Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/include/carve/triangulator_impl.hpp')
-rw-r--r--extern/carve/include/carve/triangulator_impl.hpp851
1 files changed, 851 insertions, 0 deletions
diff --git a/extern/carve/include/carve/triangulator_impl.hpp b/extern/carve/include/carve/triangulator_impl.hpp
new file mode 100644
index 00000000000..476438fd248
--- /dev/null
+++ b/extern/carve/include/carve/triangulator_impl.hpp
@@ -0,0 +1,851 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#pragma once
+
+#include <carve/geom2d.hpp>
+
+#if defined(CARVE_DEBUG)
+# include <iostream>
+#endif
+
+namespace carve {
+ namespace triangulate {
+ namespace detail {
+
+
+
+ static inline bool axisOrdering(const carve::geom2d::P2 &a,
+ const carve::geom2d::P2 &b,
+ int axis) {
+ return a.v[axis] < b.v[axis] || (a.v[axis] == b.v[axis] && a.v[1-axis] < b.v[1-axis]);
+ }
+
+
+
+ /**
+ * \class order_h_loops
+ * \brief Provides an ordering of hole loops based upon a single
+ * projected axis.
+ *
+ * @tparam project_t A functor which converts vertices to a 2d
+ * projection.
+ * @tparam hole_t A collection of vertices.
+ */
+ template<typename project_t, typename vert_t>
+ class order_h_loops {
+ const project_t &project;
+ int axis;
+ public:
+
+ /**
+ *
+ * @param _project The projection functor.
+ * @param _axis The axis of the 2d projection upon which hole
+ * loops are ordered.
+ */
+ order_h_loops(const project_t &_project, int _axis) : project(_project), axis(_axis) { }
+
+ bool operator()(const vert_t &a,
+ const vert_t &b) const {
+ return axisOrdering(project(a), project(b), axis);
+ }
+
+ bool operator()(
+ const std::pair<const typename std::vector<vert_t> *, typename std::vector<vert_t>::const_iterator> &a,
+ const std::pair<const typename std::vector<vert_t> *, typename std::vector<vert_t>::const_iterator> &b) {
+ return axisOrdering(project(*(a.second)), project(*(b.second)), axis);
+ }
+ };
+
+
+
+ /**
+ * \class heap_ordering
+ * \brief Provides an ordering of vertex indicies in a polygon
+ * loop according to proximity to a vertex.
+ *
+ * @tparam project_t A functor which converts vertices to a 2d
+ * projection.
+ * @tparam vert_t A vertex type.
+ */
+ template<typename project_t, typename vert_t>
+ class heap_ordering {
+ const project_t &project;
+ const std::vector<vert_t> &loop;
+ const carve::geom2d::P2 p;
+ int axis;
+
+ public:
+ /**
+ *
+ * @param _project A functor which converts vertices to a 2d
+ * projection.
+ * @param _loop The polygon loop which indices address.
+ * @param _vert The vertex from which distance is measured.
+ *
+ */
+ heap_ordering(const project_t &_project,
+ const std::vector<vert_t> &_loop,
+ vert_t _vert,
+ int _axis) :
+ project(_project),
+ loop(_loop),
+ p(_project(_vert)),
+ axis(_axis) {
+ }
+
+ bool operator()(size_t a, size_t b) const {
+ carve::geom2d::P2 pa = project(loop[a]);
+ carve::geom2d::P2 pb = project(loop[b]);
+ double da = carve::geom::distance2(p, pa);
+ double db = carve::geom::distance2(p, pb);
+ if (da > db) return true;
+ if (da < db) return false;
+ return axisOrdering(pa, pb, axis);
+ }
+ };
+
+
+
+ /**
+ * \brief Given a polygon loop and a hole loop, and attachment
+ * points, insert the hole loop vertices into the polygon loop.
+ *
+ * @param[in,out] f_loop The polygon loop to incorporate the
+ * hole into.
+ * @param f_loop_attach[in] The index of the vertex of the
+ * polygon loop that the hole is to be
+ * attached to.
+ * @param hole_attach[in] A pair consisting of a pointer to a
+ * hole container and an iterator into
+ * that container reflecting the point of
+ * attachment of the hole.
