve::mesh::MeshSet<3>::vertex_t::vector_t _p;
+ if (face_a->simpleLineSegmentIntersection(carve::geom3d::LineSegment(edge_b->v1()->v, edge_b->v2()->v), _p))
+ return true;
+
+ return false;
+}
+
+bool checkEdgeFaceIntersections(Intersections &intersections,
+ MeshSet<3>::face_t *face_a,
+ MeshSet<3>::face_t *face_b)
+{
+ MeshSet<3>::edge_t *edge_b;
+
+ edge_b = face_b->edge;
+ do {
+ if (checkEdgeFaceIntersections_do(intersections, face_a, edge_b))
+ return true;
+ edge_b = edge_b->next;
+ } while (edge_b != face_b->edge);
+
+ return false;
+}
+
+inline bool facesAreCoplanar(const MeshSet<3>::face_t *a, const MeshSet<3>::face_t *b)
+{
+ carve::geom3d::Ray temp;
+ // XXX: Find a better definition. This may be a source of problems
+ // if floating point inaccuracies cause an incorrect answer.
+ return !carve::geom3d::planeIntersection(a->plane, b->plane, temp);
+}
+
+bool checkMeshSetInterseciton_do(Intersections &intersections,
+ const RTreeNode<3, Face<3> *> *a_node,
+ const RTreeNode<3, Face<3> *> *b_node,
+ bool descend_a = true)
+{
+ if (!a_node->bbox.intersects(b_node->bbox)) {
+ return false;
+ }
+
+ if (a_node->child && (descend_a || !b_node->child)) {
+ for (RTreeNode<3, Face<3> *> *node = a_node->child; node; node = node->sibling) {
+ if (checkMeshSetInterseciton_do(intersections, node, b_node, false)) {
+ return true;
+ }
+ }
+ }
+ else if (b_node->child) {
+ for (RTreeNode<3, Face<3> *> *node = b_node->child; node; node = node->sibling) {
+ if (checkMeshSetInterseciton_do(intersections, a_node, node, true)) {
+ return true;
+ }
+ }
+ }
+ else {
+ for (size_t i = 0; i < a_node->data.size(); ++i) {
+ MeshSet<3>::face_t *fa = a_node->data[i];
+ aabb<3> aabb_a = fa->getAABB();
+ if (aabb_a.maxAxisSeparation(b_node->bbox) > carve::EPSILON) {
+ continue;
+ }
+
+ for (size_t j = 0; j < b_node->data.size(); ++j) {
+ MeshSet<3>::face_t *fb = b_node->data[j];
+ aabb<3> aabb_b = fb->getAABB();
+ if (aabb_b.maxAxisSeparation(aabb_a) > carve::EPSILON) {
+ continue;
+ }
+
+ std::pair<double, double> a_ra = fa->rangeInDirection(fa->plane.N, fa->edge->vert->v);
+ std::pair<double, double> b_ra = fb->rangeInDirection(fa->plane.N, fa->edge->vert->v);
+ if (carve::rangeSeparation(a_ra, b_ra) > carve::EPSILON) {
+ continue;
+ }
+
+ std::pair<double, double> a_rb = fa->rangeInDirection(fb->plane.N, fb->edge->vert->v);
+ std::pair<double, double> b_rb = fb->rangeInDirection(fb->plane.N, fb->edge->vert->v);
+ if (carve::rangeSeparation(a_rb, b_rb) > carve::EPSILON) {
+ continue;
+ }
+
+ if (!facesAreCoplanar(fa, fb)) {
+ if (checkEdgeFaceIntersections(intersections, fa, fb)) {
+ return true;
+ }
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+bool checkMeshSetInterseciton(RTreeNode<3, Face<3> *> *rtree_a, RTreeNode<3, Face<3> *> *rtree_b)
+{
+ Intersections intersections;
