Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/carve/lib')
-rw-r--r--extern/carve/lib/aabb.cpp29
-rw-r--r--extern/carve/lib/carve.cpp29
-rw-r--r--extern/carve/lib/convex_hull.cpp100
-rw-r--r--extern/carve/lib/csg.cpp93
-rw-r--r--extern/carve/lib/csg_collector.cpp371
-rw-r--r--extern/carve/lib/csg_collector.hpp24
-rw-r--r--extern/carve/lib/csg_data.hpp52
-rw-r--r--extern/carve/lib/csg_detail.hpp71
-rw-r--r--extern/carve/lib/edge.cpp23
-rw-r--r--extern/carve/lib/face.cpp278
-rw-r--r--extern/carve/lib/geom2d.cpp260
-rw-r--r--extern/carve/lib/geom3d.cpp164
-rw-r--r--extern/carve/lib/intersect.cpp1668
-rw-r--r--extern/carve/lib/intersect_classify_common.hpp46
-rw-r--r--extern/carve/lib/intersect_classify_common_impl.hpp362
-rw-r--r--extern/carve/lib/intersect_classify_edge.cpp820
-rw-r--r--extern/carve/lib/intersect_classify_group.cpp220
-rw-r--r--extern/carve/lib/intersect_common.hpp83
-rw-r--r--extern/carve/lib/intersect_debug.cpp65
-rw-r--r--extern/carve/lib/intersect_debug.hpp29
-rw-r--r--extern/carve/lib/intersect_face_division.cpp1709
-rw-r--r--extern/carve/lib/intersect_group.cpp232
-rw-r--r--extern/carve/lib/intersect_half_classify_group.cpp199
-rw-r--r--extern/carve/lib/intersection.cpp92
-rw-r--r--extern/carve/lib/math.cpp347
-rw-r--r--extern/carve/lib/mesh.cpp1203
-rw-r--r--extern/carve/lib/octree.cpp399
-rw-r--r--extern/carve/lib/pointset.cpp59
-rw-r--r--extern/carve/lib/polyhedron.cpp1103
-rw-r--r--extern/carve/lib/polyline.cpp67
-rw-r--r--extern/carve/lib/tag.cpp24
-rw-r--r--extern/carve/lib/timing.cpp436
-rw-r--r--extern/carve/lib/triangulator.cpp1211
33 files changed, 11868 insertions, 0 deletions
diff --git a/extern/carve/lib/aabb.cpp b/extern/carve/lib/aabb.cpp
new file mode 100644
index 00000000000..188929a8cfa
--- /dev/null
+++ b/extern/carve/lib/aabb.cpp
@@ -0,0 +1,29 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/aabb.hpp>
+#include <carve/geom3d.hpp>
+
+namespace carve {
+ namespace geom3d {
+ }
+}
+
diff --git a/extern/carve/lib/carve.cpp b/extern/carve/lib/carve.cpp
new file mode 100644
index 00000000000..9af2d0408fb
--- /dev/null
+++ b/extern/carve/lib/carve.cpp
@@ -0,0 +1,29 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/carve.hpp>
+
+#define DEF_EPSILON 1.4901161193847656e-08
+
+namespace carve {
+ double EPSILON = DEF_EPSILON;
+ double EPSILON2 = DEF_EPSILON * DEF_EPSILON;
+}
diff --git a/extern/carve/lib/convex_hull.cpp b/extern/carve/lib/convex_hull.cpp
new file mode 100644
index 00000000000..616d8cbe561
--- /dev/null
+++ b/extern/carve/lib/convex_hull.cpp
@@ -0,0 +1,100 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/convex_hull.hpp>
+
+#include <algorithm>
+
+namespace {
+
+ bool grahamScan(const std::vector<carve::geom2d::P2> &points,
+ int vpp, int vp,
+ const std::vector<int> &ordered,
+ int start,
+ std::vector<int> &result, int _i = 0) {
+ carve::geom2d::P2 v1 = points[vp] - points[vpp];
+ if (start == (int)ordered.size()) return true;
+
+ for (int i = start; i < (int)ordered.size(); ++i) {
+ int v = ordered[i];
+ carve::geom2d::P2 v2 = points[v] - points[vp];
+
+ double cp = v1.x * v2.y - v2.x * v1.y;
+ if (cp < 0) return false;
+
+ int j = i + 1;
+ while (j < (int)ordered.size() && points[ordered[j]] == points[v]) j++;
+
+ result.push_back(v);
+ if (grahamScan(points, vp, v, ordered, j, result, _i + 1)) return true;
+ result.pop_back();
+ }
+
+ return false;
+ }
+
+}
+
+namespace carve {
+ namespace geom {
+
+ std::vector<int> convexHull(const std::vector<carve::geom2d::P2> &points) {
+ double max_x = points[0].x;
+ unsigned max_v = 0;
+
+ for (unsigned i = 1; i < points.size(); ++i) {
+ if (points[i].x > max_x) {
+ max_x = points[i].x;
+ max_v = i;
+ }
+ }
+
+ std::vector<std::pair<double, double> > angle_dist;
+ std::vector<int> ordered;
+ angle_dist.reserve(points.size());
+ ordered.reserve(points.size() - 1);
+ for (unsigned i = 0; i < points.size(); ++i) {
+ if (i == max_v) continue;
+ angle_dist[i] = std::make_pair(carve::math::ANG(carve::geom2d::atan2(points[i] - points[max_v])), distance2(points[i], points[max_v]));
+ ordered.push_back(i);
+ }
+
+ std::sort(ordered.begin(),
+ ordered.end(),
+ make_index_sort(angle_dist.begin()));
+
+ std::vector<int> result;
+ result.push_back(max_v);
+ result.push_back(ordered[0]);
+
+ if (!grahamScan(points, max_v, ordered[0], ordered, 1, result)) {
+ result.clear();
+ throw carve::exception("convex hull failed!");
+ }
+
+ return result;
+ }
+
+ }
+}
+
+
diff --git a/extern/carve/lib/csg.cpp b/extern/carve/lib/csg.cpp
