Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/lib/mesh.cpp')
-rw-r--r--extern/carve/lib/mesh.cpp1203
1 files changed, 1203 insertions, 0 deletions
diff --git a/extern/carve/lib/mesh.cpp b/extern/carve/lib/mesh.cpp
new file mode 100644
index 00000000000..55ab893c10a
--- /dev/null
+++ b/extern/carve/lib/mesh.cpp
@@ -0,0 +1,1203 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/mesh.hpp>
+#include <carve/mesh_impl.hpp>
+#include <carve/rtree.hpp>
+
+#include <carve/poly.hpp>
+
+namespace {
+ inline double CALC_X(const carve::geom::plane<3> &p, double y, double z) { return -(p.d + p.N.y * y + p.N.z * z) / p.N.x; }
+ inline double CALC_Y(const carve::geom::plane<3> &p, double x, double z) { return -(p.d + p.N.x * x + p.N.z * z) / p.N.y; }
+ inline double CALC_Z(const carve::geom::plane<3> &p, double x, double y) { return -(p.d + p.N.x * x + p.N.y * y) / p.N.z; }
+
+ carve::geom::vector<2> _project_1(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.z, v.y);
+ }
+
+ carve::geom::vector<2> _project_2(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.x, v.z);
+ }
+
+ carve::geom::vector<2> _project_3(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.y, v.x);
+ }
+
+ carve::geom::vector<2> _project_4(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.y, v.z);
+ }
+
+ carve::geom::vector<2> _project_5(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.z, v.x);
+ }
+
+ carve::geom::vector<2> _project_6(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.x, v.y);
+ }
+
+ carve::geom::vector<3> _unproject_1(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(CALC_X(plane, p.y, p.x), p.y, p.x);
+ }
+
+ carve::geom::vector<3> _unproject_2(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.x, CALC_Y(plane, p.x, p.y), p.y);
+ }
+
+ carve::geom::vector<3> _unproject_3(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.y, p.x, CALC_Z(plane, p.y, p.x));
+ }
+
+ carve::geom::vector<3> _unproject_4(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(CALC_X(plane, p.x, p.y), p.x, p.y);
+ }
+
+ carve::geom::vector<3> _unproject_5(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.y, CALC_Y(plane, p.y, p.x), p.x);
+ }
+
+ carve::geom::vector<3> _unproject_6(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.x, p.y, CALC_Z(plane, p.x, p.y));
+ }
+
+ static carve::geom::vector<2> (*project_tab[2][3])(const carve::geom::vector<3> &) = {
+ { &_project_1, &_project_2, &_project_3 },
+ { &_project_4, &_project_5, &_project_6 }
+ };
+
+ static carve::geom::vector<3> (*unproject_tab[2][3])(const carve::geom::vector<2> &, const carve::geom3d::Plane &) = {
+ { &_unproject_1, &_unproject_2, &_unproject_3 },
+ { &_unproject_4, &_unproject_5, &_unproject_6 }
+ };
+
+}
+
+namespace carve {
+ namespace mesh {
+
+
+
+ template<unsigned ndim>
+ typename Face<ndim>::project_t Face<ndim>::getProjector(bool positive_facing, int axis) const {
+ return NULL;
+ }
+
+
+
+ template<>
+ Face<3>::project_t Face<3>::getProjector(bool positive_facing, int axis) const {
+ return project_tab[positive_facing ? 1 : 0][axis];
+ }
+
+
+
+ template<unsigned ndim>
+ typename Face<ndim>::unproject_t Face<ndim>::getUnprojector(bool positive_facing, int axis) const {
+ return NULL;
+ }
+
+
+
+ template<>
+ Face<3>::unproject_t Face<3>::getUnprojector(bool positive_facing, int axis) const {
+ return unproject_tab[positive_facing ? 1 : 0][axis];
+ }
+
+
+
+ template<unsigned ndim>
+ bool Face<ndim>::containsPoint(const vector_t &p) const {
+ if (!carve::math::ZERO(carve::geom::distance(plane, p))) return false;
+ // return pointInPolySimple(vertices, projector(), (this->*project)(p));
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ return carve::geom2d::pointInPoly(verts, project(p)).iclass != carve::POINT_OUT;
+ }
+
+
+
+ template<unsigned ndim>
+ bool Face<ndim>::containsPointInProjection(const vector_t &p) const {