+ */
+ template<typename vert_t>
+ void patchHoleIntoPolygon(std::vector<vert_t> &f_loop,
+ unsigned f_loop_attach,
+ const std::pair<const std::vector<vert_t> *,
+ typename std::vector<vert_t>::const_iterator> &hole_attach) {
+ // join the vertex curr of the polygon loop to the hole at
+ // h_loop_connect
+ f_loop.insert(f_loop.begin() + f_loop_attach + 1, hole_attach.first->size() + 2, NULL);
+ typename std::vector<vert_t>::iterator f = f_loop.begin() + f_loop_attach;
+
+ typename std::vector<vert_t>::const_iterator h = hole_attach.second;
+
+ while (h != hole_attach.first->end()) {
+ *++f = *h++;
+ }
+
+ h = hole_attach.first->begin();
+ typename std::vector<vert_t>::const_iterator he = hole_attach.second; ++he;
+ while (h != he) {
+ *++f = *h++;
+ }
+
+ *++f = f_loop[f_loop_attach];
+ }
+
+
+
+ struct vertex_info;
+
+
+
+ /**
+ * \brief Determine whether c is to the left of a->b.
+ */
+ static inline bool isLeft(const vertex_info *a,
+ const vertex_info *b,
+ const vertex_info *c);
+
+
+
+ /**
+ * \brief Determine whether d is contained in the triangle abc.
+ */
+ static inline bool pointInTriangle(const vertex_info *a,
+ const vertex_info *b,
+ const vertex_info *c,
+ const vertex_info *d);
+
+
+
+ /**
+ * \class vertex_info
+ * \brief Maintains a linked list of untriangulated vertices
+ * during a triangulation operation.
+ */
+
+ struct vertex_info {
+ vertex_info *prev;
+ vertex_info *next;
+ carve::geom2d::P2 p;
+ size_t idx;
+ double score;
+ bool convex;
+ bool failed;
+
+ vertex_info(const carve::geom2d::P2 &_p, size_t _idx) :
+ prev(NULL), next(NULL),
+ p(_p), idx(_idx),
+ score(0.0), convex(false) {
+ }
+
+ static double triScore(const vertex_info *p, const vertex_info *v, const vertex_info *n);
+
+ double calcScore() const;
+
+ void recompute() {
+ score = calcScore();
+ convex = isLeft(prev, this, next);
+ failed = false;
+ }
+
+ bool isCandidate() const {
+ return convex && !failed;
+ }
+
+ void remove() {
+ next->prev = prev;
+ prev->next = next;
+ }
+
+ bool isClipable() const;
+ };
+
+
+
+ static inline bool isLeft(const vertex_info *a,
+ const vertex_info *b,
+ const vertex_info *c) {
+ if (a->idx < b->idx && b->idx < c->idx) {
+ return carve::geom2d::orient2d(a->p, b->p, c->p) > 0.0;
+ } else if (a->idx < c->idx && c->idx < b->idx) {
+ return carve::geom2d::orient2d(a->p, c->p, b->p) < 0.0;
+ } else if (b->idx < a->idx && a->idx < c->idx) {
+ return carve::geom2d::orient2d(b->p, a->p, c->p) < 0.0;
+ } else if (b->idx < c->idx && c->idx < a->idx) {
+ return carve::geom2d::orient2d(b->p, c->p, a->p) > 0.0;
+ } else if (c->idx < a->idx && a->idx < b->idx) {
+ return carve::geom2d::orient2d(c->p, a->p, b->p) > 0.0;
+ } else {
+ return carve::geom2d::orient2d(c->p, b->p, a->p) < 0.0;
+ }
+ }
+
+
+
+ static inline bool pointInTriangle(const vertex_info *a,
+ const vertex_info *b,
+ const vertex_info *c,
+ const vertex_info *d) {
+ return !isLeft(a, c, d) && !isLeft(b, a, d) && !isLeft(c, b, d);
+ }
+
+
+
+ size_t removeDegeneracies(vertex_info *&begin, std::vector<carve::triangulate::tri_idx> &result);
+
+ bool splitAndResume(vertex_info *begin, std::vector<carve::triangulate::tri_idx> &result);
+
+ bool doTriangulate(vertex_info *begin, std::vector<carve::triangulate::tri_idx> &result);