new file mode 100644
index 00000000000..3d3dfb8bf75
--- /dev/null
+++ b/extern/carve/lib/csg.cpp
@@ -0,0 +1,93 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include "csg_detail.hpp"
+
+
+const char *carve::csg::ENUM(carve::csg::FaceClass f) {
+ if (f == FACE_ON_ORIENT_OUT) return "FACE_ON_ORIENT_OUT";
+ if (f == FACE_OUT) return "FACE_OUT";
+ if (f == FACE_IN) return "FACE_IN";
+ if (f == FACE_ON_ORIENT_IN) return "FACE_ON_ORIENT_IN";
+ return "???";
+}
+
+
+
+const char *carve::csg::ENUM(carve::PointClass p) {
+ if (p == POINT_UNK) return "POINT_UNK";
+ if (p == POINT_OUT) return "POINT_OUT";
+ if (p == POINT_ON) return "POINT_ON";
+ if (p == POINT_IN) return "POINT_IN";
+ if (p == POINT_VERTEX) return "POINT_VERTEX";
+ if (p == POINT_EDGE) return "POINT_EDGE";
+ return "???";
+}
+
+
+
+void carve::csg::detail::LoopEdges::addFaceLoop(FaceLoop *fl) {
+ carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
+ v1 = fl->vertices[fl->vertices.size() - 1];
+ for (unsigned j = 0; j < fl->vertices.size(); ++j) {
+ v2 = fl->vertices[j];
+ (*this)[std::make_pair(v1, v2)].push_back(fl);
+ v1 = v2;
+ }
+}
+
+
+
+void carve::csg::detail::LoopEdges::sortFaceLoopLists() {
+ for (super::iterator i = begin(), e = end(); i != e; ++i) {
+ (*i).second.sort();
+ }
+}
+
+
+
+void carve::csg::detail::LoopEdges::removeFaceLoop(FaceLoop *fl) {
+ carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
+ v1 = fl->vertices[fl->vertices.size() - 1];
+ for (unsigned j = 0; j < fl->vertices.size(); ++j) {
+ v2 = fl->vertices[j];
+ iterator l(find(std::make_pair(v1, v2)));
+ if (l != end()) {
+ (*l).second.remove(fl);
+ if (!(*l).second.size()) {
+ erase(l);
+ }
+ }
+ v1 = v2;
+ }
+}
+
+
+
+carve::csg::FaceClass carve::csg::FaceLoopGroup::classificationAgainst(const carve::mesh::MeshSet<3>::mesh_t *mesh) const {
+ for (std::list<ClassificationInfo>::const_iterator i = classification.begin(); i != classification.end(); ++i) {
+ if ((*i).intersected_mesh == mesh) {
+ return (*i).classification;
+ }
+ }
+ return FACE_UNCLASSIFIED;
+}
diff --git a/extern/carve/lib/csg_collector.cpp b/extern/carve/lib/csg_collector.cpp
new file mode 100644
index 00000000000..6e86b128b51
--- /dev/null
+++ b/extern/carve/lib/csg_collector.cpp
@@ -0,0 +1,371 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <iostream>
+#include "intersect_debug.hpp"
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+void writePLY(const std::string &out_file, const carve::mesh::MeshSet<3> *poly, bool ascii);
+#endif
+
+
+namespace carve {
+ namespace csg {
+ namespace {
+
+ class BaseCollector : public CSG::Collector {
+ BaseCollector();
+ BaseCollector(const BaseCollector &);
+ BaseCollector &operator=(const BaseCollector &);
+
+ protected:
+ struct face_data_t {
+ carve::mesh::MeshSet<3>::face_t *face;
+ const carve::mesh::MeshSet<3>::face_t *orig_face;
+ bool flipped;
+ face_data_t(carve::mesh::MeshSet<3>::face_t *_face,
+ const carve::mesh::MeshSet<3>::face_t *_orig_face,
+ bool _flipped) : face(_face), orig_face(_orig_face), flipped(_flipped) {
+ };
+ };
+
+ std::list<face_data_t> faces;
+
+ const carve::mesh::MeshSet<3> *src_a;
+ const carve::mesh::MeshSet<3> *src_b;
+
+ BaseCollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : CSG::Collector(), src_a(_src_a), src_b(_src_b) {
+ }
+
+ virtual ~BaseCollector() {
+ }
+
+ void FWD(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector /* normal */,
+ bool /* poly_a */,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ std::vector<carve::mesh::MeshSet<3>::face_t *> new_faces;
+ new_faces.reserve(1);
+ new_faces.push_back(orig_face->create(vertices.begin(), vertices.end(), false));
+ hooks.processOutputFace(new_faces, orig_face, false);
+ for (size_t i = 0; i < new_faces.size(); ++i) {
+ faces.push_back(face_data_t(new_faces[i], orig_face, false));
+ }
+
+#if defined(CARVE_DEBUG) && defined(DEBUG_PRINT_RESULT_FACES)
+ std::cerr << "+" << ENUM(face_class) << " ";
+ for (unsigned i = 0; i < vertices.size(); ++i) std::cerr << " " << vertices[i] << ":" << *vertices[i];
+ std::cerr << std::endl;
+#endif
+ }
+
+ void REV(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector /* normal */,
+ bool /* poly_a */,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ // normal = -normal;
+ std::vector<carve::mesh::MeshSet<3>::face_t *> new_faces;
+ new_faces.reserve(1);
+ new_faces.push_back(orig_face->create(vertices.begin(), vertices.end(), true));
+ hooks.processOutputFace(new_faces, orig_face, true);
+ for (size_t i = 0; i < new_faces.size(); ++i) {
