Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/lib/triangulator.cpp')
-rw-r--r--extern/carve/lib/triangulator.cpp1200
1 files changed, 0 insertions, 1200 deletions
diff --git a/extern/carve/lib/triangulator.cpp b/extern/carve/lib/triangulator.cpp
deleted file mode 100644
index a48a9ccfa45..00000000000
--- a/extern/carve/lib/triangulator.cpp
+++ /dev/null
@@ -1,1200 +0,0 @@
-// Begin License:
-// Copyright (C) 2006-2014 Tobias Sargeant (tobias.sargeant@gmail.com).
-// All rights reserved.
-//
-// This file is part of the Carve CSG Library (http://carve-csg.com/)
-//
-// This file may be used under the terms of either the GNU General
-// Public License version 2 or 3 (at your option) as published by the
-// Free Software Foundation and appearing in the files LICENSE.GPL2
-// and LICENSE.GPL3 included in the packaging of this file.
-//
-// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
-// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE.
-// End:
-
-
-#if defined(HAVE_CONFIG_H)
-# include <carve_config.h>
-#endif
-
-#include <carve/csg.hpp>
-#include <carve/triangulator.hpp>
-
-#include <fstream>
-#include <sstream>
-
-#include <algorithm>
-
-namespace {
- // private code related to hole patching.
-
- class order_h_loops_2d {
- order_h_loops_2d &operator=(const order_h_loops_2d &);
-
- const std::vector<std::vector<carve::geom2d::P2> > &poly;
- int axis;
- public:
-
- order_h_loops_2d(const std::vector<std::vector<carve::geom2d::P2> > &_poly, int _axis) :
- poly(_poly), axis(_axis) {
- }
-
- bool operator()(const std::pair<size_t, size_t> &a,
- const std::pair<size_t, size_t> &b) const {
- return carve::triangulate::detail::axisOrdering(poly[a.first][a.second], poly[b.first][b.second], axis);
- }
- };
-
- class heap_ordering_2d {
- heap_ordering_2d &operator=(const heap_ordering_2d &);
-
- const std::vector<std::vector<carve::geom2d::P2> > &poly;
- const std::vector<std::pair<size_t, size_t> > &loop;
- const carve::geom2d::P2 p;
- int axis;
-
- public:
-
- heap_ordering_2d(const std::vector<std::vector<carve::geom2d::P2> > &_poly,
- const std::vector<std::pair<size_t, size_t> > &_loop,
- const carve::geom2d::P2 _p,
- int _axis) : poly(_poly), loop(_loop), p(_p), axis(_axis) {
- }
-
- bool operator()(size_t a, size_t b) const {
- double da = carve::geom::distance2(p, poly[loop[a].first][loop[a].second]);
- double db = carve::geom::distance2(p, poly[loop[b].first][loop[b].second]);
- if (da > db) return true;
- if (da < db) return false;
- return carve::triangulate::detail::axisOrdering(poly[loop[a].first][loop[a].second], poly[loop[b].first][loop[b].second], axis);
- }
- };
-
- static inline void patchHoleIntoPolygon_2d(std::vector<std::pair<size_t, size_t> > &f_loop,
- size_t f_loop_attach,
- size_t h_loop,
- size_t h_loop_attach,
- size_t h_loop_size) {
- f_loop.insert(f_loop.begin() + f_loop_attach + 1, h_loop_size + 2, std::make_pair(h_loop, 0));
- size_t f = f_loop_attach + 1;
-
- for (size_t h = h_loop_attach; h != h_loop_size; ++h) {
- f_loop[f++].second = h;
- }
-
- for (size_t h = 0; h <= h_loop_attach; ++h) {
- f_loop[f++].second = h;
- }
-
- f_loop[f] = f_loop[f_loop_attach];
- }
-
- static inline const carve::geom2d::P2 &pvert(const std::vector<std::vector<carve::geom2d::P2> > &poly, const std::pair<size_t, size_t> &idx) {
- return poly[idx.first][idx.second];
- }
-}
-
-
-namespace {
- // private code related to triangulation.