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ return carve::geom2d::pointInPoly(verts, project(p)).iclass != carve::POINT_OUT;
+ }
+
+
+
+ template<unsigned ndim>
+ bool Face<ndim>::simpleLineSegmentIntersection(
+ const carve::geom::linesegment<ndim> &line,
+ vector_t &intersection) const {
+ if (!line.OK()) return false;
+
+ carve::mesh::MeshSet<3>::vertex_t::vector_t p;
+ carve::IntersectionClass intersects =
+ carve::geom3d::lineSegmentPlaneIntersection(plane, line, p);
+ if (intersects == carve::INTERSECT_NONE || intersects == carve::INTERSECT_BAD) {
+ return false;
+ }
+
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ if (carve::geom2d::pointInPolySimple(verts, project(p))) {
+ intersection = p;
+ return true;
+ }
+ return false;
+ }
+
+
+
+ template<unsigned ndim>
+ IntersectionClass Face<ndim>::lineSegmentIntersection(const carve::geom::linesegment<ndim> &line,
+ vector_t &intersection) const {
+ if (!line.OK()) return INTERSECT_NONE;
+
+
+ vector_t p;
+ IntersectionClass intersects = carve::geom3d::lineSegmentPlaneIntersection(plane, line, p);
+ if (intersects == INTERSECT_NONE || intersects == INTERSECT_BAD) {
+ return intersects;
+ }
+
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ carve::geom2d::PolyInclusionInfo pi = carve::geom2d::pointInPoly(verts, project(p));
+ switch (pi.iclass) {
+ case POINT_VERTEX:
+ intersection = p;
+ return INTERSECT_VERTEX;
+
+ case POINT_EDGE:
+ intersection = p;
+ return INTERSECT_EDGE;
+
+ case POINT_IN:
+ intersection = p;
+ return INTERSECT_FACE;
+
+ case POINT_OUT:
+ return INTERSECT_NONE;
+
+ default:
+ break;
+ }
+ return INTERSECT_NONE;
+ }
+
+
+
+ template<unsigned ndim>
+ Face<ndim> *Face<ndim>::closeLoop(typename Face<ndim>::edge_t *start) {
+ edge_t *e = start;
+ std::vector<edge_t *> loop_edges;
+ do {
+ CARVE_ASSERT(e->rev == NULL);
+ loop_edges.push_back(e);
+ e = e->perimNext();
+ } while (e != start);
+
+ const size_t N = loop_edges.size();
+ for (size_t i = 0; i < N; ++i) {
+ loop_edges[i]->rev = new edge_t(loop_edges[i]->v2(), NULL);
+ }
+
+ for (size_t i = 0; i < N; ++i) {
+ edge_t *e1 = loop_edges[i]->rev;
+ edge_t *e2 = loop_edges[(i+1)%N]->rev;
+ e1->prev = e2;
+ e2->next = e1;
+ }
+
+ Face *f = new Face(start->rev);
+
+ CARVE_ASSERT(f->n_edges == N);
+
+ return f;
+ }
+
+
+
+ namespace detail {
+
+
+
+ bool FaceStitcher::EdgeOrderData::Cmp::operator()(const EdgeOrderData &a, const EdgeOrderData &b) const {
+ int v = carve::geom3d::compareAngles(edge_dir, base_dir, a.face_dir, b.face_dir);
+ double da = carve::geom3d::antiClockwiseAngle(base_dir, a.face_dir, edge_dir);
+ double db = carve::geom3d::antiClockwiseAngle(base_dir, b.face_dir, edge_dir);
+ int v0 = v;
+ v = 0;
+ if (da < db) v = -1;
+ if (db < da) v = +1;
+ if (v0 != v) {
+ std::cerr << "v0= " << v0 << " v= " << v << " da= " << da << " db= " << db << " " << edge_dir << " " << base_dir << " " << a.face_dir << b.face_dir << std::endl;
+ }
+ if (v < 0) return true;
+ if (v == 0) {
+ if (a.is_reversed && !b.is_reversed) return true;
+ if (a.is_reversed == b.is_reversed) {
+ return a.group_id < b.group_id;
+ }
+ }
+ return false;
+ }
+
+
+
+ void FaceStitcher::matchSimpleEdges() {
+ // join faces that share an edge, where no other faces are incident.
+ for (edge_map_t::iterator i = edges.begin(); i != edges.end(); ++i) {
+ const vpair_t &ev = (*i).first;
+ edge_map_t::iterator j = edges.find(vpair_t(ev.second, ev.first));
+ if (j == edges.end()) {
+ for (edgelist_t::iterator k = (*i).second.begin(); k != (*i).second.end(); ++k) {
+ is_open[ (*k)->face->id] = true;
+ }
+ } else if ((*i).second.size() != 1 || (*j).second.size() != 1) {
+ std::swap(complex_edges[(*i).first], (*i).second);
+ } else {
+ // simple edge.
+ edge_t *a = (*i).second.front();
+ edge_t *b = (*j).second.front();
+ if (a < b) {
+ // every simple edge pair is encountered twice. only merge once.