+ faces.push_back(face_data_t(new_faces[i], orig_face, true));
+ }
+
+#if defined(CARVE_DEBUG) && defined(DEBUG_PRINT_RESULT_FACES)
+ std::cerr << "-" << ENUM(face_class) << " ";
+ for (unsigned i = 0; i < vertices.size(); ++i) std::cerr << " " << vertices[i] << ":" << *vertices[i];
+ std::cerr << std::endl;
+#endif
+ }
+
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) =0;
+
+ virtual void collect(FaceLoopGroup *grp, CSG::Hooks &hooks) {
+ std::list<ClassificationInfo> &cinfo = (grp->classification);
+
+ if (cinfo.size() == 0) {
+ std::cerr << "WARNING! group " << grp << " has no classification info!" << std::endl;
+ return;
+ }
+
+ FaceClass fc = FACE_UNCLASSIFIED;
+
+ unsigned fc_closed_bits = 0;
+ unsigned fc_open_bits = 0;
+ unsigned fc_bits = 0;
+
+ for (std::list<ClassificationInfo>::const_iterator i = grp->classification.begin(), e = grp->classification.end(); i != e; ++i) {
+
+ if ((*i).intersected_mesh == NULL) {
+ // classifier only returns global info
+ fc_closed_bits = class_to_class_bit((*i).classification);
+ break;
+ }
+
+ if ((*i).classification == FACE_UNCLASSIFIED) continue;
+ if ((*i).intersectedMeshIsClosed()) {
+ fc_closed_bits |= class_to_class_bit((*i).classification);
+ } else {
+ fc_open_bits |= class_to_class_bit((*i).classification);
+ }
+ }
+
+ if (fc_closed_bits) {
+ fc_bits = fc_closed_bits;
+ } else {
+ fc_bits = fc_open_bits;
+ }
+
+ fc = class_bit_to_class(fc_bits);
+
+ // handle the complex cases where a group is classified differently with respect to two or more closed manifolds.
+ if (fc == FACE_UNCLASSIFIED) {
+ unsigned inout_bits = fc_bits & FACE_NOT_ON_BIT;
+ unsigned on_bits = fc_bits & FACE_ON_BIT;
+
+ // both in and out. indicates an invalid manifold embedding.
+ if (inout_bits == (FACE_IN_BIT | FACE_OUT_BIT)) goto out;
+
+ // on, both orientations. could be caused by two manifolds touching at a face.
+ if (on_bits == (FACE_ON_ORIENT_IN_BIT | FACE_ON_ORIENT_OUT_BIT)) goto out;
+
+ // in or out, but also on (with orientation). the on classification takes precedence.
+ fc = class_bit_to_class(on_bits);
+ }
+
+ out:
+
+ if (fc == FACE_UNCLASSIFIED) {
+ std::cerr << "group " << grp << " is unclassified!" << std::endl;
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ static int uc_count = 0;
+
+ std::vector<carve::mesh::MeshSet<3>::face_t *> faces;
+
+ for (FaceLoop *f = grp->face_loops.head; f; f = f->next) {
+ carve::mesh::MeshSet<3>::face_t *temp = f->orig_face->create(f->vertices.begin(), f->vertices.end(), false);
+ faces.push_back(temp);
+ }
+
+ carve::mesh::MeshSet<3> *p = new carve::mesh::MeshSet<3>(faces);
+
+ std::ostringstream filename;
+ filename << "classifier_fail_" << ++uc_count << ".ply";
+ std::string out(filename.str().c_str());
+ ::writePLY(out, p, false);
+
+ delete p;
+#endif
+
+ return;
+ }
+
+ bool is_poly_a = grp->src == src_a;
+
+ for (FaceLoop *f = grp->face_loops.head; f; f = f->next) {
+ collect(f->orig_face, f->vertices, f->orig_face->plane.N, is_poly_a, fc, hooks);
+ }
+ }
+
+ virtual carve::mesh::MeshSet<3> *done(CSG::Hooks &hooks) {
+ std::vector<carve::mesh::MeshSet<3>::face_t *> f;
+ f.reserve(faces.size());
+ for (std::list<face_data_t>::iterator i = faces.begin(); i != faces.end(); ++i) {
+ f.push_back((*i).face);
+ }
+
+ carve::mesh::MeshSet<3> *p = new carve::mesh::MeshSet<3>(f);
+
+ if (hooks.hasHook(carve::csg::CSG::Hooks::RESULT_FACE_HOOK)) {
+ for (std::list<face_data_t>::iterator i = faces.begin(); i != faces.end(); ++i) {
+ hooks.resultFace((*i).face, (*i).orig_face, (*i).flipped);
+ }
+ }
+
+ return p;
+ }
+ };
+
+
+
+ class AllCollector : public BaseCollector {
+ public:
+ AllCollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : BaseCollector(_src_a, _src_b) {
+ }
+ virtual ~AllCollector() {
+ }
+ virtual void collect(FaceLoopGroup *grp, CSG::Hooks &hooks) {
+ for (FaceLoop *f = grp->face_loops.head; f; f = f->next) {
+ FWD(f->orig_face, f->vertices, f->orig_face->plane.N, f->orig_face->mesh->meshset == src_a, FACE_OUT, hooks);
+ }
+ }
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ FWD(orig_face, vertices, normal, poly_a, face_class, hooks);
+ }
+ };
+
+
+
+ class UnionCollector : public BaseCollector {
+ public:
+ UnionCollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : BaseCollector(_src_a, _src_b) {
+ }
+ virtual ~UnionCollector() {
+ }
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ if (face_class == FACE_OUT || (poly_a && face_class == FACE_ON_ORIENT_OUT)) {
+ FWD(orig_face, vertices, normal, poly_a, face_class, hooks);
