Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/lib/intersect_face_division.cpp')
-rw-r--r--extern/carve/lib/intersect_face_division.cpp1765
1 files changed, 0 insertions, 1765 deletions
diff --git a/extern/carve/lib/intersect_face_division.cpp b/extern/carve/lib/intersect_face_division.cpp
deleted file mode 100644
index 6554ef500ed..00000000000
--- a/extern/carve/lib/intersect_face_division.cpp
+++ /dev/null
@@ -1,1765 +0,0 @@
-// Begin License:
-// Copyright (C) 2006-2014 Tobias Sargeant (tobias.sargeant@gmail.com).
-// All rights reserved.
-//
-// This file is part of the Carve CSG Library (http://carve-csg.com/)
-//
-// This file may be used under the terms of either the GNU General
-// Public License version 2 or 3 (at your option) as published by the
-// Free Software Foundation and appearing in the files LICENSE.GPL2
-// and LICENSE.GPL3 included in the packaging of this file.
-//
-// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
-// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE.
-// End:
-
-
-#if defined(HAVE_CONFIG_H)
-# include <carve_config.h>
-#endif
-
-#include <carve/csg.hpp>
-#include <carve/polyline.hpp>
-#include <carve/debug_hooks.hpp>
-#include <carve/timing.hpp>
-#include <carve/triangulator.hpp>
-
-#include <list>
-#include <set>
-#include <iostream>
-
-#include <algorithm>
-
-#include "csg_detail.hpp"
-#include "csg_data.hpp"
-
-#include "intersect_common.hpp"
-
-
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
-void writePLY(const std::string &out_file, const carve::line::PolylineSet *lines, bool ascii);
-#endif
-
-
-
-namespace {
-
-
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- template<typename iter_t>
- void dumpFacesAndHoles(iter_t f_begin, iter_t f_end,
- iter_t h_begin, iter_t h_end,
- const std::string &fname) {
- std::cerr << "dumping " << std::distance(f_begin, f_end) << " faces, " << std::distance(h_begin, h_end) << " holes." << std::endl;
- std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t> v_included;
-
- for (iter_t i = f_begin; i != f_end; ++i) {
- for (size_t j = 0; j < (*i).size(); ++j) {
- if (v_included.find((*i)[j]) == v_included.end()) {
- size_t &p = v_included[(*i)[j]];
- p = v_included.size() - 1;
- }
- }
- }
-
- for (iter_t i = h_begin; i != h_end; ++i) {
- for (size_t j = 0; j < (*i).size(); ++j) {
- if (v_included.find((*i)[j]) == v_included.end()) {
- size_t &p = v_included[(*i)[j]];
- p = v_included.size() - 1;
- }
- }
- }
-
- carve::line::PolylineSet fh;
- fh.vertices.resize(v_included.size());
- for (std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t>::const_iterator
- i = v_included.begin(); i != v_included.end(); ++i) {
- fh.vertices[(*i).second].v = (*i).first->v;
- }
-
- {
- std::vector<size_t> connected;
- for (iter_t i = f_begin; i != f_end; ++i) {
- connected.clear();
- for (size_t j = 0; j < (*i).size(); ++j) {
- connected.push_back(v_included[(*i)[j]]);
- }
- fh.addPolyline(true, connected.begin(), connected.end());
- }
- for (iter_t i = h_begin; i != h_end; ++i) {
- connected.clear();
- for (size_t j = 0; j < (*i).size(); ++j) {
- connected.push_back(v_included[(*i)[j]]);
- }
- fh.addPolyline(true, connected.begin(), connected.end());
- }
- }
-
- ::writePLY(fname, &fh, true);
- }
-#endif
-
-
-
- template<typename T>
- void populateVectorFromList(std::list<T> &l, std::vector<T> &v) {
- v.clear();
- v.reserve(l.size());
- for (typename std::list<T>::iterator i = l.begin(); i != l.end(); ++i) {
- v.push_back(T());
- std::swap(*i, v.back());
- }
- l.clear();
- }
-
- template<typename T>
- void populateListFromVector(std::vector<T> &v, std::list<T> &l) {
- l.clear();
- for (size_t i = 0; i < v.size(); ++i) {
- l.push_back(T());
- std::swap(v[i], l.back());
- }
- v.clear();
- }
-
-
-
- struct GraphEdge {
- GraphEdge *next;
- GraphEdge *prev;
- GraphEdge *loop_next;
- carve::mesh::MeshSet<3>::vertex_t *src;
- carve::mesh::MeshSet<3>::vertex_t *tgt;
- double ang;
- int visited;
-
- GraphEdge(carve::mesh::MeshSet<3>::vertex_t *_src, carve::mesh::MeshSet<3>::vertex_t *_tgt) :
- next(NULL), prev(NULL), loop_next(NULL),
- src(_src), tgt(_tgt),
- ang(0.0), visited(-1) {
- }
- };
-
-
-
- struct GraphEdges {
- GraphEdge *edges;
- carve::geom2d::P2 proj;
-
- GraphEdges() : edges(NULL), proj() {
- }
- };
-
-
-
- struct Graph {
- typedef std::unordered_map<carve::mesh::MeshSet<3>::vertex_t *, GraphEdges> graph_t;
-
- graph_t graph;
-
- Graph() : graph() {
- }
-
- ~Graph() {
- int c = 0;
-
- GraphEdge *edge;
- for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
- edge = (*i).second.edges;
- while (edge) {
- GraphEdge *temp = edge;
- ++c;
- edge = edge->next;
- delete temp;
- }
- }
-
- if (c) {
- std::cerr << "warning: "
- << c
- << " edges should have already been removed at graph destruction time"
- << std::endl;
- }
- }
-
- const carve::geom2d::P2 &projection(carve::mesh::MeshSet<3>::vertex_t *v) const {
- graph_t::const_iterator i = graph.find(v);
- CARVE_ASSERT(i != graph.end());
- return (*i).second.proj;
- }
-
- void computeProjection(carve::mesh::MeshSet<3>::face_t *face) {
- for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
- (*i).second.proj = face->project((*i).first->v);
- }
- for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
- for (GraphEdge *e = (*i).second.edges; e; e = e->next) {
- e->ang = carve::math::ANG(carve::geom2d::atan2(projection(e->tgt) - projection(e->src)));
- }
- }
- }
-
- void print(std::ostream &out, const carve::csg::VertexIntersections *vi) const {
- for (graph_t::const_iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
- out << (*i).first << (*i).first->v << '(' << projection((*i).first).x << ',' << projection((*i).first).y << ") :";
- for (const GraphEdge *e = (*i).second.edges; e; e = e->next) {
- out << ' ' << e->tgt << e->tgt->v << '(' << projection(e->tgt).x << ',' << projection(e->tgt).y << ')';
- }
- out << std::endl;
- if (vi) {
- carve::csg::VertexIntersections::const_iterator j = vi->find((*i).first);
- if (j != vi->end()) {
- out << " (int) ";
- for (carve::csg::IObjPairSet::const_iterator
- k = (*j).second.begin(), ke = (*j).second.end(); k != ke; ++k) {
- if ((*k).first < (*k).second) {
- out << (*k).first << ".." << (*k).second << "; ";
- }
- }
- out << std::endl;
- }
- }
- }
- }
-
- void addEdge(carve::mesh::MeshSet<3>::vertex_t *v1, carve::mesh::MeshSet<3>::vertex_t *v2) {
- GraphEdges &edges = graph[v1];
- GraphEdge *edge = new GraphEdge(v1, v2);
- if (edges.edges) edges.edges->prev = edge;
- edge->next = edges.edges;
- edges.edges = edge;
- }
-
- void removeEdge(GraphEdge *edge) {
- if (edge->prev != NULL) {
- edge->prev->next = edge->next;
- } else {
- if (edge->next != NULL) {
- GraphEdges &edges = (graph[edge->src]);
- edges.edges = edge->next;
- } else {
- graph.erase(edge->src);
- }
- }
- if (edge->next != NULL) {
- edge->next->prev = edge->prev;
- }
- delete edge;
- }
-
- bool empty() const {
- return graph.size() == 0;
- }
-
- GraphEdge *pickStartEdge() {
- // Try and find a vertex from which there is only one outbound edge. Won't always succeed.