-
- using carve::triangulate::detail::vertex_info;
-
- struct vertex_info_ordering {
- bool operator()(const vertex_info *a, const vertex_info *b) const {
- return a->score < b->score;
- }
- };
-
- struct vertex_info_l2norm_inc_ordering {
- const vertex_info *v;
- vertex_info_l2norm_inc_ordering(const vertex_info *_v) : v(_v) {
- }
- bool operator()(const vertex_info *a, const vertex_info *b) const {
- return carve::geom::distance2(v->p, a->p) > carve::geom::distance2(v->p, b->p);
- }
- };
-
- class EarQueue {
- std::vector<vertex_info *> queue;
-
- void checkheap() {
-#if defined(HAVE_IS_HEAP)
- CARVE_ASSERT(std::__is_heap(queue.begin(), queue.end(), vertex_info_ordering()));
-#endif
- }
-
- public:
- EarQueue() {
- }
-
- size_t size() const {
- return queue.size();
- }
-
- void push(vertex_info *v) {
-#if defined(CARVE_DEBUG)
- checkheap();
-#endif
- queue.push_back(v);
- std::push_heap(queue.begin(), queue.end(), vertex_info_ordering());
- }
-
- vertex_info *pop() {
-#if defined(CARVE_DEBUG)
- checkheap();
-#endif
- std::pop_heap(queue.begin(), queue.end(), vertex_info_ordering());
- vertex_info *v = queue.back();
- queue.pop_back();
- return v;
- }
-
- void remove(vertex_info *v) {
-#if defined(CARVE_DEBUG)
- checkheap();
-#endif
- CARVE_ASSERT(std::find(queue.begin(), queue.end(), v) != queue.end());
- double score = v->score;
- if (v != queue[0]) {
- v->score = queue[0]->score + 1;
- std::make_heap(queue.begin(), queue.end(), vertex_info_ordering());
- }
- CARVE_ASSERT(v == queue[0]);
- std::pop_heap(queue.begin(), queue.end(), vertex_info_ordering());
- CARVE_ASSERT(queue.back() == v);
- queue.pop_back();
- v->score = score;
- }
-
- void changeScore(vertex_info *v, double score) {
-#if defined(CARVE_DEBUG)
- checkheap();
-#endif
- CARVE_ASSERT(std::find(queue.begin(), queue.end(), v) != queue.end());
- if (v->score != score) {
- v->score = score;
- std::make_heap(queue.begin(), queue.end(), vertex_info_ordering());
- }
- }
-
- // 39% of execution time
- void updateVertex(vertex_info *v) {
- double spre = v->score;
- bool qpre = v->isCandidate();
- v->recompute();
- bool qpost = v->isCandidate();
- double spost = v->score;
-
- v->score = spre;
-
- if (qpre) {
- if (qpost) {
- if (v->score != spre) {
- changeScore(v, spost);
- }
- } else {
- remove(v);
- }
- } else {
- if (qpost) {
- push(v);
- }
- }
- }
- };
-
-
-
- int windingNumber(vertex_info *begin, const carve::geom2d::P2 &point) {
- int wn = 0;
-
- vertex_info *v = begin;
- do {
- if (v->p.y <= point.y) {
- if (v->next->p.y > point.y && carve::geom2d::orient2d(v->p, v->next->p, point) > 0.0) {
- ++wn;
- }
- } else {
- if (v->next->p.y <= point.y && carve::geom2d::orient2d(v->p, v->next->p, point) < 0.0) {
- --wn;
- }
- }
- v = v->next;
- } while (v != begin);
-
- return wn;
- }
-
-
-
- bool internalToAngle(const vertex_info *a,
- const vertex_info *b,
- const vertex_info *c,
- const carve::geom2d::P2 &p) {
- return carve::geom2d::internalToAngle(a->p, b->p, c->p, p);
- }
-
-
-
- bool findDiagonal(vertex_info *begin, vertex_info *&v1, vertex_info *&v2) {
- vertex_info *t;
- std::vector<vertex_info *> heap;
-
- v1 = begin;
- do {
- heap.clear();
-
- for (v2 = v1->next->next; v2 != v1->prev; v2 = v2->next) {
- if (!internalToAngle(v1->next, v1, v1->prev, v2->p) ||
- !internalToAngle(v2->next, v2, v2->prev, v1->p)) continue;
-
- heap.push_back(v2);
- std::push_heap(heap.begin(), heap.end(), vertex_info_l2norm_inc_ordering(v1));
- }
-
- while (heap.size()) {
- std::pop_heap(heap.begin(), heap.end(), vertex_info_l2norm_inc_ordering(v1));
- v2 = heap.back(); heap.pop_back();
-
-#if defined(CARVE_DEBUG)
- std::cerr << "testing: " << v1 << " - " << v2 << std::endl;
- std::cerr << " length = " << (v2->p - v1->p).length() << std::endl;
- std::cerr << " pos: " << v1->p << " - " << v2->p << std::endl;
-#endif
- // test whether v1-v2 is a valid diagonal.
- double v_min_x = std::min(v1->p.x, v2->p.x);
- double v_max_x = std::max(v1->p.x, v2->p.x);
-
- bool intersected = false;
-
- for (t = v1->next; !intersected && t != v1->prev; t = t->next) {
- vertex_info *u = t->next;
- if (t == v2 || u == v2) continue;
-
- double l1 = carve::geom2d::orient2d(v1->p, v2->p, t->p);
- double l2 = carve::geom2d::orient2d(v1->p, v2->p, u->p);
-
- if ((l1 > 0.0 && l2 > 0.0) || (l1 < 0.0 && l2 < 0.0)) {
- // both on the same side; no intersection
- continue;
- }
-
- double dx13 = v1->p.x - t->p.x;
- double dy13 = v1->p.y - t->p.y;
- double dx43 = u->p.x - t->p.x;
- double dy43 = u->p.y - t->p.y;
- double dx21 = v2->p.x - v1->p.x;
- double dy21 = v2->p.y - v1->p.y;
- double ua_n = dx43 * dy13 - dy43 * dx13;
- double ub_n = dx21 * dy13 - dy21 * dx13;
- double u_d = dy43 * dx21 - dx43 * dy21;
-
- if (carve::math::ZERO(u_d)) {
- // parallel
- if (carve::math::ZERO(ua_n)) {
- // colinear
- if (std::max(t->p.x, u->p.x) >= v_min_x && std::min(t->p.x, u->p.x) <= v_max_x) {
- // colinear and intersecting
- intersected = true;
- }
- }
- } else {
- // not parallel
- double ua = ua_n / u_d;
- double ub = ub_n / u_d;
-
- if (0.0 <= ua && ua <= 1.0 && 0.0 <= ub && ub <= 1.0) {
- intersected = true;
- }
- }
-#if defined(CARVE_DEBUG)
- if (intersected) {
- std::cerr << " failed on edge: " << t << " - " << u << std::endl;
- std::cerr << " pos: " << t->p << " - " << u->p << std::endl;
- }
-#endif
- }
-
- if (!intersected) {
- // test whether midpoint winding == 1
-
- carve::geom2d::P2 mid = (v1->p + v2->p) / 2;
- if (windingNumber(begin, mid) == 1) {
- // this diagonal is ok
- return true;
- }
- }
- }
-
- // couldn't find a diagonal from v1 that was ok.