+ a->rev = b;
+ b->rev = a;
+ face_groups.merge_sets(a->face->id, b->face->id);
+ }
+ }
+ }
+ }
+
+
+
+ size_t FaceStitcher::faceGroupID(const Face<3> *face) {
+ return face_groups.find_set_head(face->id);
+ }
+
+
+
+ size_t FaceStitcher::faceGroupID(const Edge<3> *edge) {
+ return face_groups.find_set_head(edge->face->id);
+ }
+
+
+
+ void FaceStitcher::orderForwardAndReverseEdges(std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev,
+ std::vector<std::vector<EdgeOrderData> > &result) {
+ const size_t Nfwd = efwd.size();
+ const size_t Nrev = erev.size();
+ const size_t N = efwd[0].size();
+
+ result.resize(N);
+
+ for (size_t i = 0; i < N; ++i) {
+ Edge<3> *base = efwd[0][i];
+
+ result[i].reserve(Nfwd + Nrev);
+ for (size_t j = 0; j < Nfwd; ++j) {
+ result[i].push_back(EdgeOrderData(efwd[j][i], j, false));
+ CARVE_ASSERT(efwd[0][i]->v1() == efwd[j][i]->v1());
+ CARVE_ASSERT(efwd[0][i]->v2() == efwd[j][i]->v2());
+ }
+ for (size_t j = 0; j < Nrev; ++j) {
+ result[i].push_back(EdgeOrderData(erev[j][i], j, true));
+ CARVE_ASSERT(erev[0][i]->v1() == erev[j][i]->v1());
+ CARVE_ASSERT(erev[0][i]->v2() == erev[j][i]->v2());
+ }
+
+ std::sort(result[i].begin(),
+ result[i].end(),
+ EdgeOrderData::Cmp(base->v2()->v - base->v1()->v, result[i][0].face_dir));
+ }
+ }
+
+
+
+ void FaceStitcher::edgeIncidentGroups(const vpair_t &e,
+ const edge_map_t &all_edges,
+ std::pair<std::set<size_t>, std::set<size_t> > &groups) {
+ groups.first.clear();
+ groups.second.clear();
+ edge_map_t::const_iterator i;
+
+ i = all_edges.find(e);
+ if (i != all_edges.end()) {
+ for (edgelist_t::const_iterator j = (*i).second.begin(); j != (*i).second.end(); ++j) {
+ groups.first.insert(faceGroupID(*j));
+ }
+ }
+
+ i = all_edges.find(vpair_t(e.second, e.first));
+ if (i != all_edges.end()) {
+ for (edgelist_t::const_iterator j = (*i).second.begin(); j != (*i).second.end(); ++j) {
+ groups.second.insert(faceGroupID(*j));
+ }
+ }
+ }
+
+
+
+ void FaceStitcher::buildEdgeGraph(const edge_map_t &all_edges) {
+ for (edge_map_t::const_iterator i = all_edges.begin();
+ i != all_edges.end();
+ ++i) {
+ edge_graph[(*i).first.first].insert((*i).first.second);
+ }
+ }
+
+
+
+ void FaceStitcher::extractPath(std::vector<const vertex_t *> &path) {
+ path.clear();
+
+ edge_graph_t::iterator iter = edge_graph.begin();
+
+
+ const vertex_t *init = (*iter).first;
+ const vertex_t *next = *(*iter).second.begin();
+ const vertex_t *prev = NULL;
+ const vertex_t *vert = init;
+
+ while ((*iter).second.size() == 2) {
+ prev = *std::find_if((*iter).second.begin(),
+ (*iter).second.end(),
+ std::bind2nd(std::not_equal_to<const vertex_t *>(), next));
+ next = vert;
+ vert = prev;
+ iter = edge_graph.find(vert);
+ CARVE_ASSERT(iter != edge_graph.end());
+ if (vert == init) break;
+ }
+ init = vert;
+
+ std::vector<const edge_t *> efwd;
+ std::vector<const edge_t *> erev;
+
+ edge_map_t::iterator edgeiter;
+ edgeiter = complex_edges.find(vpair_t(vert, next));
+ std::copy((*edgeiter).second.begin(), (*edgeiter).second.end(), std::back_inserter(efwd));
+
+ edgeiter = complex_edges.find(vpair_t(next, vert));
+ std::copy((*edgeiter).second.begin(), (*edgeiter).second.end(), std::back_inserter(erev));
+
+ path.push_back(vert);
+
+ prev = vert;
+ vert = next;
+ path.push_back(vert);
+ iter = edge_graph.find(vert);
+ CARVE_ASSERT(iter != edge_graph.end());
+
+ while (vert != init && (*iter).second.size() == 2) {
+ next = *std::find_if((*iter).second.begin(),
+ (*iter).second.end(),
+ std::bind2nd(std::not_equal_to<const vertex_t *>(), prev));
+
+ edgeiter = complex_edges.find(vpair_t(vert, next));
+ if ((*edgeiter).second.size() != efwd.size()) goto done;
+
+ for (size_t i = 0; i < efwd.size(); ++i) {
+ Edge<3> *e_next = efwd[i]->perimNext();
+ if (e_next->v2() != next) goto done;
+ efwd[i] = e_next;
+ }
+
+ edgeiter = complex_edges.find(vpair_t(next, vert));
+ if ((*edgeiter).second.size() != erev.size()) goto done;
+
+ for (size_t i = 0; i < erev.size(); ++i) {
+ Edge<3> *e_prev = erev[i]->perimPrev();
+ if (e_prev->v1() != next) goto done;
+ erev[i] = e_prev;
+ }
+
+ prev = vert;
+ vert = next;
+ path.push_back(vert);
+ iter = edge_graph.find(vert);
+ CARVE_ASSERT(iter != edge_graph.end());
+ }
+ done:;
+ }
+
+
+
+ void FaceStitcher::removePath(const std::vector<const vertex_t *> &path) {
+ for (size_t i = 1; i < path.size() - 1; ++i) {
+ edge_graph.erase(path[i]);
+ }
+
+ edge_graph[path[0]].erase(path[1]);
+ if (edge_graph[path[0]].size() == 0) {
+ edge_graph.erase(path[0]);
+ }
+
+ edge_graph[path[path.size()-1]].erase(path[path.size()-2]);