+
+
+
+ typedef std::pair<unsigned, unsigned> vert_edge_t;
+
+
+
+ struct hash_vert_edge_t {
+ size_t operator()(const vert_edge_t &e) const {
+ size_t r = (size_t)e.first;
+ size_t s = (size_t)e.second;
+ return r ^ ((s >> 16) | (s << 16));
+ }
+ };
+
+
+
+ static inline vert_edge_t ordered_vert_edge_t(unsigned a, unsigned b) {
+ return (a < b) ? vert_edge_t(a, b) : vert_edge_t(b, a);
+ }
+
+
+
+ struct tri_pair_t {
+ carve::triangulate::tri_idx *a, *b;
+ double score;
+ size_t idx;
+
+ tri_pair_t() : a(NULL), b(NULL), score(0.0) {
+ }
+
+ static inline unsigned N(unsigned i) { return (i+1)%3; }
+ static inline unsigned P(unsigned i) { return (i+2)%3; }
+
+ void findSharedEdge(unsigned &ai, unsigned &bi) const {
+ if (a->v[1] == b->v[0]) { if (a->v[0] == b->v[1]) { ai = 0; bi = 0; } else { ai = 1; bi = 2; } return; }
+ if (a->v[1] == b->v[1]) { if (a->v[0] == b->v[2]) { ai = 0; bi = 1; } else { ai = 1; bi = 0; } return; }
+ if (a->v[1] == b->v[2]) { if (a->v[0] == b->v[0]) { ai = 0; bi = 2; } else { ai = 1; bi = 1; } return; }
+ if (a->v[2] == b->v[0]) { ai = 2; bi = 2; return; }
+ if (a->v[2] == b->v[1]) { ai = 2; bi = 0; return; }
+ if (a->v[2] == b->v[2]) { ai = 2; bi = 1; return; }
+ CARVE_FAIL("should not be reached");
+ }
+
+ void flip(vert_edge_t &old_edge,
+ vert_edge_t &new_edge,
+ vert_edge_t perim[4]);
+
+ template<typename project_t, typename vert_t, typename distance_calc_t>
+ double calc(const project_t &project,
+ const std::vector<vert_t> &poly,
+ distance_calc_t dist) {
+ unsigned ai, bi;
+ unsigned cross_ai, cross_bi;
+ unsigned ea, eb;
+
+ findSharedEdge(ai, bi);
+
+#if defined(CARVE_DEBUG)
+ if (carve::geom2d::signedArea(project(poly[a->v[0]]), project(poly[a->v[1]]), project(poly[a->v[2]])) > 0.0 ||
+ carve::geom2d::signedArea(project(poly[b->v[0]]), project(poly[b->v[1]]), project(poly[b->v[2]])) > 0.0) {
+ std::cerr << "warning: triangle pair " << this << " contains triangles with incorrect orientation" << std::endl;
+ }
+#endif
+
+ cross_ai = P(ai);
+ cross_bi = P(bi);
+
+ ea = a->v[cross_ai];
+ eb = b->v[cross_bi];
+
+ double side_1 = carve::geom2d::orient2d(project(poly[ea]), project(poly[eb]), project(poly[a->v[ai]]));
+ double side_2 = carve::geom2d::orient2d(project(poly[ea]), project(poly[eb]), project(poly[a->v[N(ai)]]));
+
+ bool can_flip = (side_1 < 0.0 && side_2 > 0.0) || (side_1 > 0.0 && side_2 < 0.0);
+
+ if (!can_flip) {
+ score = -1;
+ } else {
+ score =
+ dist(poly[a->v[ai]], poly[b->v[bi]]) -
+ dist(poly[a->v[cross_ai]], poly[b->v[cross_bi]]);
+ }
+ return score;
+ }
+
+ template<typename project_t, typename vert_t, typename distance_calc_t>
+ double edgeLen(const project_t &project,
+ const std::vector<vert_t> &poly,
+ distance_calc_t dist) const {
+ unsigned ai, bi;
+ findSharedEdge(ai, bi);
+ return dist(poly[a->v[ai]], poly[b->v[bi]]);
+ }
+ };
+
+
+
+ struct max_score {
+ bool operator()(const tri_pair_t *a, const tri_pair_t *b) const { return a->score < b->score; }
+ };
+
+
+
+ struct tri_pairs_t {
+ typedef std::unordered_map<vert_edge_t, tri_pair_t *, hash_vert_edge_t> storage_t;
+ storage_t storage;
+
+ tri_pairs_t() : storage() {
+ };
+
+ ~tri_pairs_t() {
+ for (storage_t::iterator i = storage.begin(); i != storage.end(); ++i) {