- v1 = v1->next;
- } while (v1 != begin);
- return false;
- }
-
-
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- void dumpPoly(const std::vector<carve::geom2d::P2> &points,
- const std::vector<carve::triangulate::tri_idx> &result) {
- static int step = 0;
- std::ostringstream filename;
- filename << "poly_" << step++ << ".svg";
- std::cerr << "dumping to " << filename.str() << std::endl;
- std::ofstream out(filename.str().c_str());
-
- double minx = points[0].x, maxx = points[0].x;
- double miny = points[0].y, maxy = points[0].y;
-
- for (size_t i = 1; i < points.size(); ++i) {
- minx = std::min(points[i].x, minx); maxx = std::max(points[i].x, maxx);
- miny = std::min(points[i].y, miny); maxy = std::max(points[i].y, maxy);
- }
- double scale = 100 / std::max(maxx-minx, maxy-miny);
-
- maxx *= scale; minx *= scale;
- maxy *= scale; miny *= scale;
-
- double width = maxx - minx + 10;
- double height = maxy - miny + 10;
-
- out << "\
-<?xml version=\"1.0\"?>\n\
-<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n\
-<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" width=\"" << width << "\" height=\"" << height << "\">\n";
-
- out << "<polygon fill=\"rgb(0,0,0)\" stroke=\"blue\" stroke-width=\"0.1\" points=\"";
- for (size_t i = 0; i < points.size(); ++i) {
- if (i) out << ' ';
- double x, y;
- x = scale * (points[i].x) - minx + 5;
- y = scale * (points[i].y) - miny + 5;
- out << x << ',' << y;
- }
- out << "\" />" << std::endl;
-
- for (size_t i = 0; i < result.size(); ++i) {
- out << "<polygon fill=\"rgb(255,255,255)\" stroke=\"black\" stroke-width=\"0.1\" points=\"";
- double x, y;
- x = scale * (points[result[i].a].x) - minx + 5;
- y = scale * (points[result[i].a].y) - miny + 5;
- out << x << ',' << y << ' ';
- x = scale * (points[result[i].b].x) - minx + 5;
- y = scale * (points[result[i].b].y) - miny + 5;
- out << x << ',' << y << ' ';
- x = scale * (points[result[i].c].x) - minx + 5;
- y = scale * (points[result[i].c].y) - miny + 5;
- out << x << ',' << y;
- out << "\" />" << std::endl;
- }
-
- out << "</svg>" << std::endl;
- }
-#endif
-}
-
-
-
-double carve::triangulate::detail::vertex_info::triScore(const vertex_info *p, const vertex_info *v, const vertex_info *n) {
-
- // different scoring functions.
-#if 0
- bool convex = isLeft(p, v, n);
- if (!convex) return -1e-5;
-
- double a1 = carve::geom2d::atan2(p->p - v->p) - carve::geom2d::atan2(n->p - v->p);
- double a2 = carve::geom2d::atan2(v->p - n->p) - carve::geom2d::atan2(p->p - n->p);
- if (a1 < 0) a1 += M_PI * 2;
- if (a2 < 0) a2 += M_PI * 2;
-
- return std::min(a1, std::min(a2, M_PI - a1 - a2)) / (M_PI / 3);
-#endif
-
-#if 1
- // range: 0 - 1
- double a, b, c;
-
- bool convex = isLeft(p, v, n);
- if (!convex) return -1e-5;
-
- a = (n->p - v->p).length();
- b = (p->p - n->p).length();
- c = (v->p - p->p).length();
-
- if (a < 1e-10 || b < 1e-10 || c < 1e-10) return 0.0;
-
- return std::max(std::min((a+b)/c, std::min((a+c)/b, (b+c)/a)) - 1.0, 0.0);
-#endif
-}
-
-
-
-double carve::triangulate::detail::vertex_info::calcScore() const {
-
-#if 0
- // examine only this triangle.
- double this_tri = triScore(prev, this, next);
- return this_tri;
-#endif
-
-#if 1
- // attempt to look ahead in the neighbourhood to attempt to clip ears that have good neighbours.