+ if (edge_graph[path[path.size()-1]].size() == 0) {
+ edge_graph.erase(path[path.size()-1]);
+ }
+ }
+
+
+
+ void FaceStitcher::reorder(std::vector<EdgeOrderData> &ordering,
+ size_t grp) {
+ if (!ordering[0].is_reversed && ordering[0].group_id == grp) return;
+ for (size_t i = 1; i < ordering.size(); ++i) {
+ if (!ordering[i].is_reversed && ordering[i].group_id == grp) {
+ std::vector<EdgeOrderData> temp;
+ temp.reserve(ordering.size());
+ std::copy(ordering.begin() + i, ordering.end(), std::back_inserter(temp));
+ std::copy(ordering.begin(), ordering.begin() + i, std::back_inserter(temp));
+ std::copy(temp.begin(), temp.end(), ordering.begin());
+ return;
+ }
+ }
+ }
+
+
+
+ struct lt_second {
+ template<typename pair_t>
+ bool operator()(const pair_t &a, const pair_t &b) const {
+ return a.second < b.second;
+ }
+ };
+
+
+
+ void FaceStitcher::fuseEdges(std::vector<Edge<3> *> &fwd,
+ std::vector<Edge<3> *> &rev) {
+ for (size_t i = 0; i < fwd.size(); ++i) {
+ fwd[i]->rev = rev[i];
+ rev[i]->rev = fwd[i];
+ face_groups.merge_sets(fwd[i]->face->id, rev[i]->face->id);
+ }
+ }
+
+
+
+ void FaceStitcher::joinGroups(std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev,
+ size_t fwd_grp,
+ size_t rev_grp) {
+ fuseEdges(efwd[fwd_grp], erev[rev_grp]);
+ }
+
+
+
+ void FaceStitcher::matchOrderedEdges(const std::vector<std::vector<EdgeOrderData> >::iterator begin,
+ const std::vector<std::vector<EdgeOrderData> >::iterator end,
+ std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev) {
+ typedef std::unordered_map<std::pair<size_t, size_t>, size_t> pair_counts_t;
+ for (;;) {
+ pair_counts_t pair_counts;
+
+ for (std::vector<std::vector<EdgeOrderData> >::iterator i = begin; i != end; ++i) {
+ std::vector<EdgeOrderData> &e = *i;
+ for (size_t j = 0; j < e.size(); ++j) {
+ if (!e[j].is_reversed && e[(j+1)%e.size()].is_reversed) {
+ pair_counts[std::make_pair(e[j].group_id,
+ e[(j+1)%e.size()].group_id)]++;
+ }
+ }
+ }
+
+ if (!pair_counts.size()) break;
+
+ std::vector<std::pair<size_t, std::pair<size_t, size_t> > > counts;
+ counts.reserve(pair_counts.size());
+ for (pair_counts_t::iterator iter = pair_counts.begin(); iter != pair_counts.end(); ++iter) {
+ counts.push_back(std::make_pair((*iter).second, (*iter).first));
+ }
+ std::make_heap(counts.begin(), counts.end());
+
+ std::set<size_t> rem_fwd, rem_rev;
+
+ while (counts.size()) {
+ std::pair<size_t, size_t> join = counts.front().second;
+ std::pop_heap(counts.begin(), counts.end());
+ counts.pop_back();
+ if (rem_fwd.find(join.first) != rem_fwd.end()) continue;
+ if (rem_rev.find(join.second) != rem_rev.end()) continue;
+
+ size_t g1 = join.first;
+ size_t g2 = join.second;
+
+ joinGroups(efwd, erev, g1, g2);
+
+ for (std::vector<std::vector<EdgeOrderData> >::iterator i = begin; i != end; ++i) {
+ (*i).erase(std::remove_if((*i).begin(), (*i).end(), EdgeOrderData::TestGroups(g1, g2)), (*i).end());
+ }
+
+ rem_fwd.insert(g1);
+ rem_rev.insert(g2);
+ }
+ }
+ }
+
+
+
+ void FaceStitcher::resolveOpenEdges() {
+ // Remove open regions of mesh. Doing this may make additional
+ // edges simple (for example, removing a fin from the edge of
+ // a cube), and may also expose more open mesh regions. In the
+ // latter case, the process must be repeated to deal with the
+ // newly uncovered regions.
+ std::unordered_set<size_t> open_groups;
+
+ for (size_t i = 0; i < is_open.size(); ++i) {
+ if (is_open[i]) open_groups.insert(face_groups.find_set_head(i));
+ }
+
+ while (!open_groups.empty()) {
+ std::list<vpair_t> edge_0, edge_1;
+
+ for (edge_map_t::iterator i = complex_edges.begin(); i != complex_edges.end(); ++i) {
+ bool was_modified = false;
+ for(edgelist_t::iterator j = (*i).second.begin(); j != (*i).second.end(); ) {
+ if (open_groups.find(faceGroupID(*j)) != open_groups.end()) {
+ j = (*i).second.erase(j);
+ was_modified = true;
+ } else {
+ ++j;
+ }
+ }
+ if (was_modified) {
+ if ((*i).second.empty()) {
+ edge_0.push_back((*i).first);
+ } else if ((*i).second.size() == 1) {
+ edge_1.push_back((*i).first);
+ }
+ }
+ }
+
+ for (std::list<vpair_t>::iterator i = edge_1.begin(); i != edge_1.end(); ++i) {
+ vpair_t e1 = *i;
+ edge_map_t::iterator e1i = complex_edges.find(e1);
+ if (e1i == complex_edges.end()) continue;
+ vpair_t e2 = vpair_t(e1.second, e1.first);
+ edge_map_t::iterator e2i = complex_edges.find(e2);
+ CARVE_ASSERT(e2i != complex_edges.end()); // each complex edge should have a mate.
+
+ if ((*e2i).second.size() == 1) {
+ // merge newly simple edges, delete both from complex_edges.
