Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/lib/intersect_face_division.cpp')
-rw-r--r--extern/carve/lib/intersect_face_division.cpp1709
1 files changed, 1709 insertions, 0 deletions
diff --git a/extern/carve/lib/intersect_face_division.cpp b/extern/carve/lib/intersect_face_division.cpp
new file mode 100644
index 00000000000..6f2aa65ed67
--- /dev/null
+++ b/extern/carve/lib/intersect_face_division.cpp
@@ -0,0 +1,1709 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/polyline.hpp>
+#include <carve/debug_hooks.hpp>
+#include <carve/timing.hpp>
+#include <carve/triangulator.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "csg_detail.hpp"
+#include "csg_data.hpp"
+
+#include "intersect_common.hpp"
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+void writePLY(const std::string &out_file, const carve::line::PolylineSet *lines, bool ascii);
+#endif
+
+
+
+namespace {
+
+
+
+ template<typename T>
+ void populateVectorFromList(std::list<T> &l, std::vector<T> &v) {
+ v.clear();
+ v.reserve(l.size());
+ for (typename std::list<T>::iterator i = l.begin(); i != l.end(); ++i) {
+ v.push_back(T());
+ std::swap(*i, v.back());
+ }
+ l.clear();
+ }
+
+ template<typename T>
+ void populateListFromVector(std::vector<T> &v, std::list<T> &l) {
+ l.clear();
+ for (size_t i = 0; i < v.size(); ++i) {
+ l.push_back(T());
+ std::swap(v[i], l.back());
+ }
+ v.clear();
+ }
+
+
+
+ struct GraphEdge {
+ GraphEdge *next;
+ GraphEdge *prev;
+ GraphEdge *loop_next;
+ carve::mesh::MeshSet<3>::vertex_t *src;
+ carve::mesh::MeshSet<3>::vertex_t *tgt;
+ double ang;
+ int visited;
+
+ GraphEdge(carve::mesh::MeshSet<3>::vertex_t *_src, carve::mesh::MeshSet<3>::vertex_t *_tgt) :
+ next(NULL), prev(NULL), loop_next(NULL),
+ src(_src), tgt(_tgt),
+ ang(0.0), visited(-1) {
+ }
+ };
+
+
+
+ struct GraphEdges {
+ GraphEdge *edges;
+ carve::geom2d::P2 proj;
+
+ GraphEdges() : edges(NULL), proj() {
+ }
+ };
+
+
+
+ struct Graph {
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::vertex_t *, GraphEdges> graph_t;
+
+ graph_t graph;
+
+ Graph() : graph() {
+ }
+
+ ~Graph() {
+ int c = 0;
+
+ GraphEdge *edge;
+ for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ edge = (*i).second.edges;
+ while (edge) {
+ GraphEdge *temp = edge;
+ ++c;
+ edge = edge->next;
+ delete temp;
+ }
+ }
+
+ if (c) {
+ std::cerr << "warning: "
+ << c
+ << " edges should have already been removed at graph destruction time"
+ << std::endl;
+ }
+ }
+
+ const carve::geom2d::P2 &projection(carve::mesh::MeshSet<3>::vertex_t *v) const {
+ graph_t::const_iterator i = graph.find(v);
+ CARVE_ASSERT(i != graph.end());
+ return (*i).second.proj;
+ }
+
+ void computeProjection(carve::mesh::MeshSet<3>::face_t *face) {
+ for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ (*i).second.proj = face->project((*i).first->v);
+ }
+ for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ for (GraphEdge *e = (*i).second.edges; e; e = e->next) {
+ e->ang = carve::math::ANG(carve::geom2d::atan2(projection(e->tgt) - projection(e->src)));
+ }
+ }
+ }
+
+ void print(std::ostream &out, const carve::csg::VertexIntersections *vi) const {
+ for (graph_t::const_iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ out << (*i).first << (*i).first->v << '(' << projection((*i).first).x << ',' << projection((*i).first).y << ") :";
+ for (const GraphEdge *e = (*i).second.edges; e; e = e->next) {
+ out << ' ' << e->tgt << e->tgt->v << '(' << projection(e->tgt).x << ',' << projection(e->tgt).y << ')';
+ }
+ out << std::endl;
+ if (vi) {
+ carve::csg::VertexIntersections::const_iterator j = vi->find((*i).first);
+ if (j != vi->end()) {
+ out << " (int) ";
+ for (carve::csg::IObjPairSet::const_iterator
+ k = (*j).second.begin(), ke = (*j).second.end(); k != ke; ++k) {
+ if ((*k).first < (*k).second) {
+ out << (*k).first << ".." << (*k).second << "; ";
+ }
+ }
+ out << std::endl;
+ }
+ }
+ }
+ }
+
+ void addEdge(carve::mesh::MeshSet<3>::vertex_t *v1, carve::mesh::MeshSet<3>::vertex_t *v2) {
+ GraphEdges &edges = graph[v1];
+ GraphEdge *edge = new GraphEdge(v1, v2);
+ if (edges.edges) edges.edges->prev = edge;
+ edge->next = edges.edges;
+ edges.edges = edge;
+ }
+
+ void removeEdge(GraphEdge *edge) {
+ if (edge->prev != NULL) {
+ edge->prev->next = edge->next;
+ } else {
+ if (edge->next != NULL) {
+ GraphEdges &edges = (graph[edge->src]);
+ edges.edges = edge->next;
+ } else {
+ graph.erase(edge->src);
+ }
+ }
+ if (edge->next != NULL) {
+ edge->next->prev = edge->prev;
+ }
+ delete edge;
+ }
+
+ bool empty() const {
+ return graph.size() == 0;
+ }
+
+ GraphEdge *pickStartEdge() {
+ // Try and find a vertex from which there is only one outbound edge. Won't always succeed.
+ for (graph_t::iterator i = graph.begin(); i != graph.end(); ++i) {
+ GraphEdges &ge = i->second;
+ if (ge.edges->next == NULL) {
+ return ge.edges;
+ }
+ }
+ return (*graph.begin()).second.edges;
+ }
+
+ GraphEdge *outboundEdges(carve::mesh::MeshSet<3>::vertex_t *v) {
+ return graph[v].edges;
+ }
+ };
+
+
+
+ /**
+ * \brief Take a set of new edges and split a face based upon those edges.
+ *
+ * @param[in] face The face to be split.