- for (graph_t::iterator i = graph.begin(); i != graph.end(); ++i) {
- GraphEdges &ge = i->second;
- if (ge.edges->next == NULL) {
- return ge.edges;
- }
- }
- return (*graph.begin()).second.edges;
- }
-
- GraphEdge *outboundEdges(carve::mesh::MeshSet<3>::vertex_t *v) {
- return graph[v].edges;
- }
- };
-
-
-
- /**
- * \brief Take a set of new edges and split a face based upon those edges.
- *
- * @param[in] face The face to be split.
- * @param[in] edges
- * @param[out] face_loops Output list of face loops
- * @param[out] hole_loops Output list of hole loops
- * @param vi
- */
- static void splitFace(carve::mesh::MeshSet<3>::face_t *face,
- const carve::csg::V2Set &edges,
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops,
- const carve::csg::VertexIntersections & /* vi */) {
- Graph graph;
-
- for (carve::csg::V2Set::const_iterator
- i = edges.begin(), e = edges.end();
- i != e;
- ++i) {
- carve::mesh::MeshSet<3>::vertex_t *v1 = ((*i).first), *v2 = ((*i).second);
- if (carve::geom::equal(v1->v, v2->v)) std::cerr << "WARNING! " << v1->v << "==" << v2->v << std::endl;
- graph.addEdge(v1, v2);
- }
-
- graph.computeProjection(face);
-
- while (!graph.empty()) {
- GraphEdge *edge;
- GraphEdge *start;
- start = edge = graph.pickStartEdge();
-
- edge->visited = 0;
-
- int len = 0;
-
- for (;;) {
- double in_ang = M_PI + edge->ang;
- if (in_ang > M_TWOPI) in_ang -= M_TWOPI;
-
- GraphEdge *opts;
- GraphEdge *out = NULL;
- double best = M_TWOPI + 1.0;
-
- for (opts = graph.outboundEdges(edge->tgt); opts; opts = opts->next) {
- if (opts->tgt == edge->src) {
- if (out == NULL && opts->next == NULL) out = opts;
- } else {
- double out_ang = carve::math::ANG(in_ang - opts->ang);
-
- if (out == NULL || out_ang < best) {
- out = opts;
- best = out_ang;
- }
- }
- }
-
- CARVE_ASSERT(out != NULL);
-
- edge->loop_next = out;
-
- if (out->visited >= 0) {
- while (start != out) {
- GraphEdge *e = start;
- start = start->loop_next;
- e->loop_next = NULL;
- e->visited = -1;
- }
- len = edge->visited - out->visited + 1;
- break;
- }
-
- out->visited = edge->visited + 1;
- edge = out;
- }
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> loop(len);
- std::vector<carve::geom2d::P2> projected(len);
-
- edge = start;
- for (int i = 0; i < len; ++i) {
- GraphEdge *next = edge->loop_next;
- loop[i] = edge->src;
- projected[i] = graph.projection(edge->src);
- graph.removeEdge(edge);
- edge = next;
- }
-
- CARVE_ASSERT(edge == start);
-
- if (carve::geom2d::signedArea(projected) < 0) {
- face_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
- face_loops.back().swap(loop);
- } else {
- hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
- hole_loops.back().swap(loop);
- }
- }
- }
-
-
-
- /**
- * \brief Determine the relationship between a face loop and a hole loop.
- *
- * Determine whether a face and hole share an edge, or a vertex,
- * or do not touch. Find a hole vertex that is not part of the
- * face, and a hole,face vertex pair that are coincident, if such
- * a pair exists.
- *
- * @param[in] f A face loop.
- * @param[in] f_sort A vector indexing \a f in address order
- * @param[in] h A hole loop.
- * @param[in] h_sort A vector indexing \a h in address order
- * @param[out] f_idx Index of a face vertex that is shared with the hole.
- * @param[out] h_idx Index of the hole vertex corresponding to \a f_idx.
- * @param[out] unmatched_h_idx Index of a hole vertex that is not part of the face.
- * @param[out] shares_vertex Boolean indicating that the face and the hole share a vertex.
- * @param[out] shares_edge Boolean indicating that the face and the hole share an edge.
- */
- static void compareFaceLoopAndHoleLoop(const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f,
- const std::vector<unsigned> &f_sort,
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h,
- const std::vector<unsigned> &h_sort,
- unsigned &f_idx,
- unsigned &h_idx,
- int &unmatched_h_idx,
- bool &shares_vertex,
- bool &shares_edge) {
- const size_t F = f.size();
- const size_t H = h.size();
-
- shares_vertex = shares_edge = false;
- unmatched_h_idx = -1;
-
- unsigned I, J;
- for (I = J = 0; I < F && J < H;) {
- unsigned i = f_sort[I], j = h_sort[J];
- if (f[i] == h[j]) {
- shares_vertex = true;
- f_idx = i;
- h_idx = j;
- if (f[(i + F - 1) % F] == h[(j + 1) % H]) {
- shares_edge = true;
- }
- carve::mesh::MeshSet<3>::vertex_t *t = f[i];
- do { ++I; } while (I < F && f[f_sort[I]] == t);
- do { ++J; } while (J < H && h[h_sort[J]] == t);
- } else if (f[i] < h[j]) {
- ++I;
- } else {
- unmatched_h_idx = j;
- ++J;
- }
- }
- if (J < H) {
- unmatched_h_idx = h_sort[J];
- }
- }
-
-
-
- /**
- * \brief Compute an embedding for a set of face loops and hole loops.
- *
- * Because face and hole loops may be contained within each other,
- * it must be determined which hole loops are directly contained
- * within a face loop.
- *
- * @param[in] face The face from which these face and hole loops derive.
- * @param[in] face_loops
- * @param[in] hole_loops
- * @param[out] containing_faces A vector which for each hole loop
- * lists the indices of the face
- * loops it is containined in.
- * @param[out] hole_shared_vertices A map from a face,hole pair to
- * a shared vertex pair.
- */
- static void computeContainment(carve::mesh::MeshSet<3>::face_t *face,
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops,
- std::vector<std::vector<int> > &containing_faces,
- std::map<int, std::map<int, std::pair<unsigned, unsigned> > > &hole_shared_vertices) {
-#if defined(CARVE_DEBUG)
- std::cerr << "input: "
- << face_loops.size() << "faces, "
- << hole_loops.size() << "holes."
- << std::endl;
-#endif
-
- std::vector<std::vector<carve::geom2d::P2> > face_loops_projected, hole_loops_projected;
- std::vector<carve::geom::aabb<2> > face_loop_aabb, hole_loop_aabb;
- std::vector<std::vector<unsigned> > face_loops_sorted, hole_loops_sorted;
-
- std::vector<double> face_loop_areas, hole_loop_areas;
-
- face_loops_projected.resize(face_loops.size());
- face_loops_sorted.resize(face_loops.size());
- face_loop_aabb.resize(face_loops.size());
- face_loop_areas.resize(face_loops.size());
-
- hole_loops_projected.resize(hole_loops.size());
- hole_loops_sorted.resize(hole_loops.size());
- hole_loop_aabb.resize(hole_loops.size());
- hole_loop_areas.resize(hole_loops.size());
-
- // produce a projection of each face loop onto a 2D plane, and an
- // index vector which sorts vertices by address.