+ edge_t *a = (*e1i).second.front();
+ edge_t *b = (*e2i).second.front();
+ a->rev = b;
+ b->rev = a;
+ face_groups.merge_sets(a->face->id, b->face->id);
+ complex_edges.erase(e1i);
+ complex_edges.erase(e2i);
+ }
+ }
+
+ open_groups.clear();
+
+ for (std::list<vpair_t>::iterator i = edge_0.begin(); i != edge_0.end(); ++i) {
+ vpair_t e1 = *i;
+ edge_map_t::iterator e1i = complex_edges.find(e1);
+ vpair_t e2 = vpair_t(e1.second, e1.first);
+ edge_map_t::iterator e2i = complex_edges.find(e2);
+ if (e2i == complex_edges.end()) {
+ // This could occur, for example, when two faces share
+ // an edge in the same direction, but are both not
+ // touching anything else. Both get removed by the open
+ // group removal code, leaving an edge map with zero
+ // edges. The edge in the opposite direction does not
+ // exist, because there's no face that adjoins either of
+ // the two open faces.
+ continue;
+ }
+
+ for (edgelist_t::iterator j = (*e2i).second.begin(); j != (*e2i).second.end(); ++j) {
+ open_groups.insert(faceGroupID(*j));
+ }
+ complex_edges.erase(e1i);
+ complex_edges.erase(e2i);
+ }
+ }
+ }
+
+
+
+ void FaceStitcher::extractConnectedEdges(std::vector<const vertex_t *>::iterator begin,
+ std::vector<const vertex_t *>::iterator end,
+ std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev) {
+ const size_t N = std::distance(begin, end) - 1;
+
+ std::vector<const vertex_t *>::iterator e1, e2;
+ e1 = e2 = begin; ++e2;
+ vpair_t start_f = vpair_t(*e1, *e2);
+ vpair_t start_r = vpair_t(*e2, *e1);
+
+ const size_t Nfwd = complex_edges[start_f].size();
+ const size_t Nrev = complex_edges[start_r].size();
+
+ size_t j;
+ edgelist_t::iterator ji;
+
+ efwd.clear(); efwd.resize(Nfwd);
+ erev.clear(); erev.resize(Nrev);
+
+ for (j = 0, ji = complex_edges[start_f].begin();
+ ji != complex_edges[start_f].end();
+ ++j, ++ji) {
+ efwd[j].reserve(N);
+ efwd[j].push_back(*ji);
+ }
+
+ for (j = 0, ji = complex_edges[start_r].begin();
+ ji != complex_edges[start_r].end();
+ ++j, ++ji) {
+ erev[j].reserve(N);
+ erev[j].push_back(*ji);
+ }
+
+ std::vector<Edge<3> *> temp_f, temp_r;
+ temp_f.resize(Nfwd);
+ temp_r.resize(Nrev);
+
+ for (j = 1; j < N; ++j) {
+ ++e1; ++e2;
+ vpair_t ef = vpair_t(*e1, *e2);
+ vpair_t er = vpair_t(*e2, *e1);
+
+ if (complex_edges[ef].size() != Nfwd || complex_edges[ef].size() != Nrev) break;
+
+ for (size_t k = 0; k < Nfwd; ++k) {
+ Edge<3> *e_next = efwd[k].back()->perimNext();
+ CARVE_ASSERT(e_next == NULL || e_next->rev == NULL);
+ if (e_next == NULL || e_next->v2() != *e2) goto done;
+ CARVE_ASSERT(e_next->v1() == *e1);
+ CARVE_ASSERT(std::find(complex_edges[ef].begin(), complex_edges[ef].end(), e_next) != complex_edges[ef].end());
+ temp_f[k] = e_next;
+ }
+
+ for (size_t k = 0; k < Nrev; ++k) {
+ Edge<3> *e_next = erev[k].back()->perimPrev();
+ if (e_next == NULL || e_next->v1() != *e2) goto done;
+ CARVE_ASSERT(e_next->v2() == *e1);
+ CARVE_ASSERT(std::find(complex_edges[er].begin(), complex_edges[er].end(), e_next) != complex_edges[er].end());
+ temp_r[k] = e_next;
+ }
+
+ for (size_t k = 0; k < Nfwd; ++k) {
+ efwd[k].push_back(temp_f[k]);
+ }
+
+ for (size_t k = 0; k < Nrev; ++k) {
+ erev[k].push_back(temp_r[k]);
+ }
+ }
+ done:;
+ }
+
+
+
+ void FaceStitcher::construct() {
+ matchSimpleEdges();
+ if (!complex_edges.size()) return;
+
+ resolveOpenEdges();
+ if (!complex_edges.size()) return;
+
+ buildEdgeGraph(complex_edges);
+
+ std::list<std::vector<const vertex_t *> > paths;
+
+ while (edge_graph.size()) {
+ paths.push_back(std::vector<const vertex_t *>());
+ extractPath(paths.back());
+ removePath(paths.back());
+ };
+
+
+ for (std::list<std::vector<const vertex_t *> >::iterator path = paths.begin(); path != paths.end(); ++path) {
+ for (size_t i = 0; i < (*path).size() - 1;) {
+ std::vector<std::vector<Edge<3> *> > efwd, erev;
+
+ extractConnectedEdges((*path).begin() + i, (*path).end(), efwd, erev);
+
+ std::vector<std::vector<EdgeOrderData> > orderings;
+ orderForwardAndReverseEdges(efwd, erev, orderings);
+
+ matchOrderedEdges(orderings.begin(), orderings.end(), efwd, erev);
+ i += efwd[0].size();
+ }
+ }
+ }
+ }
+ }
+
+
+
+ // construct a MeshSet from a Polyhedron, maintaining on the
+ // connectivity information in the Polyhedron.