+ }
+ }
+ };
+
+
+
+ class IntersectionCollector : public BaseCollector {
+ public:
+ IntersectionCollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : BaseCollector(_src_a, _src_b) {
+ }
+ virtual ~IntersectionCollector() {
+ }
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ if (face_class == FACE_IN || (poly_a && face_class == FACE_ON_ORIENT_OUT)) {
+ FWD(orig_face, vertices, normal, poly_a, face_class, hooks);
+ }
+ }
+ };
+
+
+
+ class SymmetricDifferenceCollector : public BaseCollector {
+ public:
+ SymmetricDifferenceCollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : BaseCollector(_src_a, _src_b) {
+ }
+ virtual ~SymmetricDifferenceCollector() {
+ }
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ if (face_class == FACE_OUT) {
+ FWD(orig_face, vertices, normal, poly_a, face_class, hooks);
+ } else if (face_class == FACE_IN) {
+ REV(orig_face, vertices, normal, poly_a, face_class, hooks);
+ }
+ }
+ };
+
+
+
+ class AMinusBCollector : public BaseCollector {
+ public:
+ AMinusBCollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : BaseCollector(_src_a, _src_b) {
+ }
+ virtual ~AMinusBCollector() {
+ }
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ if ((face_class == FACE_OUT || face_class == FACE_ON_ORIENT_IN) && poly_a) {
+ FWD(orig_face, vertices, normal, poly_a, face_class, hooks);
+ } else if (face_class == FACE_IN && !poly_a) {
+ REV(orig_face, vertices, normal, poly_a, face_class, hooks);
+ }
+ }
+ };
+
+
+
+ class BMinusACollector : public BaseCollector {
+ public:
+ BMinusACollector(const carve::mesh::MeshSet<3> *_src_a,
+ const carve::mesh::MeshSet<3> *_src_b) : BaseCollector(_src_a, _src_b) {
+ }
+ virtual ~BMinusACollector() {
+ }
+ virtual void collect(const carve::mesh::MeshSet<3>::face_t *orig_face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &vertices,
+ carve::geom3d::Vector normal,
+ bool poly_a,
+ FaceClass face_class,
+ CSG::Hooks &hooks) {
+ if ((face_class == FACE_OUT || face_class == FACE_ON_ORIENT_IN) && !poly_a) {
+ FWD(orig_face, vertices, normal, poly_a, face_class, hooks);
+ } else if (face_class == FACE_IN && poly_a) {
+ REV(orig_face, vertices, normal, poly_a, face_class, hooks);
+ }
+ }
+ };
+
+ }
+
+ CSG::Collector *makeCollector(CSG::OP op,
+ const carve::mesh::MeshSet<3> *poly_a,
+ const carve::mesh::MeshSet<3> *poly_b) {
+ switch (op) {
+ case CSG::UNION: return new UnionCollector(poly_a, poly_b);
+ case CSG::INTERSECTION: return new IntersectionCollector(poly_a, poly_b);
+ case CSG::A_MINUS_B: return new AMinusBCollector(poly_a, poly_b);
+ case CSG::B_MINUS_A: return new BMinusACollector(poly_a, poly_b);
+ case CSG::SYMMETRIC_DIFFERENCE: return new SymmetricDifferenceCollector(poly_a, poly_b);
+ case CSG::ALL: return new AllCollector(poly_a, poly_b);
+ }
+ return NULL;
+ }
+ }
+}
diff --git a/extern/carve/lib/csg_collector.hpp b/extern/carve/lib/csg_collector.hpp
new file mode 100644
index 00000000000..c68d3f3aa42
--- /dev/null
+++ b/extern/carve/lib/csg_collector.hpp
@@ -0,0 +1,24 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+namespace carve {
+ namespace csg {
+ CSG::Collector *makeCollector(CSG::OP op,
+ const carve::mesh::MeshSet<3> *poly_a,
+ const carve::mesh::MeshSet<3> *poly_b);
+ }
+}
diff --git a/extern/carve/lib/csg_data.hpp b/extern/carve/lib/csg_data.hpp
new file mode 100644
index 00000000000..085d05ce8d5
--- /dev/null
+++ b/extern/carve/lib/csg_data.hpp
@@ -0,0 +1,52 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#pragma once
+
+#include <carve/csg.hpp>
+
+#include "csg_detail.hpp"
+
+struct carve::csg::detail::Data {
+// * @param[out] vmap A mapping from vertex pointer to intersection point.
+// * @param[out] emap A mapping from edge pointer to intersection points.
+// * @param[out] fmap A mapping from face pointer to intersection points.
+// * @param[out] fmap_rev A mapping from intersection points to face pointers.
+ // map from intersected vertex to intersection point.
+ VVMap vmap;
+
+ // map from intersected edge to intersection points.
+ EVSMap emap;
+
+ // map from intersected face to intersection points.
+ FVSMap fmap;
+
+ // map from intersection point to intersected faces.
+ VFSMap fmap_rev;
+
+ // created by divideEdges().
+ // holds, for each edge, a
+ EVVMap divided_edges;
+
+ // created by faceSplitEdges.
+ FV2SMap face_split_edges;
+
+ // mapping from vertex to edge for potentially intersected
+ // faces. Saves building the vertex to edge map for all faces of
+ // both meshes.