- for (size_t m = 0; m < face_loops.size(); ++m) {
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f_loop = (face_loops[m]);
- face_loops_projected[m].reserve(f_loop.size());
- face_loops_sorted[m].reserve(f_loop.size());
- for (size_t n = 0; n < f_loop.size(); ++n) {
- face_loops_projected[m].push_back(face->project(f_loop[n]->v));
- face_loops_sorted[m].push_back(n);
- }
- face_loop_areas.push_back(carve::geom2d::signedArea(face_loops_projected[m]));
-
- std::sort(face_loops_sorted[m].begin(), face_loops_sorted[m].end(),
- carve::make_index_sort(face_loops[m].begin()));
- face_loop_aabb[m].fit(face_loops_projected[m].begin(), face_loops_projected[m].end());
- }
-
- // produce a projection of each hole loop onto a 2D plane, and an
- // index vector which sorts vertices by address.
- for (size_t m = 0; m < hole_loops.size(); ++m) {
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h_loop = (hole_loops[m]);
- hole_loops_projected[m].reserve(h_loop.size());
- hole_loops_projected[m].reserve(h_loop.size());
- for (size_t n = 0; n < h_loop.size(); ++n) {
- hole_loops_projected[m].push_back(face->project(h_loop[n]->v));
- hole_loops_sorted[m].push_back(n);
- }
- hole_loop_areas.push_back(carve::geom2d::signedArea(hole_loops_projected[m]));
-
- std::sort(hole_loops_sorted[m].begin(), hole_loops_sorted[m].end(),
- carve::make_index_sort(hole_loops[m].begin()));
- hole_loop_aabb[m].fit(hole_loops_projected[m].begin(), hole_loops_projected[m].end());
- }
-
- containing_faces.resize(hole_loops.size());
-
- for (unsigned i = 0; i < hole_loops.size(); ++i) {
-
- for (unsigned j = 0; j < face_loops.size(); ++j) {
- if (!face_loop_aabb[j].completelyContains(hole_loop_aabb[i])) {
-#if defined(CARVE_DEBUG)
- std::cerr << "face: " << j
- << " hole: " << i
- << " skipped test (aabb fail)"
- << std::endl;
-#endif
- continue;
- }
-
- unsigned f_idx, h_idx;
- int unmatched_h_idx;
- bool shares_vertex, shares_edge;
- compareFaceLoopAndHoleLoop(face_loops[j],
- face_loops_sorted[j],
- hole_loops[i],
- hole_loops_sorted[i],
- f_idx, h_idx,
- unmatched_h_idx,
- shares_vertex,
- shares_edge);
-
-#if defined(CARVE_DEBUG)
- std::cerr << "face: " << j
- << " hole: " << i
- << " shares_vertex: " << shares_vertex
- << " shares_edge: " << shares_edge
- << std::endl;
-#endif
-
- carve::geom3d::Vector test = hole_loops[i][0]->v;
- carve::geom2d::P2 test_p = face->project(test);
-
- if (shares_vertex) {
- hole_shared_vertices[i][j] = std::make_pair(h_idx, f_idx);
- // Hole touches face. Should be able to connect it up
- // trivially. Still need to record its containment, so that
- // the assignment below works.
- if (unmatched_h_idx != -1) {
-#if defined(CARVE_DEBUG)
- std::cerr << "using unmatched vertex: " << unmatched_h_idx << std::endl;
-#endif
- test = hole_loops[i][unmatched_h_idx]->v;
- test_p = face->project(test);
- } else {
- // XXX: hole shares ALL vertices with face. Pick a point
- // internal to the projected poly.
- if (shares_edge) {
- // Hole shares edge with face => face can't contain hole.
- continue;
- }
-
- // XXX: how is this possible? Doesn't share an edge, but
- // also doesn't have any vertices that are not in
- // common. Degenerate hole?
-
- // XXX: come up with a test case for this.
- CARVE_FAIL("implement me");
- }
- }
-
-
- // XXX: use loop area to avoid some point-in-poly tests? Loop
- // area is faster, but not sure which is more robust.
- if (carve::geom2d::pointInPolySimple(face_loops_projected[j], test_p)) {
-#if defined(CARVE_DEBUG)
- std::cerr << "contains: " << i << " - " << j << std::endl;
-#endif
- containing_faces[i].push_back(j);
- } else {
-#if defined(CARVE_DEBUG)
- std::cerr << "does not contain: " << i << " - " << j << std::endl;
-#endif
- }
- }
-
-#if defined(CARVE_DEBUG)
- if (containing_faces[i].size() == 0) {
- //HOOK(drawFaceLoopWireframe(hole_loops[i], face->normal, 1.0, 0.0, 0.0, 1.0););
- std::cerr << "hole loop: ";
- for (unsigned j = 0; j < hole_loops[i].size(); ++j) {
- std::cerr << " " << hole_loops[i][j] << ":" << hole_loops[i][j]->v;
- }
- std::cerr << std::endl;
- for (unsigned j = 0; j < face_loops.size(); ++j) {
- //HOOK(drawFaceLoopWireframe(face_loops[j], face->normal, 0.0, 1.0, 0.0, 1.0););
- }
- }
-#endif
-
- // CARVE_ASSERT(containing_faces[i].size() >= 1);
- }
- }
-
-
-
- /**
- * \brief Merge face loops and hole loops to produce a set of face loops without holes.
- *
- * @param[in] face The face from which these face loops derive.
- * @param[in,out] f_loops A list of face loops.
- * @param[in] h_loops A list of hole loops to be incorporated into face loops.
- */
- static void mergeFacesAndHoles(carve::mesh::MeshSet<3>::face_t *face,
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &f_loops,
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &h_loops,
- carve::csg::CSG::Hooks & /* hooks */) {
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
-
- std::vector<std::vector<int> > containing_faces;
- std::map<int, std::map<int, std::pair<unsigned, unsigned> > > hole_shared_vertices;
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- dumpFacesAndHoles(f_loops.begin(), f_loops.end(), h_loops.begin(), h_loops.end(), "/tmp/pre_merge.ply");
-#endif
-
- {
- // move input face and hole loops to temp vectors.
- size_t m;
- face_loops.resize(f_loops.size());
- m = 0;
- for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::iterator
- i = f_loops.begin(), ie = f_loops.end();
- i != ie;
- ++i, ++m) {
- face_loops[m].swap((*i));
- }
-
- hole_loops.resize(h_loops.size());
- m = 0;
- for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::iterator
- i = h_loops.begin(), ie = h_loops.end();
- i != ie;
- ++i, ++m) {
- hole_loops[m].swap((*i));
- }
- f_loops.clear();
- h_loops.clear();
- }
-
- // work out the embedding of holes and faces.
- computeContainment(face, face_loops, hole_loops, containing_faces, hole_shared_vertices);
-
- int unassigned = (int)hole_loops.size();
-
- std::vector<std::vector<int> > face_holes;
- face_holes.resize(face_loops.size());
-
- for (unsigned i = 0; i < containing_faces.size(); ++i) {
- if (containing_faces[i].size() == 0) {
- std::map<int, std::map<int, std::pair<unsigned, unsigned> > >::iterator it = hole_shared_vertices.find(i);
- if (it != hole_shared_vertices.end()) {
- std::map<int, std::pair<unsigned, unsigned> >::iterator it2 = (*it).second.begin();
- int f = (*it2).first;
- unsigned h_idx = (*it2).second.first;
- unsigned f_idx = (*it2).second.second;
-
- // patch the hole into the face directly. because
- // f_loop[f_idx] == h_loop[h_idx], we don't need to
- // duplicate the f_loop vertex.