+ return checkMeshSetInterseciton_do(intersections, rtree_a, rtree_b);
+}
+
+void getIntersectedOperandMeshes(std::vector<MeshSet<3>::mesh_t*> *meshes,
+ const MeshSet<3>::aabb_t &otherAABB,
+ std::vector<MeshSet<3>::mesh_t*> *operandMeshes,
+ RTreeCache *rtree_cache,
+ IntersectCache *intersect_cache)
+{
+ std::vector<MeshSet<3>::mesh_t*>::iterator it = meshes->begin();
+ std::vector< RTreeNode<3, Face<3> *> *> meshRTree;
+
+ while (it != meshes->end()) {
+ MeshSet<3>::mesh_t *mesh = *it;
+ bool isAdded = false;
+
+ RTreeNode<3, Face<3> *> *rtree;
+ bool intersects;
+
+ RTreeCache::iterator rtree_found = rtree_cache->find(mesh);
+ if (rtree_found != rtree_cache->end()) {
+ rtree = rtree_found->second;
+ }
+ else {
+ rtree = RTreeNode<3, Face<3> *>::construct_STR(mesh->faces.begin(), mesh->faces.end(), 4, 4);
+ (*rtree_cache)[mesh] = rtree;
+ }
+
+ IntersectCache::iterator intersect_found = intersect_cache->find(mesh);
+ if (intersect_found != intersect_cache->end()) {
+ intersects = intersect_found->second;
+ }
+ else {
+ intersects = rtree->bbox.intersects(otherAABB);
+ (*intersect_cache)[mesh] = intersects;
+ }
+
+ if (intersects) {
+ bool isIntersect = false;
+
+ std::vector<MeshSet<3>::mesh_t*>::iterator operand_it = operandMeshes->begin();
+ std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
+ for (; operand_it!=operandMeshes->end(); operand_it++, tree_it++) {
+ RTreeNode<3, Face<3> *> *operandRTree = *tree_it;
+
+ if (checkMeshSetInterseciton(rtree, operandRTree)) {
+ isIntersect = true;
+ break;
+ }
+ }
+
+ if (!isIntersect) {
+ operandMeshes->push_back(mesh);
+ meshRTree.push_back(rtree);
+
+ it = meshes->erase(it);
+ isAdded = true;
+ }
+ }
+
+ if (!isAdded) {
+ //delete rtree;
+ it++;
+ }
+ }
+
+ std::vector<RTreeNode<3, Face<3> *> *>::iterator tree_it = meshRTree.begin();
+ for (; tree_it != meshRTree.end(); tree_it++) {
+ //delete *tree_it;
+ }
+}
+
+MeshSet<3> *getIntersectedOperand(std::vector<MeshSet<3>::mesh_t*> *meshes,
+ const MeshSet<3>::aabb_t &otherAABB,
+ RTreeCache *rtree_cache,
+ IntersectCache *intersect_cache)
+{
+ std::vector<MeshSet<3>::mesh_t*> operandMeshes;
+ getIntersectedOperandMeshes(meshes, otherAABB, &operandMeshes, rtree_cache, intersect_cache);
+
+ if (operandMeshes.size() == 0)
+ return NULL;
+
+ return meshSetFromMeshes(operandMeshes);
+}
+
+MeshSet<3> *unionIntersectingMeshes(carve::csg::CSG *csg,
+ MeshSet<3> *poly,
+ const MeshSet<3>::aabb_t &otherAABB)
+{
+ if (poly->meshes.size() <= 1) {
+ return poly;
+ }
+
+ std::vector<MeshSet<3>::mesh_t*> orig_meshes =
+ std::vector<MeshSet<3>::mesh_t*>(poly->meshes.begin(), poly->meshes.end());
+
+ RTreeCache rtree_cache;
+ IntersectCache intersect_cache;
+
+ MeshSet<3> *left = getIntersectedOperand(&orig_meshes,
+ otherAABB,
+ &rtree_cache,
+ &intersect_cache);
+
+ if (!left) {
+ // No maniforlds which intersects another object at all.