- double this_tri = triScore(prev, this, next);
- double next_tri = triScore(prev, next, next->next);
- double prev_tri = triScore(prev->prev, prev, next);
-
- return this_tri + std::max(next_tri, prev_tri) * .2;
-#endif
-
-#if 0
- // attempt to penalise ears that will require producing a sliver triangle.
- double score = triScore(prev, this, next);
-
- double a1, a2;
- a1 = carve::geom2d::atan2(prev->p - next->p);
- a2 = carve::geom2d::atan2(next->next->p - next->p);
- if (fabs(a1 - a2) < 1e-5) score -= .5;
-
- a1 = carve::geom2d::atan2(next->p - prev->p);
- a2 = carve::geom2d::atan2(prev->prev->p - prev->p);
- if (fabs(a1 - a2) < 1e-5) score -= .5;
-
- return score;
-#endif
-}
-
-
-
-bool carve::triangulate::detail::vertex_info::isClipable() const {
- for (const vertex_info *v_test = next->next; v_test != prev; v_test = v_test->next) {
- if (v_test->convex) {
- continue;
- }
-
- if (v_test->p == prev->p ||
- v_test->p == next->p) {
- continue;
- }
-
- if (v_test->p == p) {
- if (v_test->next->p == prev->p &&
- v_test->prev->p == next->p) {
- return false;
- }
- if (v_test->next->p == prev->p ||
- v_test->prev->p == next->p) {
- continue;
- }
- }
-
- if (pointInTriangle(prev, this, next, v_test)) {
- return false;
- }
- }
- return true;
-}
-
-
-
-size_t carve::triangulate::detail::removeDegeneracies(vertex_info *&begin, std::vector<carve::triangulate::tri_idx> &result) {
- vertex_info *v;
- vertex_info *n;
- size_t count = 0;
- size_t remain = 0;
-
- v = begin;
- do {
- v = v->next;
- ++remain;
- } while (v != begin);
-
- v = begin;
- do {
- if (remain < 4) break;
-
- bool remove = false;
- if (v->p == v->next->p) {
- remove = true;
- } else if (v->p == v->next->next->p) {
- if (v->next->p == v->next->next->next->p) {
- // a 'z' in the loop: z (a) b a b c -> remove a-b-a -> z (a) a b c -> remove a-a-b (next loop) -> z a b c
- // z --(a)-- b
- // /
- // /
- // a -- b -- d
- remove = true;
- } else {
- // a 'shard' in the loop: z (a) b a c d -> remove a-b-a -> z (a) a b c d -> remove a-a-b (next loop) -> z a b c d
- // z --(a)-- b
- // /
- // /
- // a -- c -- d
- // n.b. can only do this if the shard is pointing out of the polygon. i.e. b is outside z-a-c
- remove = !internalToAngle(v->next->next->next, v, v->prev, v->next->p);
- }
- }
-
- if (remove) {
- result.push_back(carve::triangulate::tri_idx(v->idx, v->next->idx, v->next->next->idx));
- n = v->next;
- if (n == begin) begin = n->next;
- n->remove();
- count++;
- remain--;
- delete n;
- } else {
- v = v->next;
- }
- } while (v != begin);
- return count;
-}
-
-
-
-bool carve::triangulate::detail::splitAndResume(vertex_info *begin, std::vector<carve::triangulate::tri_idx> &result) {
- vertex_info *v1, *v2;
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- {
- std::vector<carve::triangulate::tri_idx> dummy;
- std::vector<carve::geom2d::P2> dummy_p;
- vertex_info *v = begin;
- do {
- dummy_p.push_back(v->p);
- v = v->next;
- } while (v != begin);
- std::cerr << "input to splitAndResume:" << std::endl;
- dumpPoly(dummy_p, dummy);
- }
-#endif
-
-
- if (!findDiagonal(begin, v1, v2)) return false;
-
- vertex_info *v1_copy = new vertex_info(*v1);
- vertex_info *v2_copy = new vertex_info(*v2);
-
- v1->next = v2;
- v2->prev = v1;
-
- v1_copy->next->prev = v1_copy;
- v2_copy->prev->next = v2_copy;
-
- v1_copy->prev = v2_copy;
- v2_copy->next = v1_copy;
-
- bool r1 = doTriangulate(v1, result);
- bool r2 = doTriangulate(v1_copy, result);
- return r1 && r2;
-}
-
-
-
-bool carve::triangulate::detail::doTriangulate(vertex_info *begin, std::vector<carve::triangulate::tri_idx> &result) {
-#if defined(CARVE_DEBUG)
- std::cerr << "entering doTriangulate" << std::endl;
-#endif
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- {
- std::vector<carve::triangulate::tri_idx> dummy;
- std::vector<carve::geom2d::P2> dummy_p;
- vertex_info *v = begin;
- do {
- dummy_p.push_back(v->p);
- v = v->next;
- } while (v != begin);
- dumpPoly(dummy_p, dummy);
- }
-#endif
-
- EarQueue vq;
-
- vertex_info *v = begin;
- size_t remain = 0;
- do {
- if (v->isCandidate()) vq.push(v);
- v = v->next;
- remain++;
- } while (v != begin);
-