+ * @param[in] edges
+ * @param[out] face_loops Output list of face loops
+ * @param[out] hole_loops Output list of hole loops
+ * @param vi
+ */
+ static void splitFace(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::V2Set &edges,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops,
+ const carve::csg::VertexIntersections & /* vi */) {
+ Graph graph;
+
+ for (carve::csg::V2Set::const_iterator
+ i = edges.begin(), e = edges.end();
+ i != e;
+ ++i) {
+ carve::mesh::MeshSet<3>::vertex_t *v1 = ((*i).first), *v2 = ((*i).second);
+ if (carve::geom::equal(v1->v, v2->v)) std::cerr << "WARNING! " << v1->v << "==" << v2->v << std::endl;
+ graph.addEdge(v1, v2);
+ }
+
+ graph.computeProjection(face);
+
+ while (!graph.empty()) {
+ GraphEdge *edge;
+ GraphEdge *start;
+ start = edge = graph.pickStartEdge();
+
+ edge->visited = 0;
+
+ int len = 0;
+
+ for (;;) {
+ double in_ang = M_PI + edge->ang;
+ if (in_ang > M_TWOPI) in_ang -= M_TWOPI;
+
+ GraphEdge *opts;
+ GraphEdge *out = NULL;
+ double best = M_TWOPI + 1.0;
+
+ for (opts = graph.outboundEdges(edge->tgt); opts; opts = opts->next) {
+ if (opts->tgt == edge->src) {
+ if (out == NULL && opts->next == NULL) out = opts;
+ } else {
+ double out_ang = carve::math::ANG(in_ang - opts->ang);
+
+ if (out == NULL || out_ang < best) {
+ out = opts;
+ best = out_ang;
+ }
+ }
+ }
+
+ CARVE_ASSERT(out != NULL);
+
+ edge->loop_next = out;
+
+ if (out->visited >= 0) {
+ while (start != out) {
+ GraphEdge *e = start;
+ start = start->loop_next;
+ e->loop_next = NULL;
+ e->visited = -1;
+ }
+ len = edge->visited - out->visited + 1;
+ break;
+ }
+
+ out->visited = edge->visited + 1;
+ edge = out;
+ }
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> loop(len);
+ std::vector<carve::geom2d::P2> projected(len);
+
+ edge = start;
+ for (int i = 0; i < len; ++i) {
+ GraphEdge *next = edge->loop_next;
+ loop[i] = edge->src;
+ projected[i] = graph.projection(edge->src);
+ graph.removeEdge(edge);
+ edge = next;
+ }
+
+ CARVE_ASSERT(edge == start);
+
+ if (carve::geom2d::signedArea(projected) < 0) {
+ face_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ face_loops.back().swap(loop);
+ } else {
+ hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ hole_loops.back().swap(loop);
+ }
+ }
+ }
+
+
+
+ /**
+ * \brief Determine the relationship between a face loop and a hole loop.
+ *
+ * Determine whether a face and hole share an edge, or a vertex,
+ * or do not touch. Find a hole vertex that is not part of the
+ * face, and a hole,face vertex pair that are coincident, if such
+ * a pair exists.
+ *
+ * @param[in] f A face loop.
+ * @param[in] f_sort A vector indexing \a f in address order
+ * @param[in] h A hole loop.
+ * @param[in] h_sort A vector indexing \a h in address order
+ * @param[out] f_idx Index of a face vertex that is shared with the hole.
+ * @param[out] h_idx Index of the hole vertex corresponding to \a f_idx.
+ * @param[out] unmatched_h_idx Index of a hole vertex that is not part of the face.
+ * @param[out] shares_vertex Boolean indicating that the face and the hole share a vertex.
+ * @param[out] shares_edge Boolean indicating that the face and the hole share an edge.
+ */
+ static void compareFaceLoopAndHoleLoop(const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f,
+ const std::vector<unsigned> &f_sort,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h,
+ const std::vector<unsigned> &h_sort,
+ unsigned &f_idx,
+ unsigned &h_idx,
+ int &unmatched_h_idx,
+ bool &shares_vertex,
+ bool &shares_edge) {
+ const size_t F = f.size();
+ const size_t H = h.size();
+
+ shares_vertex = shares_edge = false;
+ unmatched_h_idx = -1;
+
+ unsigned I, J;
+ for (I = J = 0; I < F && J < H;) {
+ unsigned i = f_sort[I], j = h_sort[J];
+ if (f[i] == h[j]) {
+ shares_vertex = true;
+ f_idx = i;
+ h_idx = j;
+ if (f[(i + F - 1) % F] == h[(j + 1) % H]) {
+ shares_edge = true;
+ }
+ carve::mesh::MeshSet<3>::vertex_t *t = f[i];
+ do { ++I; } while (I < F && f[f_sort[I]] == t);
+ do { ++J; } while (J < H && h[h_sort[J]] == t);
+ } else if (f[i] < h[j]) {
+ ++I;
+ } else {
+ unmatched_h_idx = j;
+ ++J;
+ }
+ }
+ if (J < H) {
+ unmatched_h_idx = h_sort[J];
+ }
+ }
+
+
+
+ /**
+ * \brief Compute an embedding for a set of face loops and hole loops.
+ *
+ * Because face and hole loops may be contained within each other,
+ * it must be determined which hole loops are directly contained
+ * within a face loop.
+ *
+ * @param[in] face The face from which these face and hole loops derive.
+ * @param[in] face_loops
+ * @param[in] hole_loops
+ * @param[out] containing_faces A vector which for each hole loop
+ * lists the indices of the face
+ * loops it is containined in.
+ * @param[out] hole_shared_vertices A map from a face,hole pair to
+ * a shared vertex pair.
+ */
+ static void computeContainment(carve::mesh::MeshSet<3>::face_t *face,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops,
+ std::vector<std::vector<int> > &containing_faces,
+ std::map<int, std::map<int, std::pair<unsigned, unsigned> > > &hole_shared_vertices) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "input: "
+ << face_loops.size() << "faces, "
+ << hole_loops.size() << "holes."
+ << std::endl;
+#endif
+
+ std::vector<std::vector<carve::geom2d::P2> > face_loops_projected, hole_loops_projected;
+ std::vector<carve::geom::aabb<2> > face_loop_aabb, hole_loop_aabb;
+ std::vector<std::vector<unsigned> > face_loops_sorted, hole_loops_sorted;
+
+ std::vector<double> face_loop_areas, hole_loop_areas;
+
+ face_loops_projected.resize(face_loops.size());
+ face_loops_sorted.resize(face_loops.size());
+ face_loop_aabb.resize(face_loops.size());
+ face_loop_areas.resize(face_loops.size());
+
+ hole_loops_projected.resize(hole_loops.size());
+ hole_loops_sorted.resize(hole_loops.size());
+ hole_loop_aabb.resize(hole_loops.size());
+ hole_loop_areas.resize(hole_loops.size());
+
+ // produce a projection of each face loop onto a 2D plane, and an
+ // index vector which sorts vertices by address.
+ for (size_t m = 0; m < face_loops.size(); ++m) {
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f_loop = (face_loops[m]);
+ face_loops_projected[m].reserve(f_loop.size());
+ face_loops_sorted[m].reserve(f_loop.size());
+ for (size_t n = 0; n < f_loop.size(); ++n) {
+ face_loops_projected[m].push_back(face->project(f_loop[n]->v));
+ face_loops_sorted[m].push_back(n);
+ }
+ face_loop_areas.push_back(carve::geom2d::signedArea(face_loops_projected[m]));
+ std::sort(face_loops_sorted[m].begin(), face_loops_sorted[m].end(),
+ carve::make_index_sort(face_loops[m].begin()));
+ face_loop_aabb[m].fit(face_loops_projected[m].begin(), face_loops_projected[m].end());
+ }
+
+ // produce a projection of each hole loop onto a 2D plane, and an
+ // index vector which sorts vertices by address.