+ return poly;
+ }
+
+ while (orig_meshes.size()) {
+ MeshSet<3> *right = getIntersectedOperand(&orig_meshes,
+ otherAABB,
+ &rtree_cache,
+ &intersect_cache);
+
+ if (!right) {
+ // No more intersecting manifolds which intersects other object
+ break;
+ }
+
+ try {
+ if (left->meshes.size()==0) {
+ delete left;
+
+ left = right;
+ }
+ else {
+ MeshSet<3> *result = csg->compute(left, right,
+ carve::csg::CSG::UNION,
+ NULL, carve::csg::CSG::CLASSIFY_EDGE);
+
+ delete left;
+ delete right;
+
+ left = result;
+ }
+ }
+ catch (carve::exception e) {
+ std::cerr << "CSG failed, exception " << e.str() << std::endl;
+
+ MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, right->meshes);
+
+ delete left;
+ delete right;
+
+ left = result;
+ }
+ catch (...) {
+ delete left;
+ delete right;
+
+ throw "Unknown error in Carve library";
+ }
+ }
+
+ for (RTreeCache::iterator it = rtree_cache.begin();
+ it != rtree_cache.end();
+ it++)
+ {
+ delete it->second;
+ }
+
+ // Append all meshes which doesn't have intersection with another operand as-is.
+ if (orig_meshes.size()) {
+ MeshSet<3> *result = meshSetFromTwoMeshes(left->meshes, orig_meshes);
+
+ delete left;
+ left = result;
+ }
+
+ return left;
+}
+
+} // namespace
+
+// TODO(sergey): This function is to be totally re-implemented to make it
+// more clear what's going on and hopefully optimize it as well.
+void carve_unionIntersections(carve::csg::CSG *csg,
+ MeshSet<3> **left_r,
+ MeshSet<3> **right_r)
+{
+ MeshSet<3> *left = *left_r, *right = *right_r;
+
+ if (left->meshes.size() == 1 && right->meshes.size() == 0) {
+ return;
+ }
+
+ MeshSet<3>::aabb_t leftAABB = left->getAABB();
+ MeshSet<3>::aabb_t rightAABB = right->getAABB();;
+
+ left = unionIntersectingMeshes(csg, left, rightAABB);
+ right = unionIntersectingMeshes(csg, right, leftAABB);
+
+ if (left != *left_r) {
+ delete *left_r;
+ }
+
+ if (right != *right_r)
+ delete *right_r;
+
+ *left_r = left;
+ *right_r = right;
+}
+
+static inline void add_newell_cross_v3_v3v3(const Vector &v_prev,
+ const Vector &v_curr,
+ Vector *n)
+{
+ (*n)[0] += (v_prev[1] - v_curr[1]) * (v_prev[2] + v_curr[2]);
+ (*n)[1] += (v_prev[2] - v_curr[2]) * (v_prev[0] + v_curr[0]);
+ (*n)[2] += (v_prev[0] - v_curr[0]) * (v_prev[1] + v_curr[1]);
+}
+
+// Axis matrix is being set for non-flat ngons only.
+bool carve_checkPolyPlanarAndGetNormal(const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ Matrix3 *axis_matrix_r)
+{
+ if (verts_per_poly == 3) {
+ // Triangles are always planar.
+ return true;
+ }
+ else if (verts_per_poly == 4) {
+ // Presumably faster than using generig n-gon check for quads.
+
+ const Vector &v1 = vertices[verts_of_poly[0]],
+ &v2 = vertices[verts_of_poly[1]],
+ &v3 = vertices[verts_of_poly[2]],
+ &v4 = vertices[verts_of_poly[3]];
+
+ Vector vec1, vec2, vec3, cross;
+
+ vec1 = v2 - v1;
+ vec2 = v4 - v1;
+ vec3 = v3 - v1;
+
+ cross = carve::geom::cross(vec1, vec2);
+
+ double production = carve::geom::dot(cross, vec3);
+
+ // TODO(sergey): Check on whether we could have length-independent
+ // magnitude here.