+ mesh::MeshSet<3> *meshFromPolyhedron(const poly::Polyhedron *poly, int manifold_id) {
+ typedef mesh::Vertex<3> vertex_t;
+ typedef mesh::Vertex<3>::vector_t vector_t;
+ typedef mesh::Edge<3> edge_t;
+ typedef mesh::Face<3> face_t;
+ typedef mesh::Mesh<3> mesh_t;
+ typedef mesh::MeshSet<3> meshset_t;
+
+ std::vector<vertex_t> vertex_storage;
+ vertex_storage.reserve(poly->vertices.size());
+ for (size_t i = 0; i < poly->vertices.size(); ++i) {
+ vertex_storage.push_back(vertex_t(poly->vertices[i].v));
+ }
+
+ std::vector<std::vector<face_t *> > faces;
+ faces.resize(poly->manifold_is_closed.size());
+
+ std::unordered_map<std::pair<size_t, size_t>, std::list<edge_t *> > vertex_to_edge;
+
+ std::vector<vertex_t *> vert_ptrs;
+ for (size_t i = 0; i < poly->faces.size(); ++i) {
+ const poly::Polyhedron::face_t &src = poly->faces[i];
+ if (manifold_id != -1 && src.manifold_id != manifold_id) continue;
+ vert_ptrs.clear();
+ vert_ptrs.reserve(src.nVertices());
+ for (size_t j = 0; j < src.nVertices(); ++j) {
+ size_t vi = poly->vertexToIndex_fast(src.vertex(j));
+ vert_ptrs.push_back(&vertex_storage[vi]);
+ }
+ face_t *face = new face_t(vert_ptrs.begin(), vert_ptrs.end());
+ face->id = src.manifold_id;
+ faces[src.manifold_id].push_back(face);
+
+ edge_t *edge = face->edge;
+ do {
+ vertex_to_edge[std::make_pair(size_t(edge->v1() - &vertex_storage[0]),
+ size_t(edge->v2() - &vertex_storage[0]))].push_back(edge);
+ edge = edge->next;
+ } while (edge != face->edge);
+ }
+
+ // copy connectivity from Polyhedron.
+ for (size_t i = 0; i < poly->edges.size(); ++i) {
+ const poly::Polyhedron::edge_t &src = poly->edges[i];
+ size_t v1i = poly->vertexToIndex_fast(src.v1);
+ size_t v2i = poly->vertexToIndex_fast(src.v2);
+
+ std::list<edge_t *> &efwd = vertex_to_edge[std::make_pair(v1i, v2i)];
+ std::list<edge_t *> &erev = vertex_to_edge[std::make_pair(v2i, v1i)];
+
+ const std::vector<const poly::Polyhedron::face_t *> &facepairs = poly->connectivity.edge_to_face[i];
+ for (size_t j = 0; j < facepairs.size(); j += 2) {
+ const poly::Polyhedron::face_t *fa, *fb;
+ fa = facepairs[j];
+ fb = facepairs[j+1];
+ if (!fa || !fb) continue;
+ CARVE_ASSERT(fa->manifold_id == fb->manifold_id);
+ if (manifold_id != -1 && fa->manifold_id != manifold_id) continue;
+
+ std::list<edge_t *>::iterator efwdi, erevi;
+ for (efwdi = efwd.begin(); efwdi != efwd.end() && (*efwdi)->face->id != (size_t)fa->manifold_id; ++efwdi);
+ for (erevi = erev.begin(); erevi != erev.end() && (*erevi)->face->id != (size_t)fa->manifold_id; ++erevi);
+ CARVE_ASSERT(efwdi != efwd.end() && erevi != erev.end());
+
+ (*efwdi)->rev = (*erevi);
+ (*erevi)->rev = (*efwdi);
+ }
+ }
+
+ std::vector<mesh_t *> meshes;
+ meshes.reserve(faces.size());
+ for (size_t i = 0; i < faces.size(); ++i) {
+ if (faces[i].size()) {
+ meshes.push_back(new mesh_t(faces[i]));
+ }
+ }
+
+ return new meshset_t(vertex_storage, meshes);
+ }
+
+
+
+ static void copyMeshFaces(const mesh::Mesh<3> *mesh,
+ size_t manifold_id,
+ const mesh::Vertex<3> *Vbase,
+ poly::Polyhedron *poly,
+ std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > &edges,
+ std::unordered_map<const mesh::Face<3> *, size_t> &face_map) {
+ std::vector<const poly::Polyhedron::vertex_t *> vert_ptr;
+ for (size_t f = 0; f < mesh->faces.size(); ++f) {
+ mesh::Face<3> *src = mesh->faces[f];
+ vert_ptr.clear();
+ vert_ptr.reserve(src->nVertices());
+ mesh::Edge<3> *e = src->edge;
+ do {
+ vert_ptr.push_back(&poly->vertices[e->vert - Vbase]);
+ edges[std::make_pair(e->v1() - Vbase, e->v2() - Vbase)].push_back(e);
+ e = e->next;
+ } while (e != src->edge);
+
+ face_map[src] = poly->faces.size();;
+
+ poly->faces.push_back(poly::Polyhedron::face_t(vert_ptr));
+ poly->faces.back().manifold_id = manifold_id;
+ poly->faces.back().owner = poly;
+ }
+ }
+
+
+
+ // construct a Polyhedron from a MeshSet
+ poly::Polyhedron *polyhedronFromMesh(const mesh::MeshSet<3> *mesh, int manifold_id) {
+ typedef poly::Polyhedron poly_t;
+ typedef poly::Polyhedron::vertex_t vertex_t;
+ typedef poly::Polyhedron::edge_t edge_t;
+ typedef poly::Polyhedron::face_t face_t;
+
+ poly::Polyhedron *poly = new poly::Polyhedron();