-#if defined(CARVE_DEBUG)
- std::cerr << "remain = " << remain << std::endl;
-#endif
-
- while (remain > 3 && vq.size()) {
- vertex_info *v = vq.pop();
- if (!v->isClipable()) {
- v->failed = true;
- continue;
- }
-
- continue_clipping:
- vertex_info *n = v->next;
- vertex_info *p = v->prev;
-
- result.push_back(carve::triangulate::tri_idx(v->prev->idx, v->idx, v->next->idx));
-
-#if defined(CARVE_DEBUG)
- {
- std::vector<carve::geom2d::P2> temp;
- temp.push_back(v->prev->p);
- temp.push_back(v->p);
- temp.push_back(v->next->p);
- std::cerr << "clip " << v << " idx = " << v->idx << " score = " << v->score << " area = " << carve::geom2d::signedArea(temp) << " " << temp[0] << " " << temp[1] << " " << temp[2] << std::endl;
- }
-#endif
-
- v->remove();
- if (v == begin) begin = v->next;
- delete v;
-
- if (--remain == 3) break;
-
- vq.updateVertex(n);
- vq.updateVertex(p);
-
- if (n->score < p->score) { std::swap(n, p); }
-
- if (n->score > 0.25 && n->isCandidate() && n->isClipable()) {
- vq.remove(n);
- v = n;
-#if defined(CARVE_DEBUG)
- std::cerr << " continue clipping (n), score = " << n->score << std::endl;
-#endif
- goto continue_clipping;
- }
-
- if (p->score > 0.25 && p->isCandidate() && p->isClipable()) {
- vq.remove(p);
- v = p;
-#if defined(CARVE_DEBUG)
- std::cerr << " continue clipping (p), score = " << n->score << std::endl;
-#endif
- goto continue_clipping;
- }
-
-#if defined(CARVE_DEBUG)
- std::cerr << "looking for new start point" << std::endl;
- std::cerr << "remain = " << remain << std::endl;
-#endif
- }
-
-#if defined(CARVE_DEBUG)
- std::cerr << "doTriangulate complete; remain=" << remain << std::endl;
-#endif
-
- if (remain > 3) {
-#if defined(CARVE_DEBUG)
- std::cerr << "before removeDegeneracies: remain=" << remain << std::endl;
-#endif
- remain -= removeDegeneracies(begin, result);
-#if defined(CARVE_DEBUG)
- std::cerr << "after removeDegeneracies: remain=" << remain << std::endl;
-#endif
-
- if (remain > 3) {
- return splitAndResume(begin, result);
- }
- }
-
- if (remain == 3) {
- result.push_back(carve::triangulate::tri_idx(begin->idx, begin->next->idx, begin->next->next->idx));
- }
-
- vertex_info *d = begin;
- do {
- vertex_info *n = d->next;
- delete d;
- d = n;
- } while (d != begin);
-
- return true;
-}
-
-
-
-static bool testCandidateAttachment(const std::vector<std::vector<carve::geom2d::P2> > &poly,
- std::vector<std::pair<size_t, size_t> > &current_f_loop,
- size_t curr,
- carve::geom2d::P2 hole_min) {
- const size_t SZ = current_f_loop.size();
-
- if (!carve::geom2d::internalToAngle(pvert(poly, current_f_loop[(curr+1) % SZ]),
- pvert(poly, current_f_loop[curr]),
- pvert(poly, current_f_loop[(curr+SZ-1) % SZ]),
- hole_min)) {
- return false;
- }
-
- if (hole_min == pvert(poly, current_f_loop[curr])) {
- return true;
- }
-
- carve::geom2d::LineSegment2 test(hole_min, pvert(poly, current_f_loop[curr]));
-
- size_t v1 = current_f_loop.size() - 1;
- size_t v2 = 0;
- double v1_side = carve::geom2d::orient2d(test.v1, test.v2, pvert(poly, current_f_loop[v1]));
- double v2_side = 0;
-
- while (v2 != current_f_loop.size()) {
- v2_side = carve::geom2d::orient2d(test.v1, test.v2, pvert(poly, current_f_loop[v2]));
-
- if (v1_side != v2_side) {
- // XXX: need to test vertices, not indices, because they may
- // be duplicated.
- if (pvert(poly, current_f_loop[v1]) != pvert(poly, current_f_loop[curr]) &&
- pvert(poly, current_f_loop[v2]) != pvert(poly, current_f_loop[curr])) {
- carve::geom2d::LineSegment2 test2(pvert(poly, current_f_loop[v1]), pvert(poly, current_f_loop[v2]));
- if (carve::geom2d::lineSegmentIntersection_simple(test, test2)) {
- // intersection; failed.
- return false;
- }
- }
- }
-
- v1 = v2;
- v1_side = v2_side;
- ++v2;
- }
- return true;
-}
-
-
-
-void
-carve::triangulate::incorporateHolesIntoPolygon(
- const std::vector<std::vector<carve::geom2d::P2> > &poly,
- std::vector<std::pair<size_t, size_t> > &result,
- size_t poly_loop,
- const std::vector<size_t> &hole_loops) {
- typedef std::vector<carve::geom2d::P2> loop_t;
-
- size_t N = poly[poly_loop].size();
-
- // work out how much space to reserve for the patched in holes.