+ for (size_t m = 0; m < hole_loops.size(); ++m) {
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h_loop = (hole_loops[m]);
+ hole_loops_projected[m].reserve(h_loop.size());
+ hole_loops_projected[m].reserve(h_loop.size());
+ for (size_t n = 0; n < h_loop.size(); ++n) {
+ hole_loops_projected[m].push_back(face->project(h_loop[n]->v));
+ hole_loops_sorted[m].push_back(n);
+ }
+ hole_loop_areas.push_back(carve::geom2d::signedArea(hole_loops_projected[m]));
+ std::sort(hole_loops_sorted[m].begin(), hole_loops_sorted[m].end(),
+ carve::make_index_sort(hole_loops[m].begin()));
+ hole_loop_aabb[m].fit(hole_loops_projected[m].begin(), hole_loops_projected[m].end());
+ }
+
+ containing_faces.resize(hole_loops.size());
+
+ for (unsigned i = 0; i < hole_loops.size(); ++i) {
+
+ for (unsigned j = 0; j < face_loops.size(); ++j) {
+ if (!face_loop_aabb[j].completelyContains(hole_loop_aabb[i])) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "face: " << j
+ << " hole: " << i
+ << " skipped test (aabb fail)"
+ << std::endl;
+#endif
+ continue;
+ }
+
+ unsigned f_idx, h_idx;
+ int unmatched_h_idx;
+ bool shares_vertex, shares_edge;
+ compareFaceLoopAndHoleLoop(face_loops[j],
+ face_loops_sorted[j],
+ hole_loops[i],
+ hole_loops_sorted[i],
+ f_idx, h_idx,
+ unmatched_h_idx,
+ shares_vertex,
+ shares_edge);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "face: " << j
+ << " hole: " << i
+ << " shares_vertex: " << shares_vertex
+ << " shares_edge: " << shares_edge
+ << std::endl;
+#endif
+
+ carve::geom3d::Vector test = hole_loops[i][0]->v;
+ carve::geom2d::P2 test_p = face->project(test);
+
+ if (shares_vertex) {
+ hole_shared_vertices[i][j] = std::make_pair(h_idx, f_idx);
+ // Hole touches face. Should be able to connect it up
+ // trivially. Still need to record its containment, so that
+ // the assignment below works.
+ if (unmatched_h_idx != -1) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "using unmatched vertex: " << unmatched_h_idx << std::endl;
+#endif
+ test = hole_loops[i][unmatched_h_idx]->v;
+ test_p = face->project(test);
+ } else {
+ // XXX: hole shares ALL vertices with face. Pick a point
+ // internal to the projected poly.
+ if (shares_edge) {
+ // Hole shares edge with face => face can't contain hole.
+ continue;
+ }
+
+ // XXX: how is this possible? Doesn't share an edge, but
+ // also doesn't have any vertices that are not in
+ // common. Degenerate hole?
+
+ // XXX: come up with a test case for this.
+ CARVE_FAIL("implement me");
+ }
+ }
+
+
+ // XXX: use loop area to avoid some point-in-poly tests? Loop
+ // area is faster, but not sure which is more robust.
+ if (carve::geom2d::pointInPolySimple(face_loops_projected[j], test_p)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "contains: " << i << " - " << j << std::endl;
+#endif
+ containing_faces[i].push_back(j);
+ } else {
+#if defined(CARVE_DEBUG)
+ std::cerr << "does not contain: " << i << " - " << j << std::endl;
+#endif
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ if (containing_faces[i].size() == 0) {
+ //HOOK(drawFaceLoopWireframe(hole_loops[i], face->normal, 1.0, 0.0, 0.0, 1.0););
+ std::cerr << "hole loop: ";
+ for (unsigned j = 0; j < hole_loops[i].size(); ++j) {
+ std::cerr << " " << hole_loops[i][j] << ":" << hole_loops[i][j]->v;
+ }
+ std::cerr << std::endl;
+ for (unsigned j = 0; j < face_loops.size(); ++j) {
+ //HOOK(drawFaceLoopWireframe(face_loops[j], face->normal, 0.0, 1.0, 0.0, 1.0););
+ }
+ }
+#endif
+
+ // CARVE_ASSERT(containing_faces[i].size() >= 1);
+ }
+ }
+
+
+
+ /**
+ * \brief Merge face loops and hole loops to produce a set of face loops without holes.
+ *
+ * @param[in] face The face from which these face loops derive.
+ * @param[in,out] f_loops A list of face loops.
+ * @param[in] h_loops A list of hole loops to be incorporated into face loops.
+ */
+ static void mergeFacesAndHoles(carve::mesh::MeshSet<3>::face_t *face,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &f_loops,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &h_loops,
+ carve::csg::CSG::Hooks & /* hooks */) {
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
+
+ std::vector<std::vector<int> > containing_faces;
+ std::map<int, std::map<int, std::pair<unsigned, unsigned> > > hole_shared_vertices;
+
+ {
+ // move input face and hole loops to temp vectors.
+ size_t m;
+ face_loops.resize(f_loops.size());
+ m = 0;
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::iterator
+ i = f_loops.begin(), ie = f_loops.end();
+ i != ie;
+ ++i, ++m) {
+ face_loops[m].swap((*i));
+ }
+
+ hole_loops.resize(h_loops.size());
+ m = 0;
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::iterator
+ i = h_loops.begin(), ie = h_loops.end();
+ i != ie;
+ ++i, ++m) {
+ hole_loops[m].swap((*i));
+ }
+ f_loops.clear();
+ h_loops.clear();
+ }
+
+ // work out the embedding of holes and faces.
+ computeContainment(face, face_loops, hole_loops, containing_faces, hole_shared_vertices);
+
+ int unassigned = (int)hole_loops.size();
+
+ std::vector<std::vector<int> > face_holes;
+ face_holes.resize(face_loops.size());
+
+ for (unsigned i = 0; i < containing_faces.size(); ++i) {
+ if (containing_faces[i].size() == 0) {
+ std::map<int, std::map<int, std::pair<unsigned, unsigned> > >::iterator it = hole_shared_vertices.find(i);
+ if (it != hole_shared_vertices.end()) {
+ std::map<int, std::pair<unsigned, unsigned> >::iterator it2 = (*it).second.begin();
+ int f = (*it2).first;
+ unsigned h_idx = (*it2).second.first;
+ unsigned f_idx = (*it2).second.second;
+
+ // patch the hole into the face directly. because
+ // f_loop[f_idx] == h_loop[h_idx], we don't need to
+ // duplicate the f_loop vertex.
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f_loop = face_loops[f];
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h_loop = hole_loops[i];
+
+ f_loop.insert(f_loop.begin() + f_idx + 1, h_loop.size(), NULL);
+
+ unsigned p = f_idx + 1;
+ for (unsigned a = h_idx + 1; a < h_loop.size(); ++a, ++p) {
+ f_loop[p] = h_loop[a];
+ }
+ for (unsigned a = 0; a <= h_idx; ++a, ++p) {
+ f_loop[p] = h_loop[a];
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "hook face " << f << " to hole " << i << "(vertex)" << std::endl;
+#endif
+ } else {
+ std::cerr << "uncontained hole loop does not share vertices with any face loop!" << std::endl;
+ }
+ unassigned--;
+ }
+ }
+
+
+ // work out which holes are directly contained within which faces.
+ while (unassigned) {
+ std::set<int> removed;
+
+ for (unsigned i = 0; i < containing_faces.size(); ++i) {
+ if (containing_faces[i].size() == 1) {
+ int f = containing_faces[i][0];
+ face_holes[f].push_back(i);
+#if defined(CARVE_DEBUG)
+ std::cerr << "hook face " << f << " to hole " << i << std::endl;
+#endif
+ removed.insert(f);
+ unassigned--;
+ }
+ }
+ for (std::set<int>::iterator f = removed.begin(); f != removed.end(); ++f) {
+ for (unsigned i = 0; i < containing_faces.size(); ++i) {
+ containing_faces[i].erase(std::remove(containing_faces[i].begin(),
+ containing_faces[i].end(),
+ *f),
+ containing_faces[i].end());
+ }
+ }
+ }
+
+#if 0
+ // use old templated projection code to patch holes into faces.