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f_loop = face_loops[f];
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h_loop = hole_loops[i];
-
- f_loop.insert(f_loop.begin() + f_idx + 1, h_loop.size(), NULL);
-
- unsigned p = f_idx + 1;
- for (unsigned a = h_idx + 1; a < h_loop.size(); ++a, ++p) {
- f_loop[p] = h_loop[a];
- }
- for (unsigned a = 0; a <= h_idx; ++a, ++p) {
- f_loop[p] = h_loop[a];
- }
-
-#if defined(CARVE_DEBUG)
- std::cerr << "hook face " << f << " to hole " << i << "(vertex)" << std::endl;
-#endif
- } else {
- std::cerr << "uncontained hole loop does not share vertices with any face loop!" << std::endl;
- }
- unassigned--;
- }
- }
-
-
- // work out which holes are directly contained within which faces.
- while (unassigned) {
- std::set<int> removed;
-
- for (unsigned i = 0; i < containing_faces.size(); ++i) {
- if (containing_faces[i].size() == 1) {
- int f = containing_faces[i][0];
- face_holes[f].push_back(i);
-#if defined(CARVE_DEBUG)
- std::cerr << "hook face " << f << " to hole " << i << std::endl;
-#endif
- removed.insert(f);
- unassigned--;
- }
- }
-
- if (!removed.size())
- throw carve::exception("Failed to merge holes");
-
- for (std::set<int>::iterator f = removed.begin(); f != removed.end(); ++f) {
- for (unsigned i = 0; i < containing_faces.size(); ++i) {
- containing_faces[i].erase(std::remove(containing_faces[i].begin(),
- containing_faces[i].end(),
- *f),
- containing_faces[i].end());
- }
- }
- }
-
-#if 0
- // use old templated projection code to patch holes into faces.
- for (unsigned i = 0; i < face_loops.size(); ++i) {
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_hole_loops;
- face_hole_loops.resize(face_holes[i].size());
- for (unsigned j = 0; j < face_holes[i].size(); ++j) {
- face_hole_loops[j].swap(hole_loops[face_holes[i][j]]);
- }
- if (face_hole_loops.size()) {
-
- f_loops.push_back(carve::triangulate::incorporateHolesIntoPolygon(
- carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project),
- face_loops[i],
- face_hole_loops));
- } else {
- f_loops.push_back(face_loops[i]);
- }
- }
-
-#else
- // use new 2d-only hole patching code.
- for (size_t i = 0; i < face_loops.size(); ++i) {
- if (!face_holes[i].size()) {
- f_loops.push_back(face_loops[i]);
- continue;
- }
-
- std::vector<std::vector<carve::geom2d::P2> > projected_poly;
- projected_poly.resize(face_holes[i].size() + 1);
- projected_poly[0].reserve(face_loops[i].size());
- for (size_t j = 0; j < face_loops[i].size(); ++j) {
- projected_poly[0].push_back(face->project(face_loops[i][j]->v));
- }
- for (size_t j = 0; j < face_holes[i].size(); ++j) {
- projected_poly[j+1].reserve(hole_loops[face_holes[i][j]].size());
- for (size_t k = 0; k < hole_loops[face_holes[i][j]].size(); ++k) {
- projected_poly[j+1].push_back(face->project(hole_loops[face_holes[i][j]][k]->v));
- }
- }
-
- std::vector<std::pair<size_t, size_t> > result = carve::triangulate::incorporateHolesIntoPolygon(projected_poly);
-
- f_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &out = f_loops.back();
- out.reserve(result.size());
- for (size_t j = 0; j < result.size(); ++j) {
- if (result[j].first == 0) {
- out.push_back(face_loops[i][result[j].second]);
- } else {
- out.push_back(hole_loops[face_holes[i][result[j].first-1]][result[j].second]);
- }
- }
- }
-#endif
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- dumpFacesAndHoles(f_loops.begin(), f_loops.end(), h_loops.begin(), h_loops.end(), "/tmp/post_merge.ply");
-#endif
-
- }
-
-
-
- /**
- * \brief Assemble the base loop for a face.
- *
- * The base loop is the original face loop, including vertices
- * created by intersections crossing any of its edges.
- *
- * @param[in] face The face to process.
- * @param[in] vmap
- * @param[in] face_split_edges
- * @param[in] divided_edges A mapping from edge pointer to sets of
- * ordered vertices corrsponding to the intersection points
- * on that edge.
- * @param[out] base_loop A vector of the vertices of the base loop.
- */
- static bool assembleBaseLoop(carve::mesh::MeshSet<3>::face_t *face,
- const carve::csg::detail::Data &data,
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
- carve::csg::CSG::Hooks &hooks) {
- base_loop.clear();
-
- // XXX: assumes that face->edges is in the same order as
- // face->vertices. (Which it is)
- carve::mesh::MeshSet<3>::edge_t *e = face->edge;
- size_t e_idx = 0;
- bool face_edge_intersected = false;
- do {
- base_loop.push_back(carve::csg::map_vertex(data.vmap, e->vert));
-
- carve::csg::detail::EVVMap::const_iterator ev = data.divided_edges.find(e);
-
- if (ev != data.divided_edges.end()) {
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &ev_vec = ((*ev).second);
-
- for (size_t k = 0, ke = ev_vec.size(); k < ke;) {
- base_loop.push_back(ev_vec[k++]);
- }
-
- if (ev_vec.size() && hooks.hasHook(carve::csg::CSG::Hooks::EDGE_DIVISION_HOOK)) {
- carve::mesh::MeshSet<3>::vertex_t *v1 = e->vert;
- carve::mesh::MeshSet<3>::vertex_t *v2;
- for (size_t k = 0, ke = ev_vec.size(); k < ke;) {
- v2 = ev_vec[k++];
- hooks.edgeDivision(e, e_idx, v1, v2);
- v1 = v2;
- }
- v2 = e->v2();
- hooks.edgeDivision(e, e_idx, v1, v2);
- }
-
- face_edge_intersected = true;
- }
- e = e->next;
- ++e_idx;
- } while (e != face->edge);
-
- return face_edge_intersected;
- }
-
-
-
- // the crossing_data structure holds temporary information regarding
- // paths, and their relationship to the loop of edges that forms the
- // face perimeter.
- struct crossing_data {
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> *path;
- size_t edge_idx[2];
-
- crossing_data(std::vector<carve::mesh::MeshSet<3>::vertex_t *> *p, size_t e1, size_t e2) : path(p) {
- edge_idx[0] = e1; edge_idx[1] = e2;
- }
-
- bool operator<(const crossing_data &c) const {
- // the sort order for paths is in order of increasing initial
- // position on the edge loop, but decreasing final position.
- return edge_idx[0] < c.edge_idx[0] || (edge_idx[0] == c.edge_idx[0] && edge_idx[1] > c.edge_idx[1]);
- }
- };
-
-
-
- bool processCrossingEdges(carve::mesh::MeshSet<3>::face_t *face,
- const carve::csg::VertexIntersections &vertex_intersections,
- carve::csg::CSG::Hooks &hooks,
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &paths,
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops_out) {
- const size_t N = base_loop.size();
- std::vector<crossing_data> endpoint_indices;
-
- endpoint_indices.reserve(paths.size());
-
- for (size_t i = 0; i < paths.size(); ++i) {
- endpoint_indices.push_back(crossing_data(&paths[i], N, N));
- }
-
- // Step 1:
- // locate endpoints of paths on the base loop.
- for (size_t i = 0; i < N; ++i) {
- for (size_t j = 0; j < paths.size(); ++j) {
- // test beginning of path.
- if (paths[j].front() == base_loop[i]) {
- if (endpoint_indices[j].edge_idx[0] == N) {
- endpoint_indices[j].edge_idx[0] = i;
- } else {
- // there is a duplicated vertex in the face perimeter. The
- // path might attach to either of the duplicate instances
- // so we have to work out which is the right one to attach
- // to. We assume it's the index currently being examined,
- // if the path heads in a direction that's internal to the
- // angle made by the prior and next edges of the face
- // perimeter. Otherwise, leave it as the currently
- // selected index (until another duplicate is found, if it
- // exists, and is tested).