+ if ((*i).second) delete (*i).second;
+ }
+ }
+
+ void insert(unsigned a, unsigned b, carve::triangulate::tri_idx *t);
+
+ template<typename project_t, typename vert_t, typename distance_calc_t>
+ void updateEdge(tri_pair_t *tp,
+ const project_t &project,
+ const std::vector<vert_t> &poly,
+ distance_calc_t dist,
+ std::vector<tri_pair_t *> &edges,
+ size_t &n) {
+ double old_score = tp->score;
+ double new_score = tp->calc(project, poly, dist);
+#if defined(CARVE_DEBUG)
+ std::cerr << "tp:" << tp << " old_score: " << old_score << " new_score: " << new_score << std::endl;
+#endif
+ if (new_score > 0.0 && old_score <= 0.0) {
+ tp->idx = n;
+ edges[n++] = tp;
+ } else if (new_score <= 0.0 && old_score > 0.0) {
+ std::swap(edges[tp->idx], edges[--n]);
+ edges[tp->idx]->idx = tp->idx;
+ }
+ }
+
+ tri_pair_t *get(vert_edge_t &e) {
+ storage_t::iterator i;
+ i = storage.find(e);
+ if (i == storage.end()) return NULL;
+ return (*i).second;
+ }
+
+ template<typename project_t, typename vert_t, typename distance_calc_t>
+ void flip(const project_t &project,
+ const std::vector<vert_t> &poly,
+ distance_calc_t dist,
+ std::vector<tri_pair_t *> &edges,
+ size_t &n) {
+ vert_edge_t old_e, new_e;
+ vert_edge_t perim[4];
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "improvable edges: " << n << std::endl;
+#endif
+
+ tri_pair_t *tp = *std::max_element(edges.begin(), edges.begin() + n, max_score());
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "improving tri-pair: " << tp << " with score: " << tp->score << std::endl;
+#endif
+
+ tp->flip(old_e, new_e, perim);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "old_e: " << old_e.first << "," << old_e.second << " -> new_e: " << new_e.first << "," << new_e.second << std::endl;
+#endif
+
+ CARVE_ASSERT(storage.find(old_e) != storage.end());
+ storage.erase(old_e);
+ storage[new_e] = tp;
+
+ std::swap(edges[tp->idx], edges[--n]);
+ edges[tp->idx]->idx = tp->idx;
+
+ tri_pair_t *tp2;
+
+ tp2 = get(perim[0]);
+ if (tp2 != NULL) {
+ updateEdge(tp2, project, poly, dist, edges, n);
+ }
+
+ tp2 = get(perim[1]);
+ if (tp2 != NULL) {
+ CARVE_ASSERT(tp2->a == tp->b || tp2->b == tp->b);
+ if (tp2->a == tp->b) { tp2->a = tp->a; } else { tp2->b = tp->a; }
+ updateEdge(tp2, project, poly, dist, edges, n);
+ }
+
+ tp2 = get(perim[2]);
+ if (tp2 != NULL) {
+ updateEdge(tp2, project, poly, dist, edges, n);
+ }
+
+ tp2 = get(perim[3]);
+ if (tp2 != NULL) {
+ CARVE_ASSERT(tp2->a == tp->a || tp2->b == tp->a);
+ if (tp2->a == tp->a) { tp2->a = tp->b; } else { tp2->b = tp->b; }
+ updateEdge(tp2, project, poly, dist, edges, n);
+ }
+ }
+
+ template<typename project_t, typename vert_t, typename distance_calc_t>
+ size_t getInternalEdges(const project_t &project,
+ const std::vector<vert_t> &poly,
+ distance_calc_t dist,
+ std::vector<tri_pair_t *> &edges) {
+ size_t count = 0;
+
+ for (storage_t::iterator i = storage.begin(); i != storage.end();) {
+ tri_pair_t *tp = (*i).second;
+ if (tp->a && tp->b) {
+ tp->calc(project, poly, dist);
+ count++;
+#if defined(CARVE_DEBUG)
+ std::cerr << "internal edge: " << (*i).first.first << "," << (*i).first.second << " -> " << tp << " " << tp->score << std::endl;
+#endif
+ ++i;
+ } else {
+ delete (*i).second;