+ for (unsigned i = 0; i < face_loops.size(); ++i) {
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_hole_loops;
+ face_hole_loops.resize(face_holes[i].size());
+ for (unsigned j = 0; j < face_holes[i].size(); ++j) {
+ face_hole_loops[j].swap(hole_loops[face_holes[i][j]]);
+ }
+ if (face_hole_loops.size()) {
+
+ f_loops.push_back(carve::triangulate::incorporateHolesIntoPolygon(
+ carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project),
+ face_loops[i],
+ face_hole_loops));
+ } else {
+ f_loops.push_back(face_loops[i]);
+ }
+ }
+
+#else
+ // use new 2d-only hole patching code.
+ for (size_t i = 0; i < face_loops.size(); ++i) {
+ if (!face_holes[i].size()) {
+ f_loops.push_back(face_loops[i]);
+ continue;
+ }
+
+ std::vector<std::vector<carve::geom2d::P2> > projected_poly;
+ projected_poly.resize(face_holes[i].size() + 1);
+ projected_poly[0].reserve(face_loops[i].size());
+ for (size_t j = 0; j < face_loops[i].size(); ++j) {
+ projected_poly[0].push_back(face->project(face_loops[i][j]->v));
+ }
+ for (size_t j = 0; j < face_holes[i].size(); ++j) {
+ projected_poly[j+1].reserve(hole_loops[face_holes[i][j]].size());
+ for (size_t k = 0; k < hole_loops[face_holes[i][j]].size(); ++k) {
+ projected_poly[j+1].push_back(face->project(hole_loops[face_holes[i][j]][k]->v));
+ }
+ }
+
+ std::vector<std::pair<size_t, size_t> > result = carve::triangulate::incorporateHolesIntoPolygon(projected_poly);
+
+ f_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &out = f_loops.back();
+ out.reserve(result.size());
+ for (size_t j = 0; j < result.size(); ++j) {
+ if (result[j].first == 0) {
+ out.push_back(face_loops[i][result[j].second]);
+ } else {
+ out.push_back(hole_loops[face_holes[i][result[j].first-1]][result[j].second]);
+ }
+ }
+ }
+#endif
+ }
+
+
+
+ /**
+ * \brief Assemble the base loop for a face.
+ *
+ * The base loop is the original face loop, including vertices
+ * created by intersections crossing any of its edges.
+ *
+ * @param[in] face The face to process.
+ * @param[in] vmap
+ * @param[in] face_split_edges
+ * @param[in] divided_edges A mapping from edge pointer to sets of
+ * ordered vertices corrsponding to the intersection points
+ * on that edge.
+ * @param[out] base_loop A vector of the vertices of the base loop.
+ */
+ static void assembleBaseLoop(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::detail::Data &data,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop) {
+ base_loop.clear();
+
+ // XXX: assumes that face->edges is in the same order as
+ // face->vertices. (Which it is)
+ carve::mesh::MeshSet<3>::edge_t *e = face->edge;
+ do {
+ base_loop.push_back(carve::csg::map_vertex(data.vmap, e->vert));
+
+ carve::csg::detail::EVVMap::const_iterator ev = data.divided_edges.find(e);
+
+ if (ev != data.divided_edges.end()) {
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &ev_vec = ((*ev).second);
+
+ for (size_t k = 0, ke = ev_vec.size(); k < ke;) {
+ base_loop.push_back(ev_vec[k++]);
+ }
+ }
+ e = e->next;
+ } while (e != face->edge);
+ }
+
+
+
+ // the crossing_data structure holds temporary information regarding
+ // paths, and their relationship to the loop of edges that forms the
+ // face perimeter.
+ struct crossing_data {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> *path;
+ size_t edge_idx[2];
+
+ crossing_data(std::vector<carve::mesh::MeshSet<3>::vertex_t *> *p, size_t e1, size_t e2) : path(p) {
+ edge_idx[0] = e1; edge_idx[1] = e2;
+ }
+
+ bool operator<(const crossing_data &c) const {
+ // the sort order for paths is in order of increasing initial
+ // position on the edge loop, but decreasing final position.
+ return edge_idx[0] < c.edge_idx[0] || (edge_idx[0] == c.edge_idx[0] && edge_idx[1] > c.edge_idx[1]);
+ }
+ };
+
+
+
+ bool processCrossingEdges(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::VertexIntersections &vertex_intersections,
+ carve::csg::CSG::Hooks &hooks,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &paths,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &loops,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops_out) {
+ const size_t N = base_loop.size();
+ std::vector<crossing_data> endpoint_indices;
+
+ endpoint_indices.reserve(paths.size());
+
+ for (size_t i = 0; i < paths.size(); ++i) {
+ endpoint_indices.push_back(crossing_data(&paths[i], N, N));
+ }
+
+ // locate endpoints of paths on the base loop.
+ for (size_t i = 0; i < N; ++i) {
+ for (size_t j = 0; j < paths.size(); ++j) {
+ // test beginning of path.
+ if (paths[j].front() == base_loop[i]) {
+ if (endpoint_indices[j].edge_idx[0] == N) {
+ endpoint_indices[j].edge_idx[0] = i;
+ } else {
+ // there is a duplicated vertex in the face perimeter. The
+ // path might attach to either of the duplicate instances
+ // so we have to work out which is the right one to attach
+ // to. We assume it's the index currently being examined,
+ // if the path heads in a direction that's internal to the
+ // angle made by the prior and next edges of the face
+ // perimeter. Otherwise, leave it as the currently
+ // selected index (until another duplicate is found, if it
+ // exists, and is tested).
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p = *endpoint_indices[j].path;
+ const size_t pN = p.size();
+
+ carve::mesh::MeshSet<3>::vertex_t *a, *b, *c;
+ a = base_loop[(i+N-1)%N];
+ b = base_loop[i];
+ c = base_loop[(i+1)%N];
+
+ carve::mesh::MeshSet<3>::vertex_t *adj = (p[0] == base_loop[i]) ? p[1] : p[pN-2];
+
+ if (carve::geom2d::internalToAngle(face->project(c->v),
+ face->project(b->v),
+ face->project(a->v),
+ face->project(adj->v))) {
+ endpoint_indices[j].edge_idx[0] = i;
+ }
+ }
+ }
+
+ // test end of path.
+ if (paths[j].back() == base_loop[i]) {
+ if (endpoint_indices[j].edge_idx[1] == N) {
+ endpoint_indices[j].edge_idx[1] = i;
+ } else {
+ // Work out which of the duplicated vertices is the right
+ // one to attach to, as above.
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p = *endpoint_indices[j].path;
+ const size_t pN = p.size();
+
+ carve::mesh::MeshSet<3>::vertex_t *a, *b, *c;
+ a = base_loop[(i+N-1)%N];
+ b = base_loop[i];
+ c = base_loop[(i+1)%N];
+
+ carve::mesh::MeshSet<3>::vertex_t *adj = (p[0] == base_loop[i]) ? p[1] : p[pN-2];
+
+ if (carve::geom2d::internalToAngle(face->project(c->v),
+ face->project(b->v),
+ face->project(a->v),
+ face->project(adj->v))) {
+ endpoint_indices[j].edge_idx[1] = i;
+ }
+ }
+ }
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### N: " << N << std::endl;
+ for (size_t i = 0; i < paths.size(); ++i) {
+ std::cerr << "### path: " << i << " endpoints: " << endpoint_indices[i].edge_idx[0] << " - " << endpoint_indices[i].edge_idx[1] << std::endl;
+ }
+#endif
+
+
+ // divide paths up into those that connect to the base loop in two
+ // places (cross), and those that do not (noncross).