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p = *endpoint_indices[j].path;
- const size_t pN = p.size();
-
- carve::mesh::MeshSet<3>::vertex_t *a, *b, *c;
- a = base_loop[(i+N-1)%N];
- b = base_loop[i];
- c = base_loop[(i+1)%N];
-
- carve::mesh::MeshSet<3>::vertex_t *adj = (p[0] == base_loop[i]) ? p[1] : p[pN-2];
-
- if (carve::geom2d::internalToAngle(face->project(c->v),
- face->project(b->v),
- face->project(a->v),
- face->project(adj->v))) {
- endpoint_indices[j].edge_idx[0] = i;
- }
- }
- }
-
- // test end of path.
- if (paths[j].back() == base_loop[i]) {
- if (endpoint_indices[j].edge_idx[1] == N) {
- endpoint_indices[j].edge_idx[1] = i;
- } else {
- // Work out which of the duplicated vertices is the right
- // one to attach to, as above.
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p = *endpoint_indices[j].path;
- const size_t pN = p.size();
-
- carve::mesh::MeshSet<3>::vertex_t *a, *b, *c;
- a = base_loop[(i+N-1)%N];
- b = base_loop[i];
- c = base_loop[(i+1)%N];
-
- carve::mesh::MeshSet<3>::vertex_t *adj = (p[0] == base_loop[i]) ? p[1] : p[pN-2];
-
- if (carve::geom2d::internalToAngle(face->project(c->v),
- face->project(b->v),
- face->project(a->v),
- face->project(adj->v))) {
- endpoint_indices[j].edge_idx[1] = i;
- }
- }
- }
- }
- }
-
-#if defined(CARVE_DEBUG)
- std::cerr << "### N: " << N << std::endl;
- for (size_t i = 0; i < paths.size(); ++i) {
- std::cerr << "### path: " << i << " endpoints: " << endpoint_indices[i].edge_idx[0] << " - " << endpoint_indices[i].edge_idx[1] << std::endl;
- }
-#endif
-
-
- // Step 2:
- // divide paths up into those that connect to the base loop in two
- // places (cross), and those that do not (noncross).
- std::vector<crossing_data> cross, noncross;
- cross.reserve(endpoint_indices.size() + 1);
- noncross.reserve(endpoint_indices.size());
-
- for (size_t i = 0; i < endpoint_indices.size(); ++i) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### orienting path: " << i << " endpoints: " << endpoint_indices[i].edge_idx[0] << " - " << endpoint_indices[i].edge_idx[1] << std::endl;
-#endif
- if (endpoint_indices[i].edge_idx[0] != N && endpoint_indices[i].edge_idx[1] != N) {
- // Orient each path correctly. Paths should progress from
- // smaller perimeter index to larger, but if the path starts
- // and ends at the same perimeter index, then the decision
- // needs to be made based upon area.
- if (endpoint_indices[i].edge_idx[0] == endpoint_indices[i].edge_idx[1]) {
- // The path forms a loop that starts and ends at the same
- // vertex of the perimeter. In this case, we need to orient
- // the path so that the constructed loop has the right
- // signed area.
- double area = carve::geom2d::signedArea(endpoint_indices[i].path->begin() + 1,
- endpoint_indices[i].path->end(),
- carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project));
- if (area < 0) {
- // XXX: Create test case to check that this is the correct sign for the area.
- std::reverse(endpoint_indices[i].path->begin(), endpoint_indices[i].path->end());
- }
- } else {
- if (endpoint_indices[i].edge_idx[0] > endpoint_indices[i].edge_idx[1]) {
- std::swap(endpoint_indices[i].edge_idx[0], endpoint_indices[i].edge_idx[1]);
- std::reverse(endpoint_indices[i].path->begin(), endpoint_indices[i].path->end());
- }
- }
- }
-
- if (endpoint_indices[i].edge_idx[0] != N &&
- endpoint_indices[i].edge_idx[1] != N &&
- endpoint_indices[i].edge_idx[0] != endpoint_indices[i].edge_idx[1]) {
- cross.push_back(endpoint_indices[i]);
- } else {
- noncross.push_back(endpoint_indices[i]);
- }
- }
-
- // Step 3:
- // add a temporary crossing path that connects the beginning and the
- // end of the base loop. this stops us from needing special case
- // code to handle the left over loop after all the other crossing
- // paths are considered.
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop_temp_path;
- base_loop_temp_path.reserve(2);
- base_loop_temp_path.push_back(base_loop.front());
- base_loop_temp_path.push_back(base_loop.back());
-
- cross.push_back(crossing_data(&base_loop_temp_path, 0, base_loop.size() - 1));
-#if defined(CARVE_DEBUG)
- std::cerr << "### crossing edge count (with sentinel): " << cross.size() << std::endl;
-#endif
-
- // Step 4:
- // sort paths by increasing beginning point and decreasing ending point.
- std::sort(cross.begin(), cross.end());
- std::sort(noncross.begin(), noncross.end());
-
- // Step 5:
- // divide up the base loop based upon crossing paths.
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > divided_base_loop;
- divided_base_loop.reserve(cross.size());
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> out;
-
- for (size_t i = 0; i < cross.size(); ++i) {
- size_t j;
- for (j = i + 1;
- j < cross.size() &&
- cross[i].edge_idx[0] == cross[j].edge_idx[0] &&
- cross[i].edge_idx[1] == cross[j].edge_idx[1];
- ++j) {}
- if (j - i >= 2) {
- // when there are multiple paths that begin and end at the
- // same point, they need to be ordered so that the constructed
- // loops have the right orientation. this means that the loop
- // made by taking path(i+1) forward, then path(i) backward
- // needs to have negative area. this combined area is equal to
- // the area of path(i+1) minus the area of path(i). in turn
- // this means that the loop made by path path(i+1) alone has
- // to have smaller signed area than loop made by path(i).
- // thus, we sort paths in order of decreasing area.
-
- std::vector<std::pair<double, std::vector<carve::mesh::MeshSet<3>::vertex_t *> *> > order;
- order.reserve(j - i);
- for (size_t k = i; k < j; ++k) {
- double area = carve::geom2d::signedArea(cross[k].path->begin(),
- cross[k].path->end(),
- carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project));
-#if defined(CARVE_DEBUG)
- std::cerr << "### k=" << k << " area=" << area << std::endl;
-#endif
- order.push_back(std::make_pair(-area, cross[k].path));
- }
- std::sort(order.begin(), order.end());
- for (size_t k = i; k < j; ++k) {
- cross[k].path = order[k-i].second;
-#if defined(CARVE_DEBUG)
- std::cerr << "### post-sort k=" << k << " cross[k].path->size()=" << cross[k].path->size() << std::endl;
-#endif
- }
- }
- }
-
- // Step 6:
- for (size_t i = 0; i < cross.size(); ++i) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### i=" << i << " working on edge: " << cross[i].edge_idx[0] << " - " << cross[i].edge_idx[1] << std::endl;
-#endif
- size_t e1_0 = cross[i].edge_idx[0];
- size_t e1_1 = cross[i].edge_idx[1];
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p1 = *cross[i].path;
-#if defined(CARVE_DEBUG)
- std::cerr << "### path size = " << p1.size() << std::endl;
-#endif
-
- out.clear();
-
- if (i < cross.size() - 1 &&
- cross[i+1].edge_idx[1] <= cross[i].edge_idx[1]) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### complex case" << std::endl;
-#endif
- // complex case. crossing path with other crossing paths embedded within.
- size_t pos = e1_0;
-
- size_t skip = i+1;
-
- while (pos != e1_1) {
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p2 = *cross[skip].path;
- size_t e2_0 = cross[skip].edge_idx[0];
- size_t e2_1 = cross[skip].edge_idx[1];
-
- // copy up to the beginning of the next path.