+ VEVecMap vert_to_edges;
+};
diff --git a/extern/carve/lib/csg_detail.hpp b/extern/carve/lib/csg_detail.hpp
new file mode 100644
index 00000000000..4b8fca3d2d2
--- /dev/null
+++ b/extern/carve/lib/csg_detail.hpp
@@ -0,0 +1,71 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#pragma once
+
+#include <carve/carve.hpp>
+
+#include <carve/polyhedron_base.hpp>
+
+namespace carve {
+ namespace csg {
+ namespace detail {
+
+ typedef std::unordered_set<carve::mesh::MeshSet<3>::vertex_t *> VSet;
+ typedef std::unordered_set<carve::mesh::MeshSet<3>::face_t *> FSet;
+
+ typedef std::set<carve::mesh::MeshSet<3>::vertex_t *> VSetSmall;
+ typedef std::set<csg::V2> V2SetSmall;
+ typedef std::set<carve::mesh::MeshSet<3>::face_t *> FSetSmall;
+
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::vertex_t *, VSetSmall> VVSMap;
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::edge_t *, VSetSmall> EVSMap;
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::face_t *, VSetSmall> FVSMap;
+
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::vertex_t *, FSetSmall> VFSMap;
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::face_t *, V2SetSmall> FV2SMap;
+
+ typedef std::unordered_map<
+ carve::mesh::MeshSet<3>::edge_t *,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> > EVVMap;
+
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::vertex_t *,
+ std::vector<carve::mesh::MeshSet<3>::edge_t *> > VEVecMap;
+
+
+ class LoopEdges : public std::unordered_map<V2, std::list<FaceLoop *> > {
+ typedef std::unordered_map<V2, std::list<FaceLoop *> > super;
+
+ public:
+ void addFaceLoop(FaceLoop *fl);
+ void sortFaceLoopLists();
+ void removeFaceLoop(FaceLoop *fl);
+ };
+
+ }
+ }
+}
+
+
+
+static inline std::ostream &operator<<(std::ostream &o, const carve::csg::detail::FSet &s) {
+ const char *sep="";
+ for (carve::csg::detail::FSet::const_iterator i = s.begin(); i != s.end(); ++i) {
+ o << sep << *i; sep=",";
+ }
+ return o;
+}
diff --git a/extern/carve/lib/edge.cpp b/extern/carve/lib/edge.cpp
new file mode 100644
index 00000000000..4414e6496f3
--- /dev/null
+++ b/extern/carve/lib/edge.cpp
@@ -0,0 +1,23 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/poly.hpp>
+
diff --git a/extern/carve/lib/face.cpp b/extern/carve/lib/face.cpp
new file mode 100644
index 00000000000..c0718923cbb
--- /dev/null
+++ b/extern/carve/lib/face.cpp
@@ -0,0 +1,278 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/poly.hpp>
+
+double CALC_X(const carve::geom::plane<3> &p, double y, double z) { return -(p.d + p.N.y * y + p.N.z * z) / p.N.x; }
+double CALC_Y(const carve::geom::plane<3> &p, double x, double z) { return -(p.d + p.N.x * x + p.N.z * z) / p.N.y; }
+double CALC_Z(const carve::geom::plane<3> &p, double x, double y) { return -(p.d + p.N.x * x + p.N.y * y) / p.N.z; }
+
+namespace carve {
+ namespace poly {
+
+ carve::geom2d::P2 _project_1(const carve::geom3d::Vector &v) {
+ return carve::geom::VECTOR(v.z, v.y);
+ }
+
+ carve::geom2d::P2 _project_2(const carve::geom3d::Vector &v) {
+ return carve::geom::VECTOR(v.x, v.z);
+ }
+
+ carve::geom2d::P2 _project_3(const carve::geom3d::Vector &v) {
+ return carve::geom::VECTOR(v.y, v.x);
+ }
+
+ carve::geom2d::P2 _project_4(const carve::geom3d::Vector &v) {
+ return carve::geom::VECTOR(v.y, v.z);
+ }
+
+ carve::geom2d::P2 _project_5(const carve::geom3d::Vector &v) {
+ return carve::geom::VECTOR(v.z, v.x);
+ }
+
+ carve::geom2d::P2 _project_6(const carve::geom3d::Vector &v) {
+ return carve::geom::VECTOR(v.x, v.y);
+ }
+
+
+ carve::geom3d::Vector _unproject_1(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
+ return carve::geom::VECTOR(CALC_X(plane_eqn, p.y, p.x), p.y, p.x);
+ }
+
+ carve::geom3d::Vector _unproject_2(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
+ return carve::geom::VECTOR(p.x, CALC_Y(plane_eqn, p.x, p.y), p.y);
+ }
+
+ carve::geom3d::Vector _unproject_3(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
+ return carve::geom::VECTOR(p.y, p.x, CALC_Z(plane_eqn, p.y, p.x));
+ }
+
+ carve::geom3d::Vector _unproject_4(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
+ return carve::geom::VECTOR(CALC_X(plane_eqn, p.x, p.y), p.x, p.y);
+ }
+
+ carve::geom3d::Vector _unproject_5(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
+ return carve::geom::VECTOR(p.y, CALC_Y(plane_eqn, p.y, p.x), p.x);
+ }
+
+ carve::geom3d::Vector _unproject_6(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
+ return carve::geom::VECTOR(p.x, p.y, CALC_Z(plane_eqn, p.x, p.y));
+ }
+
+ static carve::geom2d::P2 (*project_tab[2][3])(const carve::geom3d::Vector &) = {
+ { &_project_1, &_project_2, &_project_3 },
+ { &_project_4, &_project_5, &_project_6 }
+ };
+
+ static carve::geom3d::Vector (*unproject_tab[2][3])(const carve::geom2d::P2 &, const carve::geom3d::Plane &) = {
+ { &_unproject_1, &_unproject_2, &_unproject_3 },
+ { &_unproject_4, &_unproject_5, &_unproject_6 }
+ };
+
+ // only implemented for 3d.