+ std::vector<crossing_data> cross, noncross;
+ cross.reserve(endpoint_indices.size() + 1);
+ noncross.reserve(endpoint_indices.size());
+
+ for (size_t i = 0; i < endpoint_indices.size(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### orienting path: " << i << " endpoints: " << endpoint_indices[i].edge_idx[0] << " - " << endpoint_indices[i].edge_idx[1] << std::endl;
+#endif
+ if (endpoint_indices[i].edge_idx[0] != N && endpoint_indices[i].edge_idx[1] != N) {
+ // Orient each path correctly. Paths should progress from
+ // smaller perimeter index to larger, but if the path starts
+ // and ends at the same perimeter index, then the decision
+ // needs to be made based upon area.
+ if (endpoint_indices[i].edge_idx[0] == endpoint_indices[i].edge_idx[1]) {
+ // The path forms a loop that starts and ends at the same
+ // vertex of the perimeter. In this case, we need to orient
+ // the path so that the constructed loop has the right
+ // signed area.
+ double area = carve::geom2d::signedArea(endpoint_indices[i].path->begin() + 1,
+ endpoint_indices[i].path->end(),
+ carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project));
+ std::cerr << "HITS THIS CODE - area=" << area << std::endl;
+ if (area < 0) {
+ // XXX: Create test case to check that this is the correct sign for the area.
+ std::reverse(endpoint_indices[i].path->begin(), endpoint_indices[i].path->end());
+ }
+ } else {
+ if (endpoint_indices[i].edge_idx[0] > endpoint_indices[i].edge_idx[1]) {
+ std::swap(endpoint_indices[i].edge_idx[0], endpoint_indices[i].edge_idx[1]);
+ std::reverse(endpoint_indices[i].path->begin(), endpoint_indices[i].path->end());
+ }
+ }
+ }
+
+ if (endpoint_indices[i].edge_idx[0] != N &&
+ endpoint_indices[i].edge_idx[1] != N &&
+ endpoint_indices[i].edge_idx[0] != endpoint_indices[i].edge_idx[1]) {
+ cross.push_back(endpoint_indices[i]);
+ } else {
+ noncross.push_back(endpoint_indices[i]);
+ }
+ }
+
+ // add a temporary crossing path that connects the beginning and the
+ // end of the base loop. this stops us from needing special case
+ // code to handle the left over loop after all the other crossing
+ // paths are considered.
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop_temp_path;
+ base_loop_temp_path.reserve(2);
+ base_loop_temp_path.push_back(base_loop.front());
+ base_loop_temp_path.push_back(base_loop.back());
+
+ cross.push_back(crossing_data(&base_loop_temp_path, 0, base_loop.size() - 1));
+#if defined(CARVE_DEBUG)
+ std::cerr << "### crossing edge count (with sentinel): " << cross.size() << std::endl;
+#endif
+
+ // sort paths by increasing beginning point and decreasing ending point.
+ std::sort(cross.begin(), cross.end());
+ std::sort(noncross.begin(), noncross.end());
+
+ // divide up the base loop based upon crossing paths.
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > divided_base_loop;
+ divided_base_loop.reserve(cross.size());
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> out;
+
+ for (size_t i = 0; i < cross.size(); ++i) {
+ size_t j;
+ for (j = i + 1;
+ j < cross.size() &&
+ cross[i].edge_idx[0] == cross[j].edge_idx[0] &&
+ cross[i].edge_idx[1] == cross[j].edge_idx[1];
+ ++j) {}
+ if (j - i >= 2) {
+ // when there are multiple paths that begin and end at the
+ // same point, they need to be ordered so that the constructed
+ // loops have the right orientation. this means that the loop
+ // made by taking path(i+1) forward, then path(i) backward
+ // needs to have negative area. this combined area is equal to
+ // the area of path(i+1) minus the area of path(i). in turn
+ // this means that the loop made by path path(i+1) alone has
+ // to have smaller signed area than loop made by path(i).
+ // thus, we sort paths in order of decreasing area.
+
+ std::vector<std::pair<double, std::vector<carve::mesh::MeshSet<3>::vertex_t *> *> > order;
+ order.reserve(j - i);
+ for (size_t k = i; k < j; ++k) {
+ double area = carve::geom2d::signedArea(cross[k].path->begin(),
+ cross[k].path->end(),
+ carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project));
+#if defined(CARVE_DEBUG)
+ std::cerr << "### k=" << k << " area=" << area << std::endl;
+#endif
+ order.push_back(std::make_pair(-area, cross[k].path));
+ }
+ std::sort(order.begin(), order.end());
+ for (size_t k = i; k < j; ++k) {
+ cross[k].path = order[k-i].second;
+#if defined(CARVE_DEBUG)
+ std::cerr << "### post-sort k=" << k << " cross[k].path->size()=" << cross[k].path->size() << std::endl;
+#endif
+ }
+ }
+ }
+
+ for (size_t i = 0; i < cross.size(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### i=" << i << " working on edge: " << cross[i].edge_idx[0] << " - " << cross[i].edge_idx[1] << std::endl;
+#endif
+ size_t e1_0 = cross[i].edge_idx[0];
+ size_t e1_1 = cross[i].edge_idx[1];
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p1 = *cross[i].path;
+#if defined(CARVE_DEBUG)
+ std::cerr << "### path size = " << p1.size() << std::endl;
+#endif
+
+ out.clear();
+
+ if (i < cross.size() - 1 &&
+ cross[i+1].edge_idx[1] <= cross[i].edge_idx[1]) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### complex case" << std::endl;
+#endif
+ // complex case. crossing path with other crossing paths embedded within.
+ size_t pos = e1_0;
+
+ size_t skip = i+1;
+
+ while (pos != e1_1) {
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p2 = *cross[skip].path;
+ size_t e2_0 = cross[skip].edge_idx[0];
+ size_t e2_1 = cross[skip].edge_idx[1];
+
+ // copy up to the beginning of the next path.
+ std::copy(base_loop.begin() + pos, base_loop.begin() + e2_0, std::back_inserter(out));
+
+ CARVE_ASSERT(base_loop[e2_0] == p2[0]);
+ // copy the next path in the right direction.
+ std::copy(p2.begin(), p2.end() - 1, std::back_inserter(out));
+
+ // move to the position of the end of the path.
+ pos = e2_1;
+
+ // advance to the next hit path.
+ do {
+ ++skip;
+ } while(skip != cross.size() && cross[skip].edge_idx[0] < e2_1);
+
+ if (skip == cross.size()) break;
+
+ // if the next hit path is past the start point of the current path, we're done.
+ if (cross[skip].edge_idx[0] >= e1_1) break;
+ }
+
+ // copy up to the end of the path.