- std::copy(base_loop.begin() + pos, base_loop.begin() + e2_0, std::back_inserter(out));
-
- CARVE_ASSERT(base_loop[e2_0] == p2[0]);
- // copy the next path in the right direction.
- std::copy(p2.begin(), p2.end() - 1, std::back_inserter(out));
-
- // move to the position of the end of the path.
- pos = e2_1;
-
- // advance to the next hit path.
- do {
- ++skip;
- } while(skip != cross.size() && cross[skip].edge_idx[0] < e2_1);
-
- if (skip == cross.size()) break;
-
- // if the next hit path is past the start point of the current path, we're done.
- if (cross[skip].edge_idx[0] >= e1_1) break;
- }
-
- // copy up to the end of the path.
- if (pos < e1_1) {
- std::copy(base_loop.begin() + pos, base_loop.begin() + e1_1, std::back_inserter(out));
- }
-
- CARVE_ASSERT(base_loop[e1_1] == p1.back());
- std::copy(p1.rbegin(), p1.rend() - 1, std::back_inserter(out));
- } else {
- size_t loop_size = (e1_1 - e1_0) + (p1.size() - 1);
- out.reserve(loop_size);
-
- std::copy(base_loop.begin() + e1_0, base_loop.begin() + e1_1, std::back_inserter(out));
- std::copy(p1.rbegin(), p1.rend() - 1, std::back_inserter(out));
-
- CARVE_ASSERT(out.size() == loop_size);
- }
- divided_base_loop.push_back(out);
-
-#if defined(CARVE_DEBUG)
- {
- std::vector<carve::geom2d::P2> projected;
- projected.reserve(out.size());
- for (size_t n = 0; n < out.size(); ++n) {
- projected.push_back(face->project(out[n]->v));
- }
-
- double A = carve::geom2d::signedArea(projected);
- std::cerr << "### out area=" << A << std::endl;
- CARVE_ASSERT(A <= 0);
- }
-#endif
- }
-
- if (!noncross.size()) {
- // If there are no non-crossing paths then we're done.
- populateListFromVector(divided_base_loop, face_loops_out);
- return true;
- }
-
- // for each divided base loop, work out which noncrossing paths and
- // loops are part of it. use the old algorithm to combine these into
- // the divided base loop. if none, the divided base loop is just
- // output.
- std::vector<std::vector<carve::geom2d::P2> > proj;
- std::vector<carve::geom::aabb<2> > proj_aabb;
- proj.resize(divided_base_loop.size());
- proj_aabb.resize(divided_base_loop.size());
-
- // calculate an aabb for each divided base loop, to avoid expensive
- // point-in-poly tests.
- for (size_t i = 0; i < divided_base_loop.size(); ++i) {
- proj[i].reserve(divided_base_loop[i].size());
- for (size_t j = 0; j < divided_base_loop[i].size(); ++j) {
- proj[i].push_back(face->project(divided_base_loop[i][j]->v));
- }
- proj_aabb[i].fit(proj[i].begin(), proj[i].end());
- }
-
- for (size_t i = 0; i < divided_base_loop.size(); ++i) {
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> *> inc;
- carve::geom2d::P2 test;
-
- // for each noncrossing path, choose an endpoint that isn't on the
- // base loop as a test point.
- for (size_t j = 0; j < noncross.size(); ++j) {
- if (noncross[j].edge_idx[0] < N) {
- if (noncross[j].path->front() == base_loop[noncross[j].edge_idx[0]]) {
- // noncrossing paths may be loops that run from the edge, back to the same vertex.
- if (noncross[j].path->front() == noncross[j].path->back()) {
- CARVE_ASSERT(noncross[j].path->size() > 2);
- test = face->project((*noncross[j].path)[1]->v);
- } else {
- test = face->project(noncross[j].path->back()->v);
- }
- } else {
- test = face->project(noncross[j].path->front()->v);
- }
- } else {
- test = face->project(noncross[j].path->front()->v);
- }
-
- if (proj_aabb[i].intersects(test) &&
- carve::geom2d::pointInPoly(proj[i], test).iclass != carve::POINT_OUT) {
- inc.push_back(noncross[j].path);
- }
- }
-
-#if defined(CARVE_DEBUG)
- std::cerr << "### divided base loop:" << i << " inc.size()=" << inc.size() << std::endl;
- std::cerr << "### inc = [";
- for (size_t j = 0; j < inc.size(); ++j) {
- std::cerr << " " << inc[j];
- }
- std::cerr << " ]" << std::endl;
-#endif
-
- if (inc.size()) {
- carve::csg::V2Set face_edges;
-
- for (size_t j = 0; j < divided_base_loop[i].size() - 1; ++j) {
- face_edges.insert(std::make_pair(divided_base_loop[i][j],
- divided_base_loop[i][j+1]));
- }
-
- face_edges.insert(std::make_pair(divided_base_loop[i].back(),
- divided_base_loop[i].front()));
-
- for (size_t j = 0; j < inc.size(); ++j) {
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> &path = *inc[j];
- for (size_t k = 0; k < path.size() - 1; ++k) {
- face_edges.insert(std::make_pair(path[k], path[k+1]));
- face_edges.insert(std::make_pair(path[k+1], path[k]));
- }
- }
-
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
-
- splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
-
- if (hole_loops.size()) {
- mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
- }
- std::copy(face_loops.begin(), face_loops.end(), std::back_inserter(face_loops_out));
- } else {
- face_loops_out.push_back(divided_base_loop[i]);
- }
- }
- return true;
- }
-
-
-
- void composeEdgesIntoPaths(const carve::csg::V2Set &edges,
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &extra_endpoints,
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &paths,
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &cuts,
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &loops) {
- using namespace carve::csg;
-
- detail::VVSMap vertex_graph;
- detail::VSet endpoints;
- detail::VSet cut_endpoints;
-
- typedef std::vector<carve::mesh::MeshSet<3>::vertex_t *> vvec_t;
- vvec_t path;
-
- std::list<vvec_t> path_list, cut_list, loop_list;
-
- // build graph from edges.
- for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### edge: " << (*i).first << " - " << (*i).second << std::endl;
-#endif
- vertex_graph[(*i).first].insert((*i).second);
- vertex_graph[(*i).second].insert((*i).first);
- }
-
- // find the endpoints in the graph.
- // every vertex with number of incident edges != 2 is an endpoint.
- for (detail::VVSMap::const_iterator i = vertex_graph.begin(); i != vertex_graph.end(); ++i) {
- if ((*i).second.size() != 2) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### endpoint: " << (*i).first << std::endl;
-#endif
- endpoints.insert((*i).first);
- if ((*i).second.size() == 1) {
- cut_endpoints.insert((*i).first);
- }
- }
- }
-
- // every vertex on the perimeter of the face is also an endpoint.
- for (size_t i = 0; i < extra_endpoints.size(); ++i) {
- if (vertex_graph.find(extra_endpoints[i]) != vertex_graph.end()) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### extra endpoint: " << extra_endpoints[i] << std::endl;
-#endif
- endpoints.insert(extra_endpoints[i]);
- cut_endpoints.erase(extra_endpoints[i]);
- }
- }
-
- while (endpoints.size()) {
- carve::mesh::MeshSet<3>::vertex_t *v = *endpoints.begin();
- detail::VVSMap::iterator p = vertex_graph.find(v);
- if (p == vertex_graph.end()) {
- endpoints.erase(endpoints.begin());
- continue;
- }
-
- path.clear();
- path.push_back(v);
-
- for (;;) {
- CARVE_ASSERT(p != vertex_graph.end());
-
- // pick a connected vertex to move to.
- if ((*p).second.size() == 0) break;
-
- carve::mesh::MeshSet<3>::vertex_t *n = *((*p).second.begin());
- detail::VVSMap::iterator q = vertex_graph.find(n);
-
- // remove the link.
- (*p).second.erase(n);
- (*q).second.erase(v);
-
- // move on.