- for (size_t i = 0; i < hole_loops.size(); i++) {
- N += 2 + poly[hole_loops[i]].size();
- }
-
- // this is the vector that we will build the result in.
- result.clear();
- result.reserve(N);
-
- // this is a heap of result indices that defines the vertex test order.
- std::vector<size_t> f_loop_heap;
- f_loop_heap.reserve(N);
-
- // add the poly loop to result.
- for (size_t i = 0; i < poly[poly_loop].size(); ++i) {
- result.push_back(std::make_pair((size_t)poly_loop, i));
- }
-
- if (hole_loops.size() == 0) {
- return;
- }
-
- std::vector<std::pair<size_t, size_t> > h_loop_min_vertex;
-
- h_loop_min_vertex.reserve(hole_loops.size());
-
- // find the major axis for the holes - this is the axis that we
- // will sort on for finding vertices on the polygon to join
- // holes up to.
- //
- // it might also be nice to also look for whether it is better
- // to sort ascending or descending.
- //
- // another trick that could be used is to modify the projection
- // by 90 degree rotations or flipping about an axis. just as
- // long as we keep the carve::geom3d::Vector pointers for the
- // real data in sync, everything should be ok. then we wouldn't
- // need to accomodate axes or sort order in the main loop.
-
- // find the bounding box of all the holes.
- carve::geom2d::P2 h_min, h_max;
- h_min = h_max = poly[hole_loops[0]][0];
- for (size_t i = 0; i < hole_loops.size(); ++i) {
- const loop_t &hole = poly[hole_loops[i]];
- for (size_t j = 0; j < hole.size(); ++j) {
- assign_op(h_min, h_min, hole[j], carve::util::min_functor());
- assign_op(h_max, h_max, hole[j], carve::util::max_functor());
- }
- }
- // choose the axis for which the bbox is largest.
- int axis = (h_max.x - h_min.x) > (h_max.y - h_min.y) ? 0 : 1;
-
- // for each hole, find the minimum vertex in the chosen axis.
- for (size_t i = 0; i < hole_loops.size(); ++i) {
- const loop_t &hole = poly[hole_loops[i]];
- size_t best, curr;
- best = 0;
- for (curr = 1; curr != hole.size(); ++curr) {
- if (detail::axisOrdering(hole[curr], hole[best], axis)) {
- best = curr;
- }
- }
- h_loop_min_vertex.push_back(std::make_pair(hole_loops[i], best));
- }
-
- // sort the holes by the minimum vertex.
- std::sort(h_loop_min_vertex.begin(), h_loop_min_vertex.end(), order_h_loops_2d(poly, axis));
-
- // now, for each hole, find a vertex in the current polygon loop that it can be joined to.
- for (unsigned i = 0; i < h_loop_min_vertex.size(); ++i) {
- // the index of the vertex in the hole to connect.
- size_t hole_i = h_loop_min_vertex[i].first;
- size_t hole_i_connect = h_loop_min_vertex[i].second;
-
- carve::geom2d::P2 hole_min = poly[hole_i][hole_i_connect];
-
- f_loop_heap.clear();
- // we order polygon loop vertices that may be able to be connected
- // to the hole vertex by their distance to the hole vertex
- heap_ordering_2d _heap_ordering(poly, result, hole_min, axis);
-
- const size_t SZ = result.size();
- for (size_t j = 0; j < SZ; ++j) {
- // it is guaranteed that there exists a polygon vertex with
- // coord < the min hole coord chosen, which can be joined to
- // the min hole coord without crossing the polygon
- // boundary. also, because we merge holes in ascending
- // order, it is also true that this join can never cross
- // another hole (and that doesn't need to be tested for).
- if (pvert(poly, result[j]).v[axis] <= hole_min.v[axis]) {
- f_loop_heap.push_back(j);
- std::push_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
- }
- }
-
- // we are going to test each potential (according to the
- // previous test) polygon vertex as a candidate join. we order
- // by closeness to the hole vertex, so that the join we make
- // is as small as possible. to test, we need to check the
- // joining line segment does not cross any other line segment
- // in the current polygon loop (excluding those that have the
- // vertex that we are attempting to join with as an endpoint).
- size_t attachment_point = result.size();
-
- while (f_loop_heap.size()) {
- std::pop_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
- size_t curr = f_loop_heap.back();
- f_loop_heap.pop_back();
- // test the candidate join from result[curr] to hole_min
-
- if (!testCandidateAttachment(poly, result, curr, hole_min)) {
- continue;
- }
-
- attachment_point = curr;
- break;
- }
-
- if (attachment_point == result.size()) {
- CARVE_FAIL("didn't manage to link up hole!");
- }
-
- patchHoleIntoPolygon_2d(result, attachment_point, hole_i, hole_i_connect, poly[hole_i].size());
- }
-}
-
-
-
-std::vector<std::pair<size_t, size_t> >
-carve::triangulate::incorporateHolesIntoPolygon(const std::vector<std::vector<carve::geom2d::P2> > &poly) {
-#if 1
- std::vector<std::pair<size_t, size_t> > result;
- std::vector<size_t> hole_indices;
- hole_indices.reserve(poly.size() - 1);
- for (size_t i = 1; i < poly.size(); ++i) {
- hole_indices.push_back(i);
- }
-
- incorporateHolesIntoPolygon(poly, result, 0, hole_indices);
-
- return result;
-
-#else
- typedef std::vector<carve::geom2d::P2> loop_t;
- size_t N = poly[0].size();
- //
- // work out how much space to reserve for the patched in holes.