+ template<unsigned ndim>
+ typename Face<ndim>::project_t Face<ndim>::getProjector(bool positive_facing, int axis) {
+ return NULL;
+ }
+
+ template<>
+ Face<3>::project_t Face<3>::getProjector(bool positive_facing, int axis) {
+ return project_tab[positive_facing ? 1 : 0][axis];
+ }
+
+ template<unsigned ndim>
+ typename Face<ndim>::unproject_t Face<ndim>::getUnprojector(bool positive_facing, int axis) {
+ return NULL;
+ }
+
+ template<>
+ Face<3>::unproject_t Face<3>::getUnprojector(bool positive_facing, int axis) {
+ return unproject_tab[positive_facing ? 1 : 0][axis];
+ }
+
+
+
+ template<unsigned ndim>
+ Face<ndim>::Face(const std::vector<const vertex_t *> &_vertices,
+ bool delay_recalc) : tagable() {
+ vertices = _vertices;
+ edges.resize(nVertices(), NULL);
+ if (!delay_recalc && !recalc()) { }
+ }
+
+ template<unsigned ndim>
+ Face<ndim>::Face(const vertex_t *a,
+ const vertex_t *b,
+ const vertex_t *c,
+ bool delay_recalc) : tagable() {
+ vertices.reserve(3);
+ vertices.push_back(a);
+ vertices.push_back(b);
+ vertices.push_back(c);
+ edges.resize(3, NULL);
+ if (!delay_recalc && !recalc()) { }
+ }
+
+ template<unsigned ndim>
+ Face<ndim>::Face(const vertex_t *a,
+ const vertex_t *b,
+ const vertex_t *c,
+ const vertex_t *d,
+ bool delay_recalc) : tagable() {
+ vertices.reserve(4);
+ vertices.push_back(a);
+ vertices.push_back(b);
+ vertices.push_back(c);
+ vertices.push_back(d);
+ edges.resize(4, NULL);
+ if (!delay_recalc && !recalc()) { }
+ }
+
+ template<unsigned ndim>
+ void Face<ndim>::invert() {
+ size_t n_verts = vertices.size();
+ std::reverse(vertices.begin(), vertices.end());
+
+ if (project != NULL) {
+ plane_eqn.negate();
+
+ int da = carve::geom::largestAxis(plane_eqn.N);
+
+ project = getProjector(plane_eqn.N.v[da] > 0, da);
+ unproject = getUnprojector(plane_eqn.N.v[da] > 0, da);
+ }
+
+ std::reverse(edges.begin(), edges.end() - 1);
+ for (size_t i = 0; i < n_verts; i++) {
+ const vertex_t *v1 = vertices[i];
+ const vertex_t *v2 = vertices[(i+1) % n_verts];
+ CARVE_ASSERT((edges[i]->v1 == v1 && edges[i]->v2 == v2) || (edges[i]->v1 == v2 && edges[i]->v2 == v1));
+ }
+ }
+
+ template<unsigned ndim>
+ bool Face<ndim>::recalc() {
+ aabb.fit(vertices.begin(), vertices.end(), vec_adapt_vertex_ptr());
+
+ if (!carve::geom3d::fitPlane(vertices.begin(), vertices.end(), vec_adapt_vertex_ptr(), plane_eqn)) {
+ return false;
+ }
+
+ int da = carve::geom::largestAxis(plane_eqn.N);
+ project = getProjector(false, da);
+
+ double A = carve::geom2d::signedArea(vertices, projector());
+ if ((A < 0.0) ^ (plane_eqn.N.v[da] < 0.0)) {
+ plane_eqn.negate();
+ }
+
+ project = getProjector(plane_eqn.N.v[da] > 0, da);
+ unproject = getUnprojector(plane_eqn.N.v[da] > 0, da);
+
+ return true;
+ }
+
+ template<unsigned ndim>
+ Face<ndim> *Face<ndim>::init(const Face *base, const std::vector<const vertex_t *> &_vertices, bool flipped) {
+ return init(base, _vertices.begin(), _vertices.end(), flipped);
+ }
+
+ template<unsigned ndim>
+ bool Face<ndim>::containsPoint(const vector_t &p) const {
+ if (!carve::math::ZERO(carve::geom::distance(plane_eqn, p))) return false;
+ // return pointInPolySimple(vertices, projector(), (this->*project)(p));
+ return carve::geom2d::pointInPoly(vertices, projector(), face::project(this, p)).iclass != POINT_OUT;
+ }
+
+ template<unsigned ndim>
+ bool Face<ndim>::containsPointInProjection(const vector_t &p) const {
+ return carve::geom2d::pointInPoly(vertices, projector(), face::project(this, p)).iclass != POINT_OUT;
+ }
+
+ template<unsigned ndim>
+ bool Face<ndim>::simpleLineSegmentIntersection(const carve::geom::linesegment<ndim> &line,
+ vector_t &intersection) const {
+ if (!line.OK()) return false;
+
+ carve::geom3d::Vector p;
+ IntersectionClass intersects = carve::geom3d::lineSegmentPlaneIntersection(plane_eqn,
+ line,
+ p);
+ if (intersects == INTERSECT_NONE || intersects == INTERSECT_BAD) {
+ return false;
+ }
+
+ carve::geom2d::P2 proj_p(face::project(this, p));
+ if (carve::geom2d::pointInPolySimple(vertices, projector(), proj_p)) {
+ intersection = p;
+ return true;
+ }
+ return false;
+ }
+
+ // XXX: should try to return a pre-existing vertex in the case of a
+ // line-vertex intersection. as it stands, this code isn't used,
+ // so... meh.
+ template<unsigned ndim>
+ IntersectionClass Face<ndim>::lineSegmentIntersection(const carve::geom::linesegment<ndim> &line,
+ vector_t &intersection) const {
+ if (!line.OK()) return INTERSECT_NONE;
+
+
+ carve::geom3d::Vector p;
+ IntersectionClass intersects = carve::geom3d::lineSegmentPlaneIntersection(plane_eqn,
+ line,
+ p);
+ if (intersects == INTERSECT_NONE || intersects == INTERSECT_BAD) {
+ return intersects;
+ }
+
+ carve::geom2d::P2 proj_p(face::project(this, p));
+
+ carve::geom2d::PolyInclusionInfo pi = carve::geom2d::pointInPoly(vertices, projector(), proj_p);
+ switch (pi.iclass) {
+ case POINT_VERTEX:
+ intersection = p;
+ return INTERSECT_VERTEX;
+
+ case POINT_EDGE:
+ intersection = p;
+ return INTERSECT_EDGE;
+
+ case POINT_IN:
+ intersection = p;
+ return INTERSECT_FACE;
+
+ case POINT_OUT:
+ return INTERSECT_NONE;
+
+ default:
+ break;
+ }
+ return INTERSECT_NONE;
+ }
+
+
+ }
+}
+
+// explicit instantiations.