- v = n;
- path.push_back(v);
-
- if ((*p).second.size() == 0) vertex_graph.erase(p);
- if ((*q).second.size() == 0) {
- vertex_graph.erase(q);
- q = vertex_graph.end();
- }
-
- p = q;
-
- if (v == path[0] || p == vertex_graph.end() || endpoints.find(v) != endpoints.end()) break;
- }
- CARVE_ASSERT(endpoints.find(path.back()) != endpoints.end());
-
- bool is_cut =
- cut_endpoints.find(path.front()) != cut_endpoints.end() &&
- cut_endpoints.find(path.back()) != cut_endpoints.end();
-
- if (is_cut) {
- cut_list.push_back(vvec_t()); path.swap(cut_list.back());
- } else {
- path_list.push_back(vvec_t()); path.swap(path_list.back());
- }
- }
-
- populateVectorFromList(path_list, paths);
- populateVectorFromList(cut_list, cuts);
-
- // now only loops should remain in the graph.
- while (vertex_graph.size()) {
- detail::VVSMap::iterator p = vertex_graph.begin();
- carve::mesh::MeshSet<3>::vertex_t *v = (*p).first;
- CARVE_ASSERT((*p).second.size() == 2);
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> path;
- path.clear();
- path.push_back(v);
-
- for (;;) {
- CARVE_ASSERT(p != vertex_graph.end());
- // pick a connected vertex to move to.
-
- carve::mesh::MeshSet<3>::vertex_t *n = *((*p).second.begin());
- detail::VVSMap::iterator q = vertex_graph.find(n);
-
- // remove the link.
- (*p).second.erase(n);
- (*q).second.erase(v);
-
- // move on.
- v = n;
- path.push_back(v);
-
- if ((*p).second.size() == 0) vertex_graph.erase(p);
- if ((*q).second.size() == 0) vertex_graph.erase(q);
-
- p = q;
-
- if (v == path[0]) break;
- }
-
- loop_list.push_back(vvec_t()); path.swap(loop_list.back());
- }
-
- populateVectorFromList(loop_list, loops);
- }
-
-
-
- template<typename T>
- std::string ptrstr(const T *ptr) {
- std::ostringstream s;
- s << ptr;
- return s.str().substr(1);
- }
-
-#if 0
- void dumpAsGraph(carve::mesh::MeshSet<3>::face_t *face,
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
- const carve::csg::V2Set &face_edges,
- const carve::csg::V2Set &split_edges) {
- std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2> proj;
-
- for (size_t i = 0; i < base_loop.size(); ++i) {
- proj[base_loop[i]] = face->project(base_loop[i]->v);
- }
- for (carve::csg::V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
- proj[(*i).first] = face->project((*i).first->v);
- proj[(*i).second] = face->project((*i).second->v);
- }
-
- {
- carve::geom2d::P2 lo, hi;
- std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2>::iterator i;
- i = proj.begin();
- lo = hi = (*i).second;
- for (; i != proj.end(); ++i) {
- lo.x = std::min(lo.x, (*i).second.x); lo.y = std::min(lo.y, (*i).second.y);
- hi.x = std::max(hi.x, (*i).second.x); hi.y = std::max(hi.y, (*i).second.y);
- }
- for (i = proj.begin(); i != proj.end(); ++i) {
- (*i).second.x = ((*i).second.x - lo.x) / (hi.x - lo.x) * 10;
- (*i).second.y = ((*i).second.y - lo.y) / (hi.y - lo.y) * 10;
- }
- }
-
- std::cerr << "graph G {\nnode [shape=circle,style=filled,fixedsize=true,width=\".1\",height=\".1\"];\nedge [len=4]\n";
- for (std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2>::iterator i = proj.begin(); i != proj.end(); ++i) {
- std::cerr << " " << ptrstr((*i).first) << " [pos=\"" << (*i).second.x << "," << (*i).second.y << "!\"];\n";
- }
- for (carve::csg::V2Set::const_iterator i = face_edges.begin(); i != face_edges.end(); ++i) {
- std::cerr << " " << ptrstr((*i).first) << " -- " << ptrstr((*i).second) << ";\n";
- }
- for (carve::csg::V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
- std::cerr << " " << ptrstr((*i).first) << " -- " << ptrstr((*i).second) << " [color=\"blue\"];\n";
- }
- std::cerr << "};\n";
- }
-#endif
-
- void generateOneFaceLoop(carve::mesh::MeshSet<3>::face_t *face,
- const carve::csg::detail::Data &data,
- const carve::csg::VertexIntersections &vertex_intersections,
- carve::csg::CSG::Hooks &hooks,
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops) {
- using namespace carve::csg;
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
-
- /*bool face_edge_intersected = */assembleBaseLoop(face, data, base_loop, hooks);
-
- detail::FV2SMap::const_iterator fse_iter = data.face_split_edges.find(face);
-
- face_loops.clear();
-
- if (fse_iter == data.face_split_edges.end()) {
- // simple case: input face is output face (possibly with the
- // addition of vertices at intersections).
- face_loops.push_back(base_loop);
- return;
- }
-
- // complex case: input face is split into multiple output faces.
- V2Set face_edges;
-
- for (size_t j = 0, je = base_loop.size() - 1; j < je; ++j) {
- face_edges.insert(std::make_pair(base_loop[j], base_loop[j + 1]));
- }
- face_edges.insert(std::make_pair(base_loop.back(), base_loop[0]));
-
- // collect the split edges (as long as they're not on the perimeter)
- const detail::FV2SMap::mapped_type &fse = ((*fse_iter).second);
-
- // split_edges contains all of the edges created by intersections
- // that aren't part of the perimeter of the face.
- V2Set split_edges;
-
- for (detail::FV2SMap::mapped_type::const_iterator
- j = fse.begin(), je = fse.end();
- j != je;
- ++j) {
- carve::mesh::MeshSet<3>::vertex_t *v1 = ((*j).first), *v2 = ((*j).second);
-
- if (face_edges.find(std::make_pair(v1, v2)) == face_edges.end() &&
- face_edges.find(std::make_pair(v2, v1)) == face_edges.end()) {
- // If the edge isn't part of the face perimeter, add it to
- // split_edges.
- split_edges.insert(ordered_edge(v1, v2));
- }
- }
-
- // face is unsplit.
- if (!split_edges.size()) {
- face_loops.push_back(base_loop);
- return;
- }
-
-#if defined(CARVE_DEBUG)
- dumpAsGraph(face, base_loop, face_edges, split_edges);
-#endif
-
-#if 0
- // old face splitting method.
- for (V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
- face_edges.insert(std::make_pair((*i).first, (*i).second));
- face_edges.insert(std::make_pair((*i).second, (*i).first));
- }
- splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
-
- if (hole_loops.size()) {
- mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
- }
- return;
-#endif
-
-#if defined(CARVE_DEBUG)
- std::cerr << "### split_edges.size(): " << split_edges.size() << std::endl;
-#endif
- if (split_edges.size() == 1) {
- // handle the common case of a face that's split by a single edge.
- carve::mesh::MeshSet<3>::vertex_t *v1 = split_edges.begin()->first;
- carve::mesh::MeshSet<3>::vertex_t *v2 = split_edges.begin()->second;
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *>::iterator vi1 = std::find(base_loop.begin(), base_loop.end(), v1);
- std::vector<carve::mesh::MeshSet<3>::vertex_t *>::iterator vi2 = std::find(base_loop.begin(), base_loop.end(), v2);
-
- if (vi1 != base_loop.end() && vi2 != base_loop.end()) {
- // this is an inserted edge that connects two points on the base loop. nice and simple.