- for (size_t i = 0; i < poly.size(); i++) {
- N += 2 + poly[i].size();
- }
-
- // this is the vector that we will build the result in.
- std::vector<std::pair<size_t, size_t> > current_f_loop;
- current_f_loop.reserve(N);
-
- // this is a heap of current_f_loop indices that defines the vertex test order.
- std::vector<size_t> f_loop_heap;
- f_loop_heap.reserve(N);
-
- // add the poly loop to current_f_loop.
- for (size_t i = 0; i < poly[0].size(); ++i) {
- current_f_loop.push_back(std::make_pair((size_t)0, i));
- }
-
- if (poly.size() == 1) {
- return current_f_loop;
- }
-
- std::vector<std::pair<size_t, size_t> > h_loop_min_vertex;
-
- h_loop_min_vertex.reserve(poly.size() - 1);
-
- // find the major axis for the holes - this is the axis that we
- // will sort on for finding vertices on the polygon to join
- // holes up to.
- //
- // it might also be nice to also look for whether it is better
- // to sort ascending or descending.
- //
- // another trick that could be used is to modify the projection
- // by 90 degree rotations or flipping about an axis. just as
- // long as we keep the carve::geom3d::Vector pointers for the
- // real data in sync, everything should be ok. then we wouldn't
- // need to accomodate axes or sort order in the main loop.
-
- // find the bounding box of all the holes.
- double min_x, min_y, max_x, max_y;
- min_x = max_x = poly[1][0].x;
- min_y = max_y = poly[1][0].y;
- for (size_t i = 1; i < poly.size(); ++i) {
- const loop_t &hole = poly[i];
- for (size_t j = 0; j < hole.size(); ++j) {
- min_x = std::min(min_x, hole[j].x);
- min_y = std::min(min_y, hole[j].y);
- max_x = std::max(max_x, hole[j].x);
- max_y = std::max(max_y, hole[j].y);
- }
- }
-
- // choose the axis for which the bbox is largest.
- int axis = (max_x - min_x) > (max_y - min_y) ? 0 : 1;
-
- // for each hole, find the minimum vertex in the chosen axis.
- for (size_t i = 1; i < poly.size(); ++i) {
- const loop_t &hole = poly[i];
- size_t best, curr;
- best = 0;
- for (curr = 1; curr != hole.size(); ++curr) {
- if (detail::axisOrdering(hole[curr], hole[best], axis)) {
- best = curr;
- }
- }
- h_loop_min_vertex.push_back(std::make_pair(i, best));
- }
-
- // sort the holes by the minimum vertex.
- std::sort(h_loop_min_vertex.begin(), h_loop_min_vertex.end(), order_h_loops_2d(poly, axis));
-
- // now, for each hole, find a vertex in the current polygon loop that it can be joined to.
- for (unsigned i = 0; i < h_loop_min_vertex.size(); ++i) {
- // the index of the vertex in the hole to connect.
- size_t hole_i = h_loop_min_vertex[i].first;
- size_t hole_i_connect = h_loop_min_vertex[i].second;
-
- carve::geom2d::P2 hole_min = poly[hole_i][hole_i_connect];
-
- f_loop_heap.clear();
- // we order polygon loop vertices that may be able to be connected
- // to the hole vertex by their distance to the hole vertex
- heap_ordering_2d _heap_ordering(poly, current_f_loop, hole_min, axis);
-
- const size_t SZ = current_f_loop.size();
- for (size_t j = 0; j < SZ; ++j) {
- // it is guaranteed that there exists a polygon vertex with
- // coord < the min hole coord chosen, which can be joined to
- // the min hole coord without crossing the polygon
- // boundary. also, because we merge holes in ascending
- // order, it is also true that this join can never cross
- // another hole (and that doesn't need to be tested for).
- if (pvert(poly, current_f_loop[j]).v[axis] <= hole_min.v[axis]) {
- f_loop_heap.push_back(j);
- std::push_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
- }
- }
-
- // we are going to test each potential (according to the
- // previous test) polygon vertex as a candidate join. we order
- // by closeness to the hole vertex, so that the join we make
- // is as small as possible. to test, we need to check the
- // joining line segment does not cross any other line segment
- // in the current polygon loop (excluding those that have the
- // vertex that we are attempting to join with as an endpoint).