+ storage.erase(i++);
+ }
+ }
+
+ edges.resize(count);
+
+ size_t fwd = 0;
+ size_t rev = count;
+ for (storage_t::iterator i = storage.begin(); i != storage.end(); ++i) {
+ tri_pair_t *tp = (*i).second;
+ if (tp && tp->a && tp->b) {
+ if (tp->score > 0.0) {
+ edges[fwd++] = tp;
+ } else {
+ edges[--rev] = tp;
+ }
+ }
+ }
+
+ CARVE_ASSERT(fwd == rev);
+
+ return fwd;
+ }
+ };
+
+
+
+ template<typename project_t, typename vert_t>
+ static bool
+ testCandidateAttachment(const project_t &project,
+ std::vector<vert_t> &current_f_loop,
+ size_t curr,
+ carve::geom2d::P2 hole_min) {
+ const size_t SZ = current_f_loop.size();
+
+ size_t prev, next;
+
+ if (curr == 0) {
+ prev = SZ - 1; next = 1;
+ } else if (curr == SZ - 1) {
+ prev = curr - 1; next = 0;
+ } else {
+ prev = curr - 1; next = curr + 1;
+ }
+
+ if (!carve::geom2d::internalToAngle(project(current_f_loop[next]),
+ project(current_f_loop[curr]),
+ project(current_f_loop[prev]),
+ hole_min)) {
+ return false;
+ }
+
+ if (hole_min == project(current_f_loop[curr])) {
+ return true;
+ }
+
+ carve::geom2d::LineSegment2 test(hole_min, project(current_f_loop[curr]));
+
+ size_t v1 = current_f_loop.size() - 1;
+ size_t v2 = 0;
+ double v1_side = carve::geom2d::orient2d(test.v1, test.v2, project(current_f_loop[v1]));
+ double v2_side = 0;
+
+ while (v2 != current_f_loop.size()) {
+ v2_side = carve::geom2d::orient2d(test.v1, test.v2, project(current_f_loop[v2]));
+
+ if (v1_side != v2_side) {
+ // XXX: need to test vertices, not indices, because they may
+ // be duplicated.
+ if (project(current_f_loop[v1]) != project(current_f_loop[curr]) &&
+ project(current_f_loop[v2]) != project(current_f_loop[curr])) {
+ carve::geom2d::LineSegment2 test2(project(current_f_loop[v1]), project(current_f_loop[v2]));
+ if (carve::geom2d::lineSegmentIntersection_simple(test, test2)) {
+ // intersection; failed.
+ return false;
+ }
+ }
+ }
+
+ v1 = v2;
+ v1_side = v2_side;
+ ++v2;
+ }
+ return true;
+ }
+
+
+
+ }
+
+
+
+ template<typename project_t, typename vert_t>
+ static std::vector<vert_t>
+ incorporateHolesIntoPolygon(const project_t &project,
+ const std::vector<vert_t> &f_loop,
+ const std::vector<std::vector<vert_t> > &h_loops) {
+ typedef std::vector<vert_t> hole_t;
+ typedef typename std::vector<vert_t>::const_iterator vert_iter;
+ typedef typename std::vector<std::vector<vert_t> >::const_iterator hole_iter;
+
+ size_t N = f_loop.size();
+
+ // work out how much space to reserve for the patched in holes.
+ for (hole_iter i = h_loops.begin(); i != h_loops.end(); ++i) {
+ N += 2 + (*i).size();
+ }
+
+ // this is the vector that we will build the result in.
+ std::vector<vert_t> current_f_loop;
+ current_f_loop.reserve(N);
+
+ std::vector<size_t> f_loop_heap;
+ f_loop_heap.reserve(N);
+
+ for (unsigned i = 0; i < f_loop.size(); ++i) {
+ current_f_loop.push_back(f_loop[i]);
+ }
+
+ std::vector<std::pair<const std::vector<vert_t> *, vert_iter> > h_loop_min_vertex;
+
+ h_loop_min_vertex.reserve(h_loops.size());
+
+ // find the major axis for the holes - this is the axis that we
+ // will sort on for finding vertices on the polygon to join
+ // holes up to.
+ //
+ // it might also be nice to also look for whether it is better
+ // to sort ascending or descending.