+ double magnitude = 1e-3 * cross.length2();
+
+ return fabs(production) < magnitude;
+ }
+ else {
+ const Vector *vert_prev = &vertices[verts_of_poly[verts_per_poly - 1]];
+ const Vector *vert_curr = &vertices[verts_of_poly[0]];
+
+ Vector normal = carve::geom::VECTOR(0.0, 0.0, 0.0);
+ for (int i = 0; i < verts_per_poly; i++) {
+ add_newell_cross_v3_v3v3(*vert_prev, *vert_curr, &normal);
+ vert_prev = vert_curr;
+ vert_curr = &vertices[verts_of_poly[(i + 1) % verts_per_poly]];
+ }
+
+ if (normal.length2() < FLT_EPSILON) {
+ // Degenerated face, couldn't triangulate properly anyway.
+ return true;
+ }
+ else {
+ double magnitude = normal.length2();
+
+ normal.normalize();
+ axis_dominant_v3_to_m3(normal, axis_matrix_r);
+
+ Vector first_projected = *axis_matrix_r * vertices[verts_of_poly[0]];
+ double min_z = first_projected[2], max_z = first_projected[2];
+
+ for (int i = 1; i < verts_per_poly; i++) {
+ const Vector &vertex = vertices[verts_of_poly[i]];
+ Vector projected = *axis_matrix_r * vertex;
+ if (projected[2] < min_z) {
+ min_z = projected[2];
+ }
+ if (projected[2] > max_z) {
+ max_z = projected[2];
+ }
+ }
+
+ if (std::abs(min_z - max_z) > FLT_EPSILON * magnitude) {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+namespace {
+
+int triangulateNGon_carveTriangulator(const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ const Matrix3 &axis_matrix,
+ std::vector<carve::triangulate::tri_idx> *triangles)
+{
+ // Project vertices to 2D plane.
+ Vector projected;
+ std::vector<carve::geom::vector<2> > poly_2d;
+ poly_2d.reserve(verts_per_poly);
+ for (int i = 0; i < verts_per_poly; ++i) {
+ projected = axis_matrix * vertices[verts_of_poly[i]];
+ poly_2d.push_back(carve::geom::VECTOR(projected[0], projected[1]));
+ }
+
+ carve::triangulate::triangulate(poly_2d, *triangles);
+
+ return triangles->size();
+}
+
+int triangulateNGon_importerTriangulator(struct ImportMeshData *import_data,
+ CarveMeshImporter *mesh_importer,
+ const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ const Matrix3 &axis_matrix,
+ std::vector<carve::triangulate::tri_idx> *triangles)
+{
+ typedef float Vector2D[2];
+ typedef unsigned int Triangle[3];
+
+ // Project vertices to 2D plane.
+ Vector2D *poly_2d = new Vector2D[verts_per_poly];
+ Vector projected;
+ for (int i = 0; i < verts_per_poly; ++i) {
+ projected = axis_matrix * vertices[verts_of_poly[i]];
+ poly_2d[i][0] = projected[0];
+ poly_2d[i][1] = projected[1];
+ }
+
+ Triangle *api_triangles = new Triangle[verts_per_poly - 2];
+ int num_triangles =
+ mesh_importer->triangulate2DPoly(import_data,
+ poly_2d,
+ verts_per_poly,
+ api_triangles);
+
+ triangles->reserve(num_triangles);
+ for (int i = 0; i < num_triangles; ++i) {
+ triangles->push_back(
+ carve::triangulate::tri_idx(api_triangles[i][0],
+ api_triangles[i][1],
+ api_triangles[i][2]));
+ }
+
+ delete poly_2d;
+ delete api_triangles;
+
+ return num_triangles;
+}
+
+} // namespace
+
+int carve_triangulatePoly(struct ImportMeshData *import_data,
+ CarveMeshImporter *mesh_importer,
+ int poly_index,
+ int start_loop_index,
+ const std::vector<Vector> &vertices,
+ const int verts_per_poly,
+ const int *verts_of_poly,
+ const Matrix3 &axis_matrix,
+ std::vector<int> *face_indices,
+ std::vector<int> *orig_loop_index_map,
+ std::vector<int> *orig_poly_index_map)
+{
+ int num_triangles = 0;
+
+ assert(verts_per_poly > 3);
+
+ if (verts_per_poly == 4) {
+ // Quads we triangulate by 1-3 diagonal, it is an original behavior
+ // of boolean modifier.