+template class carve::poly::Face<3>;
diff --git a/extern/carve/lib/geom2d.cpp b/extern/carve/lib/geom2d.cpp
new file mode 100644
index 00000000000..bfa84f5fd24
--- /dev/null
+++ b/extern/carve/lib/geom2d.cpp
@@ -0,0 +1,260 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/geom2d.hpp>
+#include <carve/math.hpp>
+#include <carve/aabb.hpp>
+
+#include <algorithm>
+#include <iostream>
+
+namespace carve {
+ namespace geom2d {
+
+ bool lineSegmentIntersection_simple(const P2 &l1v1, const P2 &l1v2,
+ const P2 &l2v1, const P2 &l2v2) {
+ geom::aabb<2> l1_aabb, l2_aabb;
+ l1_aabb.fit(l1v1, l1v2);
+ l2_aabb.fit(l2v1, l2v2);
+
+ if (l1_aabb.maxAxisSeparation(l2_aabb) > 0.0) {
+ return false;
+ }
+
+ double l1v1_side = orient2d(l2v1, l2v2, l1v1);
+ double l1v2_side = orient2d(l2v1, l2v2, l1v2);
+
+ double l2v1_side = orient2d(l1v1, l1v2, l2v1);
+ double l2v2_side = orient2d(l1v1, l1v2, l2v2);
+
+ if (l1v1_side * l1v2_side > 0.0 || l2v1_side * l2v2_side > 0.0) {
+ return false;
+ }
+
+ return true;
+ }
+
+ bool lineSegmentIntersection_simple(const LineSegment2 &l1,
+ const LineSegment2 &l2) {
+ return lineSegmentIntersection_simple(l1.v1, l1.v2, l2.v1, l2.v2);
+ }
+
+ LineIntersectionInfo lineSegmentIntersection(const P2 &l1v1, const P2 &l1v2,
+ const P2 &l2v1, const P2 &l2v2) {
+ geom::aabb<2> l1_aabb, l2_aabb;
+ l1_aabb.fit(l1v1, l1v2);
+ l2_aabb.fit(l2v1, l2v2);
+
+ if (l1_aabb.maxAxisSeparation(l2_aabb) > EPSILON) {
+ return LineIntersectionInfo(NO_INTERSECTION);
+ }
+
+ if (carve::geom::equal(l1v1, l1v2) || carve::geom::equal(l2v1, l2v2)) {
+ throw carve::exception("zero length line in intersection test");
+ }
+
+ double dx13 = l1v1.x - l2v1.x;
+ double dy13 = l1v1.y - l2v1.y;
+ double dx43 = l2v2.x - l2v1.x;
+ double dy43 = l2v2.y - l2v1.y;
+ double dx21 = l1v2.x - l1v1.x;
+ double dy21 = l1v2.y - l1v1.y;
+ double ua_n = dx43 * dy13 - dy43 * dx13;
+ double ub_n = dx21 * dy13 - dy21 * dx13;
+ double u_d = dy43 * dx21 - dx43 * dy21;
+
+ if (carve::math::ZERO(u_d)) {
+ if (carve::math::ZERO(ua_n)) {
+ if (carve::geom::equal(l1v2, l2v1)) {
+ return LineIntersectionInfo(INTERSECTION_PP, l1v2, 1, 2);
+ }
+ if (carve::geom::equal(l1v1, l2v2)) {
+ return LineIntersectionInfo(INTERSECTION_PP, l1v1, 0, 4);
+ }
+ if (l1v2.x > l2v1.x && l1v1.x < l2v2.x) {
+ return LineIntersectionInfo(COLINEAR);
+ }
+ }
+ return LineIntersectionInfo(NO_INTERSECTION);
+ }
+
+ double ua = ua_n / u_d;
+ double ub = ub_n / u_d;
+
+ if (-EPSILON <= ua && ua <= 1.0 + EPSILON && -EPSILON <= ub && ub <= 1.0 + EPSILON) {
+ double x = l1v1.x + ua * (l1v2.x - l1v1.x);
+ double y = l1v1.y + ua * (l1v2.y - l1v1.y);
+
+ P2 p = carve::geom::VECTOR(x, y);
+
+ double d1 = distance2(p, l1v1);
+ double d2 = distance2(p, l1v2);
+ double d3 = distance2(p, l2v1);
+ double d4 = distance2(p, l2v2);
+
+ int n = -1;
+
+ if (std::min(d1, d2) < EPSILON2) {
+ if (d1 < d2) {
+ p = l1v1; n = 0;
+ } else {
+ p = l1v2; n = 1;
+ }
+ if (std::min(d3, d4) < EPSILON2) {
+ if (d3 < d4) {
+ return LineIntersectionInfo(INTERSECTION_PP, p, n, 2);
+ } else {
+ return LineIntersectionInfo(INTERSECTION_PP, p, n, 3);
+ }
+ } else {
+ return LineIntersectionInfo(INTERSECTION_PL, p, n, -1);
+ }
+ } else if (std::min(d3, d4) < EPSILON2) {
+ if (d3 < d4) {
+ return LineIntersectionInfo(INTERSECTION_LP, l2v1, -1, 2);
+ } else {
+ return LineIntersectionInfo(INTERSECTION_LP, l2v2, -1, 3);
+ }
+ } else {
+ return LineIntersectionInfo(INTERSECTION_LL, p, -1, -1);
+ }
+ }
+ return LineIntersectionInfo(NO_INTERSECTION);
+ }
+
+ LineIntersectionInfo lineSegmentIntersection(const LineSegment2 &l1,
+ const LineSegment2 &l2) {
+ return lineSegmentIntersection(l1.v1, l1.v2, l2.v1, l2.v2);
+ }
+
+ double signedArea(const P2Vector &points) {
+ return signedArea(points, p2_adapt_ident());
+ }
+
+ bool pointInPolySimple(const P2Vector &points, const P2 &p) {
+ return pointInPolySimple(points, p2_adapt_ident(), p);
+ }
+
+ PolyInclusionInfo pointInPoly(const P2Vector &points, const P2 &p) {
+ return pointInPoly(points, p2_adapt_ident(), p);
+ }
+