+ //
+ // another trick that could be used is to modify the projection
+ // by 90 degree rotations or flipping about an axis. just as
+ // long as we keep the carve::geom3d::Vector pointers for the
+ // real data in sync, everything should be ok. then we wouldn't
+ // need to accomodate axes or sort order in the main loop.
+
+ // find the bounding box of all the holes.
+ bool first = true;
+ double min_x, min_y, max_x, max_y;
+ for (hole_iter i = h_loops.begin(); i != h_loops.end(); ++i) {
+ const hole_t &hole(*i);
+ for (vert_iter j = hole.begin(); j != hole.end(); ++j) {
+ carve::geom2d::P2 curr = project(*j);
+ if (first) {
+ min_x = max_x = curr.x;
+ min_y = max_y = curr.y;
+ first = false;
+ } else {
+ min_x = std::min(min_x, curr.x);
+ min_y = std::min(min_y, curr.y);
+ max_x = std::max(max_x, curr.x);
+ max_y = std::max(max_y, curr.y);
+ }
+ }
+ }
+
+ // choose the axis for which the bbox is largest.
+ int axis = (max_x - min_x) > (max_y - min_y) ? 0 : 1;
+
+ // for each hole, find the minimum vertex in the chosen axis.
+ for (hole_iter i = h_loops.begin(); i != h_loops.end(); ++i) {
+ const hole_t &hole = *i;
+ vert_iter best_i = std::min_element(hole.begin(), hole.end(), detail::order_h_loops<project_t, vert_t>(project, axis));
+ h_loop_min_vertex.push_back(std::make_pair(&hole, best_i));
+ }
+
+ // sort the holes by the minimum vertex.
+ std::sort(h_loop_min_vertex.begin(), h_loop_min_vertex.end(), detail::order_h_loops<project_t, vert_t>(project, axis));
+
+ // now, for each hole, find a vertex in the current polygon loop that it can be joined to.
+ for (unsigned i = 0; i < h_loop_min_vertex.size(); ++i) {
+ const size_t N_f_loop = current_f_loop.size();
+
+ // the index of the vertex in the hole to connect.
+ vert_iter h_loop_connect = h_loop_min_vertex[i].second;
+
+ carve::geom2d::P2 hole_min = project(*h_loop_connect);
+
+ f_loop_heap.clear();
+ // we order polygon loop vertices that may be able to be connected
+ // to the hole vertex by their distance to the hole vertex
+ detail::heap_ordering<project_t, vert_t> _heap_ordering(project, current_f_loop, *h_loop_connect, axis);
+
+ for (size_t j = 0; j < N_f_loop; ++j) {
+ // it is guaranteed that there exists a polygon vertex with
+ // coord < the min hole coord chosen, which can be joined to
+ // the min hole coord without crossing the polygon
+ // boundary. also, because we merge holes in ascending
+ // order, it is also true that this join can never cross
+ // another hole (and that doesn't need to be tested for).
+ if (project(current_f_loop[j]).v[axis] <= hole_min.v[axis]) {
+ f_loop_heap.push_back(j);
+ std::push_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
+ }
+ }
+
+ // we are going to test each potential (according to the
+ // previous test) polygon vertex as a candidate join. we order
+ // by closeness to the hole vertex, so that the join we make
+ // is as small as possible. to test, we need to check the
+ // joining line segment does not cross any other line segment
+ // in the current polygon loop (excluding those that have the
+ // vertex that we are attempting to join with as an endpoint).