+ //
+ // TODO(sergey): Consider using shortest diagonal here. However
+ // display code in Blende use static 1-3 split, so some experiments
+ // are needed here.
+ face_indices->push_back(3);
+ face_indices->push_back(verts_of_poly[0]);
+ face_indices->push_back(verts_of_poly[1]);
+ face_indices->push_back(verts_of_poly[2]);
+
+ orig_loop_index_map->push_back(start_loop_index);
+ orig_loop_index_map->push_back(start_loop_index + 1);
+ orig_loop_index_map->push_back(-1);
+ orig_poly_index_map->push_back(poly_index);
+
+ face_indices->push_back(3);
+ face_indices->push_back(verts_of_poly[0]);
+ face_indices->push_back(verts_of_poly[2]);
+ face_indices->push_back(verts_of_poly[3]);
+
+ orig_loop_index_map->push_back(-1);
+ orig_loop_index_map->push_back(start_loop_index + 2);
+ orig_loop_index_map->push_back(start_loop_index + 3);
+ orig_poly_index_map->push_back(poly_index);
+
+ num_triangles = 2;
+ }
+ else {
+ std::vector<carve::triangulate::tri_idx> triangles;
+ triangles.reserve(verts_per_poly - 2);
+
+ // Make triangulator callback optional so we could do some tests
+ // in the future.
+ if (mesh_importer->triangulate2DPoly) {
+ num_triangles =
+ triangulateNGon_importerTriangulator(import_data,
+ mesh_importer,
+ vertices,
+ verts_per_poly,
+ verts_of_poly,
+ axis_matrix,
+ &triangles);
+ }
+ else {
+ num_triangles =
+ triangulateNGon_carveTriangulator(vertices,
+ verts_per_poly,
+ verts_of_poly,
+ axis_matrix,
+ &triangles);
+ }
+
+ for (int i = 0; i < triangles.size(); ++i) {
+ int v1 = triangles[i].c,
+ v2 = triangles[i].b,
+ v3 = triangles[i].a;
+
+ // Sanity check of the triangle.
+ assert(v1 != v2);
+ assert(v1 != v3);
+ assert(v2 != v3);
+ assert(v1 < verts_per_poly);
+ assert(v2 < verts_per_poly);
+ assert(v3 < verts_per_poly);
+
+ face_indices->push_back(3);
+ face_indices->push_back(verts_of_poly[v3]);
+ face_indices->push_back(verts_of_poly[v2]);
+ face_indices->push_back(verts_of_poly[v1]);
+
+#define CHECK_TRIANGLE_LOOP_INDEX(v1, v2) \
+ { \
+ if (v2 == v1 + 1) { \
+ orig_loop_index_map->push_back(start_loop_index + v1); \
+ } \
+ else { \
+ orig_loop_index_map->push_back(-1); \
+ } \
+ } (void) 0
+
+ CHECK_TRIANGLE_LOOP_INDEX(v1, v2);
+ CHECK_TRIANGLE_LOOP_INDEX(v2, v3);
+ CHECK_TRIANGLE_LOOP_INDEX(v3, v1);
+
+#undef CHECK_TRIANGLE_LOOP_INDEX
+
+ orig_poly_index_map->push_back(poly_index);
+ }
+ }
+
+ return num_triangles;
+}