+ std::copy(base_loop.begin() + pos, base_loop.begin() + e1_1, std::back_inserter(out));
+
+ CARVE_ASSERT(base_loop[e1_1] == p1.back());
+ std::copy(p1.rbegin(), p1.rend() - 1, std::back_inserter(out));
+ } else {
+ size_t loop_size = (e1_1 - e1_0) + (p1.size() - 1);
+ out.reserve(loop_size);
+
+ std::copy(base_loop.begin() + e1_0, base_loop.begin() + e1_1, std::back_inserter(out));
+ std::copy(p1.rbegin(), p1.rend() - 1, std::back_inserter(out));
+
+ CARVE_ASSERT(out.size() == loop_size);
+ }
+ divided_base_loop.push_back(out);
+
+#if defined(CARVE_DEBUG)
+ {
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve(out.size());
+ for (size_t n = 0; n < out.size(); ++n) {
+ projected.push_back(face->project(out[n]->v));
+ }
+
+ double A = carve::geom2d::signedArea(projected);
+ std::cerr << "### out area=" << A << std::endl;
+ CARVE_ASSERT(A <= 0);
+ }
+#endif
+ }
+
+ if (!noncross.size() && !loops.size()) {
+ populateListFromVector(divided_base_loop, face_loops_out);
+ return true;
+ }
+
+ // for each divided base loop, work out which noncrossing paths and
+ // loops are part of it. use the old algorithm to combine these into
+ // the divided base loop. if none, the divided base loop is just
+ // output.
+ std::vector<std::vector<carve::geom2d::P2> > proj;
+ std::vector<carve::geom::aabb<2> > proj_aabb;
+ proj.resize(divided_base_loop.size());
+ proj_aabb.resize(divided_base_loop.size());
+
+ // calculate an aabb for each divided base loop, to avoid expensive
+ // point-in-poly tests.
+ for (size_t i = 0; i < divided_base_loop.size(); ++i) {
+ proj[i].reserve(divided_base_loop[i].size());
+ for (size_t j = 0; j < divided_base_loop[i].size(); ++j) {
+ proj[i].push_back(face->project(divided_base_loop[i][j]->v));
+ }
+ proj_aabb[i].fit(proj[i].begin(), proj[i].end());
+ }
+
+ for (size_t i = 0; i < divided_base_loop.size(); ++i) {
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> *> inc;
+ carve::geom2d::P2 test;
+
+ // for each noncrossing path, choose an endpoint that isn't on the
+ // base loop as a test point.
+ for (size_t j = 0; j < noncross.size(); ++j) {
+ if (noncross[j].edge_idx[0] < N) {
+ if (noncross[j].path->front() == base_loop[noncross[j].edge_idx[0]]) {
+ // noncrossing paths may be loops that run from the edge, back to the same vertex.
+ if (noncross[j].path->front() == noncross[j].path->back()) {
+ CARVE_ASSERT(noncross[j].path->size() > 2);
+ test = face->project((*noncross[j].path)[1]->v);
+ } else {
+ test = face->project(noncross[j].path->back()->v);
+ }
+ } else {
+ test = face->project(noncross[j].path->front()->v);
+ }
+ } else {
+ test = face->project(noncross[j].path->front()->v);
+ }
+
+ if (proj_aabb[i].intersects(test) &&
+ carve::geom2d::pointInPoly(proj[i], test).iclass != carve::POINT_OUT) {
+ inc.push_back(noncross[j].path);
+ }
+ }
+
+ // for each loop, just test with any point.
+ for (size_t j = 0; j < loops.size(); ++j) {
+ test = face->project(loops[j].front()->v);
+
+ if (proj_aabb[i].intersects(test) &&
+ carve::geom2d::pointInPoly(proj[i], test).iclass != carve::POINT_OUT) {
+ inc.push_back(&loops[j]);
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### divided base loop:" << i << " inc.size()=" << inc.size() << std::endl;
+ std::cerr << "### inc = [";
+ for (size_t j = 0; j < inc.size(); ++j) {
+ std::cerr << " " << inc[j];
+ }
+ std::cerr << " ]" << std::endl;
+#endif
+
+ if (inc.size()) {
+ carve::csg::V2Set face_edges;
+
+ for (size_t j = 0; j < divided_base_loop[i].size() - 1; ++j) {
+ face_edges.insert(std::make_pair(divided_base_loop[i][j],
+ divided_base_loop[i][j+1]));
+ }
+
+ face_edges.insert(std::make_pair(divided_base_loop[i].back(),
+ divided_base_loop[i].front()));
+
+ for (size_t j = 0; j < inc.size(); ++j) {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &path = *inc[j];
+ for (size_t k = 0; k < path.size() - 1; ++k) {
+ face_edges.insert(std::make_pair(path[k], path[k+1]));
+ face_edges.insert(std::make_pair(path[k+1], path[k]));
+ }
+ }
+
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
+
+ splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
+
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ std::copy(face_loops.begin(), face_loops.end(), std::back_inserter(face_loops_out));
+ } else {
+ face_loops_out.push_back(divided_base_loop[i]);
+ }
+ }
+ return true;
+ }
+
+
+
+ void composeEdgesIntoPaths(const carve::csg::V2Set &edges,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &extra_endpoints,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &paths,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &loops) {
+ using namespace carve::csg;
+
+ detail::VVSMap vertex_graph;
+ detail::VSet endpoints;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> path;
+
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > temp;
+
+ // build graph from edges.
+ for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### edge: " << (*i).first << " - " << (*i).second << std::endl;
+#endif
+ vertex_graph[(*i).first].insert((*i).second);
+ vertex_graph[(*i).second].insert((*i).first);
+ }
+
+ // find the endpoints in the graph.
+ // every vertex with number of incident edges != 2 is an endpoint.
+ for (detail::VVSMap::const_iterator i = vertex_graph.begin(); i != vertex_graph.end(); ++i) {
+ if ((*i).second.size() != 2) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### endpoint: " << (*i).first << std::endl;
+#endif
+ endpoints.insert((*i).first);
+ }
+ }
+
+ // every vertex on the perimeter of the face is also an endpoint.
+ for (size_t i = 0; i < extra_endpoints.size(); ++i) {
+ if (vertex_graph.find(extra_endpoints[i]) != vertex_graph.end()) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### extra endpoint: " << extra_endpoints[i] << std::endl;
+#endif
+ endpoints.insert(extra_endpoints[i]);
+ }
+ }
+
+ while (endpoints.size()) {
+ carve::mesh::MeshSet<3>::vertex_t *v = *endpoints.begin();
+ detail::VVSMap::iterator p = vertex_graph.find(v);
+ if (p == vertex_graph.end()) {
+ endpoints.erase(endpoints.begin());
+ continue;
+ }
+
+ path.clear();
+ path.push_back(v);
+
+ for (;;) {
+ CARVE_ASSERT(p != vertex_graph.end());
+
+ // pick a connected vertex to move to.
+ if ((*p).second.size() == 0) break;
+
+ carve::mesh::MeshSet<3>::vertex_t *n = *((*p).second.begin());
+ detail::VVSMap::iterator q = vertex_graph.find(n);
+
+ // remove the link.
+ (*p).second.erase(n);
+ (*q).second.erase(v);
+
+ // move on.
+ v = n;
+ path.push_back(v);
+
+ if ((*p).second.size() == 0) vertex_graph.erase(p);
+ if ((*q).second.size() == 0) {
+ vertex_graph.erase(q);
+ q = vertex_graph.end();
+ }
+
+ p = q;
+
+ if (v == path[0] || p == vertex_graph.end() || endpoints.find(v) != endpoints.end()) break;
+ }
+ CARVE_ASSERT(endpoints.find(path.back()) != endpoints.end());
+
+ temp.push_back(path);
+ }
+
+ populateVectorFromList(temp, paths);
+ temp.clear();
+
+ // now only loops should remain in the graph.
+ while (vertex_graph.size()) {
+ detail::VVSMap::iterator p = vertex_graph.begin();
+ carve::mesh::MeshSet<3>::vertex_t *v = (*p).first;
+ CARVE_ASSERT((*p).second.size() == 2);
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> path;
+ path.clear();
+ path.push_back(v);
+
+ for (;;) {
+ CARVE_ASSERT(p != vertex_graph.end());
+ // pick a connected vertex to move to.