+ const mesh::Vertex<3> *Vbase = &mesh->vertex_storage[0];
+
+ poly->vertices.reserve(mesh->vertex_storage.size());
+ for (size_t i = 0; i < mesh->vertex_storage.size(); ++i) {
+ poly->vertices.push_back(vertex_t(mesh->vertex_storage[i].v));
+ poly->vertices.back().owner = poly;
+ }
+
+ size_t n_faces = 0;
+ if (manifold_id == -1) {
+ poly->manifold_is_closed.resize(mesh->meshes.size());
+ poly->manifold_is_negative.resize(mesh->meshes.size());
+ for (size_t m = 0; m < mesh->meshes.size(); ++m) {
+ n_faces += mesh->meshes[m]->faces.size();
+ poly->manifold_is_closed[m] = mesh->meshes[m]->isClosed();
+ poly->manifold_is_negative[m] = mesh->meshes[m]->isNegative();
+ }
+ } else {
+ poly->manifold_is_closed.resize(1);
+ poly->manifold_is_negative.resize(1);
+ n_faces = mesh->meshes[manifold_id]->faces.size();
+ poly->manifold_is_closed[manifold_id] = mesh->meshes[manifold_id]->isClosed();
+ poly->manifold_is_negative[manifold_id] = mesh->meshes[manifold_id]->isNegative();
+ }
+
+ std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > edges;
+ std::unordered_map<const mesh::Face<3> *, size_t> face_map;
+ poly->faces.reserve(n_faces);
+
+ if (manifold_id == -1) {
+ for (size_t m = 0; m < mesh->meshes.size(); ++m) {
+ copyMeshFaces(mesh->meshes[m], m, Vbase, poly, edges, face_map);
+ }
+ } else {
+ copyMeshFaces(mesh->meshes[manifold_id], 0, Vbase, poly, edges, face_map);
+ }
+
+ size_t n_edges = 0;
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edges.begin(); i != edges.end(); ++i) {
+ if ((*i).first.first < (*i).first.second || edges.find(std::make_pair((*i).first.second, (*i).first.first)) == edges.end()) {
+ n_edges++;
+ }
+ }
+
+ poly->edges.reserve(n_edges);
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edges.begin(); i != edges.end(); ++i) {
+ if ((*i).first.first < (*i).first.second ||
+ edges.find(std::make_pair((*i).first.second, (*i).first.first)) == edges.end()) {
+ poly->edges.push_back(edge_t(&poly->vertices[(*i).first.first],
+ &poly->vertices[(*i).first.second],
+ poly));
+ }
+ }
+
+ poly->initVertexConnectivity();
+
+ // build edge entries for face.
+ for (size_t f = 0; f < poly->faces.size(); ++f) {
+ face_t &face = poly->faces[f];
+ size_t N = face.nVertices();
+ for (size_t v = 0; v < N; ++v) {
+ size_t v1i = poly->vertexToIndex_fast(face.vertex(v));
+ size_t v2i = poly->vertexToIndex_fast(face.vertex((v+1)%N));
+ std::vector<const edge_t *> found_edge;
+ std::set_intersection(poly->connectivity.vertex_to_edge[v1i].begin(), poly->connectivity.vertex_to_edge[v1i].end(),
+ poly->connectivity.vertex_to_edge[v2i].begin(), poly->connectivity.vertex_to_edge[v2i].end(),
+ std::back_inserter(found_edge));
+ CARVE_ASSERT(found_edge.size() == 1);
+ face.edge(v) = found_edge[0];
+ }
+ }
+
+ poly->connectivity.edge_to_face.resize(poly->edges.size());
+
+ for (size_t i = 0; i < poly->edges.size(); ++i) {
+ size_t v1i = poly->vertexToIndex_fast(poly->edges[i].v1);
+ size_t v2i = poly->vertexToIndex_fast(poly->edges[i].v2);
+ std::list<mesh::Edge<3> *> &efwd = edges[std::make_pair(v1i, v2i)];
+ std::list<mesh::Edge<3> *> &erev = edges[std::make_pair(v1i, v2i)];
+
+ for (std::list<mesh::Edge<3> *>::iterator j = efwd.begin(); j != efwd.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ poly->connectivity.edge_to_face[i].push_back(&poly->faces[face_map[edge->face]]);
+ if (edge->rev == NULL) {
+ poly->connectivity.edge_to_face[i].push_back(NULL);
+ } else {
+ poly->connectivity.edge_to_face[i].push_back(&poly->faces[face_map[edge->rev->face]]);
+ }
+ }
+ }
+ for (std::list<mesh::Edge<3> *>::iterator j = erev.begin(); j != erev.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ if (edge->rev == NULL) {
+ poly->connectivity.edge_to_face[i].push_back(NULL);
+ poly->connectivity.edge_to_face[i].push_back(&poly->faces[face_map[edge->face]]);
+ }
+ }
+ }
+
+ }
+
+ poly->initSpatialIndex();
+
+ // XXX: at this point, manifold_is_negative is not set up. This
+ // info should be computed/stored in Mesh instances.
+
+ return poly;
+ }
+
+
+
+}
+
+
+
+// explicit instantiation for 2D case.
+// XXX: do not compile because of a missing definition for fitPlane in the 2d case.