- size_t attachment_point = current_f_loop.size();
-
- while (f_loop_heap.size()) {
- std::pop_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
- size_t curr = f_loop_heap.back();
- f_loop_heap.pop_back();
- // test the candidate join from current_f_loop[curr] to hole_min
-
- if (!testCandidateAttachment(poly, current_f_loop, curr, hole_min)) {
- continue;
- }
-
- attachment_point = curr;
- break;
- }
-
- if (attachment_point == current_f_loop.size()) {
- CARVE_FAIL("didn't manage to link up hole!");
- }
-
- patchHoleIntoPolygon_2d(current_f_loop, attachment_point, hole_i, hole_i_connect, poly[hole_i].size());
- }
-
- return current_f_loop;
-#endif
-}
-
-
-
-std::vector<std::vector<std::pair<size_t, size_t> > >
-carve::triangulate::mergePolygonsAndHoles(const std::vector<std::vector<carve::geom2d::P2> > &poly) {
- std::vector<size_t> poly_indices, hole_indices;
-
- poly_indices.reserve(poly.size());
- hole_indices.reserve(poly.size());
-
- for (size_t i = 0; i < poly.size(); ++i) {
- if (carve::geom2d::signedArea(poly[i]) < 0) {
- poly_indices.push_back(i);
- } else {
- hole_indices.push_back(i);
- }
- }
-
- std::vector<std::vector<std::pair<size_t, size_t> > > result;
- result.resize(poly_indices.size());
-
- if (hole_indices.size() == 0) {
- for (size_t i = 0; i < poly.size(); ++i) {
- result[i].resize(poly[i].size());
- for (size_t j = 0; j < poly[i].size(); ++j) {
- result[i].push_back(std::make_pair(i, j));
- }
- }
- return result;
- }
-
- if (poly_indices.size() == 1) {
- incorporateHolesIntoPolygon(poly, result[0], poly_indices[0], hole_indices);
-
- return result;
- }
-
- throw carve::exception("not implemented");
-}
-
-
-
-void carve::triangulate::triangulate(const std::vector<carve::geom2d::P2> &poly,
- std::vector<carve::triangulate::tri_idx> &result) {
- std::vector<detail::vertex_info *> vinfo;
- const size_t N = poly.size();
-
-#if defined(CARVE_DEBUG)
- std::cerr << "TRIANGULATION BEGINS" << std::endl;
-#endif
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- dumpPoly(poly, result);
-#endif
-
- result.clear();
- if (N < 3) {
- return;
- }
-
- result.reserve(poly.size() - 2);
-
- if (N == 3) {
- result.push_back(tri_idx(0, 1, 2));
- return;
- }
-
- vinfo.resize(N);
-
- vinfo[0] = new detail::vertex_info(poly[0], 0);
- for (size_t i = 1; i < N-1; ++i) {
- vinfo[i] = new detail::vertex_info(poly[i], i);
- vinfo[i]->prev = vinfo[i-1];
- vinfo[i-1]->next = vinfo[i];
- }
- vinfo[N-1] = new detail::vertex_info(poly[N-1], N-1);
- vinfo[N-1]->prev = vinfo[N-2];
- vinfo[N-1]->next = vinfo[0];
- vinfo[0]->prev = vinfo[N-1];
- vinfo[N-2]->next = vinfo[N-1];
-
- for (size_t i = 0; i < N; ++i) {
- vinfo[i]->recompute();
- }
-
- detail::vertex_info *begin = vinfo[0];
-
- removeDegeneracies(begin, result);
- doTriangulate(begin, result);
-
-#if defined(CARVE_DEBUG)
- std::cerr << "TRIANGULATION ENDS" << std::endl;
-#endif
-
-#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
- dumpPoly(poly, result);
-#endif
-}
-
-
-
-void carve::triangulate::detail::tri_pair_t::flip(vert_edge_t &old_edge,
- vert_edge_t &new_edge,
- vert_edge_t perim[4]) {
- unsigned ai, bi;
- unsigned cross_ai, cross_bi;
-
- findSharedEdge(ai, bi);
- old_edge = ordered_vert_edge_t(a->v[ai], b->v[bi]);
-
- cross_ai = P(ai);
- cross_bi = P(bi);
- new_edge = ordered_vert_edge_t(a->v[cross_ai], b->v[cross_bi]);
-
- score = -score;
-
- a->v[N(ai)] = b->v[cross_bi];
- b->v[N(bi)] = a->v[cross_ai];
-
- perim[0] = ordered_vert_edge_t(a->v[P(ai)], a->v[ai]);
- perim[1] = ordered_vert_edge_t(a->v[N(ai)], a->v[ai]); // this edge was a b-edge
-
- perim[2] = ordered_vert_edge_t(b->v[P(bi)], b->v[bi]);
- perim[3] = ordered_vert_edge_t(b->v[N(bi)], b->v[bi]); // this edge was an a-edge
-}
-
-
-
-void carve::triangulate::detail::tri_pairs_t::insert(unsigned a, unsigned b, carve::triangulate::tri_idx *t) {
- tri_pair_t *tp;
- if (a < b) {
- tp = storage[vert_edge_t(a,b)];
- if (!tp) {
- tp = storage[vert_edge_t(a,b)] = new tri_pair_t;
- }
- tp->a = t;
- } else {
- tp = storage[vert_edge_t(b,a)];
- if (!tp) {
- tp = storage[vert_edge_t(b,a)] = new tri_pair_t;
- }
- tp->b = t;
- }
-}