+ size_t attachment_point = current_f_loop.size();
+
+ while (f_loop_heap.size()) {
+ std::pop_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
+ size_t curr = f_loop_heap.back();
+ f_loop_heap.pop_back();
+ // test the candidate join from current_f_loop[curr] to hole_min
+
+ if (!detail::testCandidateAttachment(project, current_f_loop, curr, hole_min)) {
+ continue;
+ }
+
+ attachment_point = curr;
+ break;
+ }
+
+ if (attachment_point == current_f_loop.size()) {
+ CARVE_FAIL("didn't manage to link up hole!");
+ }
+
+ detail::patchHoleIntoPolygon(current_f_loop, attachment_point, h_loop_min_vertex[i]);
+ }
+
+ return current_f_loop;
+ }
+
+
+
+ template<typename project_t, typename vert_t>
+ void triangulate(const project_t &project,
+ const std::vector<vert_t> &poly,
+ std::vector<tri_idx> &result) {
+ std::vector<detail::vertex_info *> vinfo;
+ const size_t N = poly.size();
+
+ result.clear();
+ if (N < 3) {
+ return;
+ }
+
+ result.reserve(poly.size() - 2);
+
+ if (N == 3) {
+ result.push_back(tri_idx(0, 1, 2));
+ return;
+ }
+
+ vinfo.resize(N);
+
+ vinfo[0] = new detail::vertex_info(project(poly[0]), 0);
+ for (size_t i = 1; i < N-1; ++i) {
+ vinfo[i] = new detail::vertex_info(project(poly[i]), i);
+ vinfo[i]->prev = vinfo[i-1];
+ vinfo[i-1]->next = vinfo[i];
+ }
+ vinfo[N-1] = new detail::vertex_info(project(poly[N-1]), N-1);
+ vinfo[N-1]->prev = vinfo[N-2];
+ vinfo[N-1]->next = vinfo[0];
+ vinfo[0]->prev = vinfo[N-1];
+ vinfo[N-2]->next = vinfo[N-1];
+
+ for (size_t i = 0; i < N; ++i) {
+ vinfo[i]->recompute();
+ }
+
+ detail::vertex_info *begin = vinfo[0];
+
+ removeDegeneracies(begin, result);
+ doTriangulate(begin, result);
+ }
+
+
+
+ template<typename project_t, typename vert_t, typename distance_calc_t>
+ void improve(const project_t &project,
+ const std::vector<vert_t> &poly,
+ distance_calc_t dist,
+ std::vector<tri_idx> &result) {
+ detail::tri_pairs_t tri_pairs;
+
+#if defined(CARVE_DEBUG)
+ bool warn = false;
+ for (size_t i = 0; i < result.size(); ++i) {
+ tri_idx &t = result[i];
+ if (carve::geom2d::signedArea(project(poly[t.a]), project(poly[t.b]), project(poly[t.c])) > 0) {
+ warn = true;
+ }
+ }
+ if (warn) {
+ std::cerr << "carve::triangulate::improve(): Some triangles are incorrectly oriented. Results may be incorrect." << std::endl;
+ }
+#endif
+
+ for (size_t i = 0; i < result.size(); ++i) {
+ tri_idx &t = result[i];
+ tri_pairs.insert(t.a, t.b, &t);
+ tri_pairs.insert(t.b, t.c, &t);
+ tri_pairs.insert(t.c, t.a, &t);
+ }
+
+ std::vector<detail::tri_pair_t *> edges;
+ size_t n = tri_pairs.getInternalEdges(project, poly, dist, edges);
+ for (size_t i = 0; i < n; ++i) {
+ edges[i]->idx = i;
+ }
+
+ // procedure:
+ // while a tri pair with a positive score exists:
+ // p = pair with highest positive score
+ // flip p, rewriting its two referenced triangles.
+ // negate p's score
+ // for each q in the up-to-four adjoining tri pairs:
+ // update q's tri ptr, if changed, and its score.
+
+#if defined(CARVE_DEBUG)
+ double initial_score = 0;
+ for (size_t i = 0; i < edges.size(); ++i) {
+ initial_score += edges[i]->edgeLen(project, poly, dist);
+ }
+ std::cerr << "initial score: " << initial_score << std::endl;
+#endif
+
+ while (n) {
+ tri_pairs.flip(project, poly, dist, edges, n);
+ }
+
+#if defined(CARVE_DEBUG)
+ double final_score = 0;
+ for (size_t i = 0; i < edges.size(); ++i) {
+ final_score += edges[i]->edgeLen(project, poly, dist);
+ }
+ std::cerr << "final score: " << final_score << std::endl;
+#endif
+
+#if defined(CARVE_DEBUG)
+ if (!warn) {
+ for (size_t i = 0; i < result.size(); ++i) {
+ tri_idx &t = result[i];
+ CARVE_ASSERT (carve::geom2d::signedArea(project(poly[t.a]), project(poly[t.b]), project(poly[t.c])) <= 0.0);
+ }
+ }
+#endif
+ }
+
+
+
+ template<typename project_t, typename vert_t>
+ void improve(const project_t &project,
+ const std::vector<vert_t> &poly,
+ std::vector<tri_idx> &result) {
+ improve(project, poly, carve::geom::distance_functor(), result);
+ }
+
+
+
+ }
+}