+
+ carve::mesh::MeshSet<3>::vertex_t *n = *((*p).second.begin());
+ detail::VVSMap::iterator q = vertex_graph.find(n);
+
+ // remove the link.
+ (*p).second.erase(n);
+ (*q).second.erase(v);
+
+ // move on.
+ v = n;
+ path.push_back(v);
+
+ if ((*p).second.size() == 0) vertex_graph.erase(p);
+ if ((*q).second.size() == 0) vertex_graph.erase(q);
+
+ p = q;
+
+ if (v == path[0]) break;
+ }
+
+ temp.push_back(path);
+ }
+ populateVectorFromList(temp, loops);
+ }
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ void dumpFacesAndHoles(const std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
+ const std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops) {
+ std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t> v_included;
+
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = face_loops.begin(); i != face_loops.end(); ++i) {
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ if (v_included.find((*i)[j]) == v_included.end()) {
+ size_t &p = v_included[(*i)[j]];
+ p = v_included.size() - 1;
+ }
+ }
+ }
+
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = hole_loops.begin(); i != hole_loops.end(); ++i) {
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ if (v_included.find((*i)[j]) == v_included.end()) {
+ size_t &p = v_included[(*i)[j]];
+ p = v_included.size() - 1;
+ }
+ }
+ }
+
+ carve::line::PolylineSet fh;
+ fh.vertices.resize(v_included.size());
+ for (std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t>::const_iterator
+ i = v_included.begin(); i != v_included.end(); ++i) {
+ fh.vertices[(*i).second].v = (*i).first->v;
+ }
+
+ {
+ std::vector<size_t> connected;
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = face_loops.begin(); i != face_loops.end(); ++i) {
+ connected.clear();
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ connected.push_back(v_included[(*i)[j]]);
+ }
+ fh.addPolyline(true, connected.begin(), connected.end());
+ }
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = hole_loops.begin(); i != hole_loops.end(); ++i) {
+ connected.clear();
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ connected.push_back(v_included[(*i)[j]]);
+ }
+ fh.addPolyline(true, connected.begin(), connected.end());
+ }
+ }
+
+ std::string out("/tmp/hole_merge.ply");
+ ::writePLY(out, &fh, true);
+ }
+#endif
+
+
+
+ template<typename T>
+ std::string ptrstr(const T *ptr) {
+ std::ostringstream s;
+ s << ptr;
+ return s.str().substr(1);
+ }
+
+ void dumpAsGraph(carve::mesh::MeshSet<3>::face_t *face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
+ const carve::csg::V2Set &face_edges,
+ const carve::csg::V2Set &split_edges) {
+ std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2> proj;
+
+ for (size_t i = 0; i < base_loop.size(); ++i) {
+ proj[base_loop[i]] = face->project(base_loop[i]->v);
+ }
+ for (carve::csg::V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ proj[(*i).first] = face->project((*i).first->v);
+ proj[(*i).second] = face->project((*i).second->v);
+ }
+
+ {
+ carve::geom2d::P2 lo, hi;
+ std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2>::iterator i;
+ i = proj.begin();
+ lo = hi = (*i).second;
+ for (; i != proj.end(); ++i) {
+ lo.x = std::min(lo.x, (*i).second.x); lo.y = std::min(lo.y, (*i).second.y);
+ hi.x = std::max(hi.x, (*i).second.x); hi.y = std::max(hi.y, (*i).second.y);
+ }
+ for (i = proj.begin(); i != proj.end(); ++i) {
+ (*i).second.x = ((*i).second.x - lo.x) / (hi.x - lo.x) * 10;
+ (*i).second.y = ((*i).second.y - lo.y) / (hi.y - lo.y) * 10;
+ }
+ }
+
+ std::cerr << "graph G {\nnode [shape=circle,style=filled,fixedsize=true,width=\".1\",height=\".1\"];\nedge [len=4]\n";
+ for (std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2>::iterator i = proj.begin(); i != proj.end(); ++i) {
+ std::cerr << " " << ptrstr((*i).first) << " [pos=\"" << (*i).second.x << "," << (*i).second.y << "!\"];\n";
+ }
+ for (carve::csg::V2Set::const_iterator i = face_edges.begin(); i != face_edges.end(); ++i) {
+ std::cerr << " " << ptrstr((*i).first) << " -- " << ptrstr((*i).second) << ";\n";
+ }
+ for (carve::csg::V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ std::cerr << " " << ptrstr((*i).first) << " -- " << ptrstr((*i).second) << " [color=\"blue\"];\n";
+ }
+ std::cerr << "};\n";
+ }
+
+ void generateOneFaceLoop(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::detail::Data &data,
+ const carve::csg::VertexIntersections &vertex_intersections,
+ carve::csg::CSG::Hooks &hooks,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops) {
+ using namespace carve::csg;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
+
+ assembleBaseLoop(face, data, base_loop);
+
+ detail::FV2SMap::const_iterator fse_iter = data.face_split_edges.find(face);
+
+ face_loops.clear();
+
+ if (fse_iter == data.face_split_edges.end()) {
+ // simple case: input face is output face (possibly with the
+ // addition of vertices at intersections).
+ face_loops.push_back(base_loop);
+ return;
+ }
+
+ // complex case: input face is split into multiple output faces.
+ V2Set face_edges;
+
+ for (size_t j = 0, je = base_loop.size() - 1; j < je; ++j) {
+ face_edges.insert(std::make_pair(base_loop[j], base_loop[j + 1]));
+ }
+ face_edges.insert(std::make_pair(base_loop.back(), base_loop[0]));
+
+ // collect the split edges (as long as they're not on the perimeter)
+ const detail::FV2SMap::mapped_type &fse = ((*fse_iter).second);
+
+ // split_edges contains all of the edges created by intersections
+ // that aren't part of the perimeter of the face.
+ V2Set split_edges;
+
+ for (detail::FV2SMap::mapped_type::const_iterator
+ j = fse.begin(), je = fse.end();
+ j != je;
+ ++j) {
+ carve::mesh::MeshSet<3>::vertex_t *v1 = ((*j).first), *v2 = ((*j).second);
+
+ if (face_edges.find(std::make_pair(v1, v2)) == face_edges.end() &&
+ face_edges.find(std::make_pair(v2, v1)) == face_edges.end()) {
+
+ split_edges.insert(ordered_edge(v1, v2));
+ }
+ }
+
+ // face is unsplit.
+ if (!split_edges.size()) {
+ face_loops.push_back(base_loop);
+ return;
+ }
+
+#if defined(CARVE_DEBUG)
+ dumpAsGraph(face, base_loop, face_edges, split_edges);
+#endif
+
+#if 0
+ // old face splitting method.
+ for (V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ face_edges.insert(std::make_pair((*i).first, (*i).second));
+ face_edges.insert(std::make_pair((*i).second, (*i).first));
+ }
+ splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
+
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ return;
+#endif
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### split_edges.size(): " << split_edges.size() << std::endl;
+#endif
+ if (split_edges.size() == 1) {
+ // handle the common case of a face that's split by a single edge.