+
+// template class carve::mesh::Vertex<2>;
+// template class carve::mesh::Edge<2>;
+// template class carve::mesh::Face<2>;
+// template class carve::mesh::Mesh<2>;
+// template class carve::mesh::MeshSet<2>;
+
+// explicit instantiation for 3D case.
+template class carve::mesh::Vertex<3>;
+template class carve::mesh::Edge<3>;
+template class carve::mesh::Face<3>;
+template class carve::mesh::Mesh<3>;
+template class carve::mesh::MeshSet<3>;
+
+
+
+carve::PointClass carve::mesh::classifyPoint(
+ const carve::mesh::MeshSet<3> *meshset,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *face_rtree,
+ const carve::geom::vector<3> &v,
+ bool even_odd,
+ const carve::mesh::Mesh<3> *mesh,
+ const carve::mesh::Face<3> **hit_face) {
+
+ if (hit_face) *hit_face = NULL;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{containsVertex " << v << "}" << std::endl;
+#endif
+
+ if (!face_rtree->bbox.containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(aabb short circuit)}" << std::endl;
+#endif
+ // XXX: if the top level manifolds are negative, this should be POINT_IN.
+ // for the moment, this only works for a single manifold.
+ if (meshset->meshes.size() == 1 && meshset->meshes[0]->isNegative()) {
+ return POINT_IN;
+ }
+ return POINT_OUT;
+ }
+
+ std::vector<carve::mesh::Face<3> *> near_faces;
+ face_rtree->search(v, std::back_inserter(near_faces));
+
+ for (size_t i = 0; i < near_faces.size(); i++) {
+ if (mesh != NULL && mesh != near_faces[i]->mesh) continue;
+
+ // XXX: Do allow the tested vertex to be ON an open
+ // manifold. This was here originally because of the
+ // possibility of an open manifold contained within a closed
+ // manifold.
+
+ // if (!near_faces[i]->mesh->isClosed()) continue;
+
+ if (near_faces[i]->containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:ON(hits face " << near_faces[i] << ")}" << std::endl;
+#endif
+ if (hit_face) *hit_face = near_faces[i];
+ return POINT_ON;
+ }
+ }
+
+ double ray_len = face_rtree->bbox.extent.length() * 2;
+
+
+ std::vector<std::pair<const carve::mesh::Face<3> *, carve::geom::vector<3> > > manifold_intersections;
+
+ for (;;) {
+ double a1 = random() / double(RAND_MAX) * M_TWOPI;
+ double a2 = random() / double(RAND_MAX) * M_TWOPI;
+
+ carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2));
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{testing ray: " << ray_dir << "}" << std::endl;
+#endif
+
+ carve::geom::vector<3> v2 = v + ray_dir * ray_len;
+
+ bool failed = false;
+ carve::geom::linesegment<3> line(v, v2);
+ carve::geom::vector<3> intersection;
+
+ near_faces.clear();
+ manifold_intersections.clear();
+ face_rtree->search(line, std::back_inserter(near_faces));
+
+ for (unsigned i = 0; !failed && i < near_faces.size(); i++) {
+ if (mesh != NULL && mesh != near_faces[i]->mesh) continue;
+
+ if (!near_faces[i]->mesh->isClosed()) continue;
+
+ switch (near_faces[i]->lineSegmentIntersection(line, intersection)) {
+ case INTERSECT_FACE: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersects face: " << near_faces[i]
+ << " dp: " << dot(ray_dir, near_faces[i]->plane.N) << "}" << std::endl;
+#endif
+
+ if (!even_odd && fabs(dot(ray_dir, near_faces[i]->plane.N)) < EPSILON) {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(small dot product)}" << std::endl;
+#endif
+
+ failed = true;
+ break;
+ }
+ manifold_intersections.push_back(std::make_pair(near_faces[i], intersection));
+ break;
+ }
+ case INTERSECT_NONE: {
+ break;
+ }
+ default: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(degenerate intersection)}" << std::endl;
+#endif
+ failed = true;
+ break;
+ }
+ }
+ }
+
+ if (!failed) {
+ if (even_odd) {
+ return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT;
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersections ok [count:"
+ << manifold_intersections.size()
+ << "], sorting}"
+ << std::endl;
+#endif
+
+ carve::geom3d::sortInDirectionOfRay(ray_dir,
+ manifold_intersections.begin(),
+ manifold_intersections.end(),
+ carve::geom3d::vec_adapt_pair_second());
+
+ std::map<const carve::mesh::Mesh<3> *, int> crossings;
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const carve::mesh::Face<3> *f = manifold_intersections[i].first;
+ if (dot(ray_dir, f->plane.N) < 0.0) {
+ crossings[f->mesh]++;
+ } else {
+ crossings[f->mesh]--;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ for (std::map<const carve::mesh::Mesh<3> *, int>::const_iterator i = crossings.begin(); i != crossings.end(); ++i) {
+ std::cerr << "{mesh " << (*i).first << " crossing count: " << (*i).second << "}" << std::endl;
+ }
+#endif
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const carve::mesh::Face<3> *f = manifold_intersections[i].first;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersection at "
+ << manifold_intersections[i].second
+ << " mesh: "
+ << f->mesh
+ << " count: "
+ << crossings[f->mesh]
+ << "}"
+ << std::endl;
+#endif
+
+ if (crossings[f->mesh] < 0) {
+ // inside this manifold.
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:IN}" << std::endl;
+#endif
+
+ return POINT_IN;
+ } else if (crossings[f->mesh] > 0) {
+ // outside this manifold, but it's an infinite manifold. (for instance, an inverted cube)
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(default)}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+}
+
+
+