- if (vi2 < vi1) std::swap(vi1, vi2);
-
- size_t loop1_size = vi2 - vi1 + 1;
- size_t loop2_size = base_loop.size() + 2 - loop1_size;
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> l1;
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> l2;
-
- l1.reserve(loop1_size);
- l2.reserve(loop2_size);
-
- std::copy(vi1, vi2+1, std::back_inserter(l1));
- std::copy(vi2, base_loop.end(), std::back_inserter(l2));
- std::copy(base_loop.begin(), vi1+1, std::back_inserter(l2));
-
- CARVE_ASSERT(l1.size() == loop1_size);
- CARVE_ASSERT(l2.size() == loop2_size);
-
- face_loops.push_back(l1);
- face_loops.push_back(l2);
-
- return;
- }
-
- // Consider handling cases where one end of the edge touches the
- // perimeter, and where neither end does.
- }
-
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > paths;
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > cuts;
- std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > loops;
-
- // Take the split edges and compose them into a set of paths and
- // loops. Loops are edge paths that do not touch the boundary, or
- // any other path or loop - they are holes cut out of the centre
- // of the face. Paths are made up of all the other edge segments,
- // and start and end at the face perimeter, or where they meet
- // another path (sometimes both cases will be true).
- composeEdgesIntoPaths(split_edges, base_loop, paths, cuts, loops);
-
-#if defined(CARVE_DEBUG)
- std::cerr << "### paths.size(): " << paths.size() << std::endl;
- std::cerr << "### cuts.size(): " << cuts.size() << std::endl;
- std::cerr << "### loops.size(): " << loops.size() << std::endl;
-#endif
-
- if (!paths.size()) {
- // No complex paths.
- face_loops.push_back(base_loop);
- } else {
- if (processCrossingEdges(face, vertex_intersections, hooks, base_loop, paths, face_loops)) {
- // Worked.
- } else {
- // complex case - fall back to old edge tracing code.
-#if defined(CARVE_DEBUG)
- std::cerr << "### processCrossingEdges failed. Falling back to edge tracing code" << std::endl;
-#endif
- for (size_t i = 0; i < paths.size(); ++i) {
- for (size_t j = 0; j < paths[i].size() - 1; ++j) {
- face_edges.insert(std::make_pair(paths[i][j], paths[i][j+1]));
- face_edges.insert(std::make_pair(paths[i][j+1], paths[i][j]));
- }
- }
- splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
- }
- }
-
- // Now merge cuts and loops into face loops.
-
- // every cut creates a hole.
- for (size_t i = 0; i < cuts.size(); ++i) {
- hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
- hole_loops.back().reserve(2 * cuts[i].size() - 2);
- std::copy(cuts[i].begin(), cuts[i].end(), std::back_inserter(hole_loops.back()));
- if (cuts[i].size() > 2) {
- std::copy(cuts[i].rbegin() + 1, cuts[i].rend() - 1, std::back_inserter(hole_loops.back()));
- }
- }
-
- // every loop creates a hole and a corresponding face.
- for (size_t i = 0; i < loops.size(); ++i) {
- hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
- hole_loops.back().reserve(loops[i].size()-1);
- std::copy(loops[i].begin(), loops[i].end()-1, std::back_inserter(hole_loops.back()));
-
- face_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
- face_loops.back().reserve(loops[i].size()-1);
- std::copy(loops[i].rbegin()+1, loops[i].rend(), std::back_inserter(face_loops.back()));
-
- std::vector<carve::geom2d::P2> projected;
- projected.reserve(face_loops.back().size());
- for (size_t i = 0; i < face_loops.back().size(); ++i) {
- projected.push_back(face->project(face_loops.back()[i]->v));
- }
-
- if (carve::geom2d::signedArea(projected) > 0.0) {
- std::swap(face_loops.back(), hole_loops.back());
- }
- }
-
- // if there are holes, then they need to be merged with faces.
- if (hole_loops.size()) {
- mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
- }
- }
-}
-
-
-
-/**
- * \brief Build a set of face loops for all (split) faces of a Polyhedron.
- *
- * @param[in] poly The polyhedron to process
- * @param[in] data Internal intersection data
- * @param[out] face_loops_out The resulting face loops
- *
- * @return The number of edges generated.
- */
-size_t carve::csg::CSG::generateFaceLoops(carve::mesh::MeshSet<3> *poly,
- const detail::Data &data,
- FaceLoopList &face_loops_out) {
- static carve::TimingName FUNC_NAME("CSG::generateFaceLoops()");
- carve::TimingBlock block(FUNC_NAME);
- size_t generated_edges = 0;
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
- std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
-
- for (carve::mesh::MeshSet<3>::face_iter i = poly->faceBegin(); i != poly->faceEnd(); ++i) {
- carve::mesh::MeshSet<3>::face_t *face = (*i);
-
-#if defined(CARVE_DEBUG)
- double in_area = 0.0, out_area = 0.0;
-
- {
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
- assembleBaseLoop(face, data, base_loop);
-
- {
- std::vector<carve::geom2d::P2> projected;
- projected.reserve(base_loop.size());
- for (size_t n = 0; n < base_loop.size(); ++n) {
- projected.push_back(face->project(base_loop[n]->v));
- }
-
- in_area = carve::geom2d::signedArea(projected);
- std::cerr << "### in_area=" << in_area << std::endl;
- }
- }
-#endif
-
- generateOneFaceLoop(face, data, vertex_intersections, hooks, face_loops);
-
-#if defined(CARVE_DEBUG)
- {
- V2Set face_edges;
-
- std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
- assembleBaseLoop(face, data, base_loop);
-
- for (size_t j = 0, je = base_loop.size() - 1; j < je; ++j) {
- face_edges.insert(std::make_pair(base_loop[j+1], base_loop[j]));
- }
- face_edges.insert(std::make_pair(base_loop[0], base_loop.back()));
- for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator fli = face_loops.begin(); fli != face_loops.end(); ++ fli) {
-
- {
- std::vector<carve::geom2d::P2> projected;
- projected.reserve((*fli).size());
- for (size_t n = 0; n < (*fli).size(); ++n) {
- projected.push_back(face->project((*fli)[n]->v));
- }
-
- double area = carve::geom2d::signedArea(projected);
- std::cerr << "### loop_area[" << std::distance((std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator)face_loops.begin(), fli) << "]=" << area << std::endl;
- out_area += area;
- }
-
- const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &fl = *fli;
- for (size_t j = 0, je = fl.size() - 1; j < je; ++j) {
- face_edges.insert(std::make_pair(fl[j], fl[j+1]));
- }
- face_edges.insert(std::make_pair(fl.back(), fl[0]));
- }
- for (V2Set::const_iterator j = face_edges.begin(); j != face_edges.end(); ++j) {
- if (face_edges.find(std::make_pair((*j).second, (*j).first)) == face_edges.end()) {
- std::cerr << "### error: unmatched edge [" << (*j).first << "-" << (*j).second << "]" << std::endl;
- }
- }
- std::cerr << "### out_area=" << out_area << std::endl;
- if (out_area != in_area) {
- std::cerr << "### error: area does not match. delta = " << (out_area - in_area) << std::endl;
- // CARVE_ASSERT(fabs(out_area - in_area) < 1e-5);
- }
- }
-#endif
-
- // now record all the resulting face loops.
-#if defined(CARVE_DEBUG)
- std::cerr << "### ======" << std::endl;
-#endif
- for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
- f = face_loops.begin(), fe = face_loops.end();
- f != fe;
- ++f) {
-#if defined(CARVE_DEBUG)
- std::cerr << "### loop:";
- for (size_t i = 0; i < (*f).size(); ++i) {
- std::cerr << " " << (*f)[i];
- }
- std::cerr << std::endl;
-#endif
-
- face_loops_out.append(new FaceLoop(face, *f));
- generated_edges += (*f).size();
- }
-#if defined(CARVE_DEBUG)
- std::cerr << "### ======" << std::endl;
-#endif
- }
- return generated_edges;
-}