+ carve::mesh::MeshSet<3>::vertex_t *v1 = split_edges.begin()->first;
+ carve::mesh::MeshSet<3>::vertex_t *v2 = split_edges.begin()->second;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *>::iterator vi1 = std::find(base_loop.begin(), base_loop.end(), v1);
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *>::iterator vi2 = std::find(base_loop.begin(), base_loop.end(), v2);
+
+ if (vi1 != base_loop.end() && vi2 != base_loop.end()) {
+ // this is an inserted edge that connects two points on the base loop. nice and simple.
+ if (vi2 < vi1) std::swap(vi1, vi2);
+
+ size_t loop1_size = vi2 - vi1 + 1;
+ size_t loop2_size = base_loop.size() + 2 - loop1_size;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> l1;
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> l2;
+
+ l1.reserve(loop1_size);
+ l2.reserve(loop2_size);
+
+ std::copy(vi1, vi2+1, std::back_inserter(l1));
+ std::copy(vi2, base_loop.end(), std::back_inserter(l2));
+ std::copy(base_loop.begin(), vi1+1, std::back_inserter(l2));
+
+ CARVE_ASSERT(l1.size() == loop1_size);
+ CARVE_ASSERT(l2.size() == loop2_size);
+
+ face_loops.push_back(l1);
+ face_loops.push_back(l2);
+
+ return;
+ }
+ }
+
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > paths;
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > loops;
+
+ // Take the split edges and compose them into a set of paths and
+ // loops. Loops are edge paths that do not touch the boundary, or
+ // any other path or loop - they are holes cut out of the centre
+ // of the face. Paths are made up of all the other edge segments,
+ // and start and end at the face perimeter, or where they meet
+ // another path (sometimes both cases will be true).
+ composeEdgesIntoPaths(split_edges, base_loop, paths, loops);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### paths.size(): " << paths.size() << std::endl;
+ std::cerr << "### loops.size(): " << loops.size() << std::endl;
+#endif
+
+ if (!paths.size()) {
+ // Loops found by composeEdgesIntoPaths() can't touch the
+ // boundary, or each other, so we can deal with the no paths
+ // case simply. The hole loops are the loops produced by
+ // composeEdgesIntoPaths() oriented so that their signed area
+ // wrt. the face is negative. The face loops are the base loop
+ // plus the hole loops, reversed.
+ face_loops.push_back(base_loop);
+
+ for (size_t i = 0; i < loops.size(); ++i) {
+ hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ hole_loops.back().reserve(loops[i].size()-1);
+ std::copy(loops[i].begin(), loops[i].end()-1, std::back_inserter(hole_loops.back()));
+
+ face_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ face_loops.back().reserve(loops[i].size()-1);
+ std::copy(loops[i].rbegin()+1, loops[i].rend(), std::back_inserter(face_loops.back()));
+
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve(face_loops.back().size());
+ for (size_t i = 0; i < face_loops.back().size(); ++i) {
+ projected.push_back(face->project(face_loops.back()[i]->v));
+ }
+
+ if (carve::geom2d::signedArea(projected) > 0.0) {
+ std::swap(face_loops.back(), hole_loops.back());
+ }
+ }
+
+ // if there are holes, then they need to be merged with faces.
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ } else {
+ if (!processCrossingEdges(face, vertex_intersections, hooks, base_loop, paths, loops, face_loops)) {
+ // complex case - fall back to old edge tracing code.
+#if defined(CARVE_DEBUG)
+ std::cerr << "### processCrossingEdges failed. Falling back to edge tracing code" << std::endl;
+#endif
+ for (V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ face_edges.insert(std::make_pair((*i).first, (*i).second));
+ face_edges.insert(std::make_pair((*i).second, (*i).first));
+ }
+ splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
+
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ }
+ }
+ }
+
+
+
+}
+
+
+
+/**
+ * \brief Build a set of face loops for all (split) faces of a Polyhedron.
+ *
+ * @param[in] poly The polyhedron to process
+ * @param vmap
+ * @param face_split_edges
+ * @param divided_edges
+ * @param[out] face_loops_out The resulting face loops
+ *
+ * @return The number of edges generated.
+ */
+size_t carve::csg::CSG::generateFaceLoops(carve::mesh::MeshSet<3> *poly,
+ const detail::Data &data,
+ FaceLoopList &face_loops_out) {
+ static carve::TimingName FUNC_NAME("CSG::generateFaceLoops()");
+ carve::TimingBlock block(FUNC_NAME);
+ size_t generated_edges = 0;
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
+
+ for (carve::mesh::MeshSet<3>::face_iter i = poly->faceBegin(); i != poly->faceEnd(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *face = (*i);
+
+#if defined(CARVE_DEBUG)
+ double in_area = 0.0, out_area = 0.0;
+
+ {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ assembleBaseLoop(face, data, base_loop);
+
+ {
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve(base_loop.size());
+ for (size_t n = 0; n < base_loop.size(); ++n) {
+ projected.push_back(face->project(base_loop[n]->v));
+ }
+
+ in_area = carve::geom2d::signedArea(projected);
+ std::cerr << "### in_area=" << in_area << std::endl;
+ }
+ }
+#endif
+
+ generateOneFaceLoop(face, data, vertex_intersections, hooks, face_loops);
+
+#if defined(CARVE_DEBUG)
+ {
+ V2Set face_edges;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ assembleBaseLoop(face, data, base_loop);
+
+ for (size_t j = 0, je = base_loop.size() - 1; j < je; ++j) {
+ face_edges.insert(std::make_pair(base_loop[j+1], base_loop[j]));
+ }
+ face_edges.insert(std::make_pair(base_loop[0], base_loop.back()));
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator fli = face_loops.begin(); fli != face_loops.end(); ++ fli) {
+
+ {
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve((*fli).size());
+ for (size_t n = 0; n < (*fli).size(); ++n) {
+ projected.push_back(face->project((*fli)[n]->v));
+ }
+
+ double area = carve::geom2d::signedArea(projected);
+ std::cerr << "### loop_area[" << std::distance((std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator)face_loops.begin(), fli) << "]=" << area << std::endl;
+ out_area += area;
+ }
+
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &fl = *fli;
+ for (size_t j = 0, je = fl.size() - 1; j < je; ++j) {
+ face_edges.insert(std::make_pair(fl[j], fl[j+1]));
+ }
+ face_edges.insert(std::make_pair(fl.back(), fl[0]));
+ }
+ for (V2Set::const_iterator j = face_edges.begin(); j != face_edges.end(); ++j) {
+ if (face_edges.find(std::make_pair((*j).second, (*j).first)) == face_edges.end()) {
+ std::cerr << "### error: unmatched edge [" << (*j).first << "-" << (*j).second << "]" << std::endl;
+ }
+ }
+ std::cerr << "### out_area=" << out_area << std::endl;
+ if (out_area != in_area) {
+ std::cerr << "### error: area does not match. delta = " << (out_area - in_area) << std::endl;
+ // CARVE_ASSERT(fabs(out_area - in_area) < 1e-5);
+ }
+ }
+#endif
+
+ // now record all the resulting face loops.
+#if defined(CARVE_DEBUG)
+ std::cerr << "### ======" << std::endl;
+#endif
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ f = face_loops.begin(), fe = face_loops.end();
+ f != fe;
+ ++f) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### loop:";
+ for (size_t i = 0; i < (*f).size(); ++i) {
+ std::cerr << " " << (*f)[i];
+ }
+ std::cerr << std::endl;
+#endif
+
+ face_loops_out.append(new FaceLoop(face, *f));
+ generated_edges += (*f).size();
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << "### ======" << std::endl;
+#endif
+ }
+ return generated_edges;
+}