+ int lineSegmentPolyIntersections(const P2Vector &points,
+ LineSegment2 line,
+ std::vector<PolyIntersectionInfo> &out) {
+ int count = 0;
+
+ if (line.v2 < line.v1) { line.flip(); }
+ out.clear();
+
+ for (P2Vector::size_type i = 0, l = points.size(); i < l; i++) {
+ P2Vector::size_type j = (i + 1) % l;
+ LineIntersectionInfo e =
+ lineSegmentIntersection(LineSegment2(points[i], points[j]), line);
+
+ switch (e.iclass) {
+ case INTERSECTION_PL: {
+ out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, e.ipoint, i));
+ count++;
+ break;
+ }
+ case INTERSECTION_PP: {
+ out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, e.ipoint, i + e.p2 - 2));
+ count++;
+ break;
+ }
+ case INTERSECTION_LP: {
+ out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, e.ipoint, i + e.p2 - 2));
+ count++;
+ break;
+ }
+ case INTERSECTION_LL: {
+ out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, e.ipoint, i));
+ count++;
+ break;
+ }
+ case COLINEAR: {
+ int n1 = (int)i, n2 = (int)j;
+ P2 q1 = points[i], q2 = points[j];
+
+ if (q2 < q1) { std::swap(q1, q2); std::swap(n1, n2); }
+
+ if (equal(q1, line.v1)) {
+ out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q1, n1));
+ } else if (q1.x < line.v1.x) {
+ out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, line.v1, i));
+ } else {
+ out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q1, n1));
+ }
+ if (equal(q2, line.v2)) {
+ out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q2, n2));
+ } else if (line.v2.x < q2.x) {
+ out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, line.v2, i));
+ } else {
+ out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q2, n2));
+ }
+
+ count += 2;
+
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ return count;
+ }
+
+ struct FwdSort {
+ bool operator()(const PolyIntersectionInfo &a,
+ const PolyIntersectionInfo &b) const {
+ return a.ipoint < b.ipoint;
+ }
+ };
+
+ struct RevSort {
+ bool operator()(const PolyIntersectionInfo &a,
+ const PolyIntersectionInfo &b) const {
+ return a.ipoint < b.ipoint;
+ }
+ };
+
+ int sortedLineSegmentPolyIntersections(const P2Vector &points,
+ LineSegment2 line,
+ std::vector<PolyIntersectionInfo> &out) {
+
+ bool swapped = line.v2 < line.v1;
+
+ int count = lineSegmentPolyIntersections(points, line, out);
+ if (swapped) {
+ std::sort(out.begin(), out.end(), RevSort());
+ } else {
+ std::sort(out.begin(), out.end(), FwdSort());
+ }
+ return count;
+ }
+
+ bool pickContainedPoint(const std::vector<P2> &poly, P2 &result) {
+ return pickContainedPoint(poly, p2_adapt_ident(), result);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/geom3d.cpp b/extern/carve/lib/geom3d.cpp
new file mode 100644
index 00000000000..061dfe91802
--- /dev/null
+++ b/extern/carve/lib/geom3d.cpp
@@ -0,0 +1,164 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/math.hpp>
+#include <carve/geom3d.hpp>
+
+#include <algorithm>
+
+namespace carve {
+ namespace geom3d {
+
+ namespace {
+ int is_same(const std::vector<const Vector *> &a,
+ const std::vector<const Vector *> &b) {
+ if (a.size() != b.size()) return false;
+
+ const size_t S = a.size();
+ size_t i, j, p;
+
+ for (p = 0; p < S; ++p) {
+ if (a[0] == b[p]) break;
+ }
+ if (p == S) return 0;
+
+ for (i = 1, j = p + 1; j < S; ++i, ++j) if (a[i] != b[j]) goto not_fwd;
+ for ( j = 0; i < S; ++i, ++j) if (a[i] != b[j]) goto not_fwd;
+ return +1;
+
+not_fwd:
+ for (i = 1, j = p - 1; j != (size_t)-1; ++i, --j) if (a[i] != b[j]) goto not_rev;
+ for ( j = S - 1; i < S; ++i, --j) if (a[i] != b[j]) goto not_rev;
+ return -1;
+
+not_rev:
+ return 0;
+ }
+ }
+
+ bool planeIntersection(const Plane &a, const Plane &b, Ray &r) {
+ Vector N = cross(a.N, b.N);
+ if (N.isZero()) {
+ return false;
+ }
+ N.normalize();
+
+ double dot_aa = dot(a.N, a.N);
+ double dot_bb = dot(b.N, b.N);
+ double dot_ab = dot(a.N, b.N);
+
+ double determinant = dot_aa * dot_bb - dot_ab * dot_ab;
+
+ double c1 = ( a.d * dot_bb - b.d * dot_ab) / determinant;
+ double c2 = ( b.d * dot_aa - a.d * dot_ab) / determinant;
+
+ r.D = N;
+ r.v = c1 * a.N + c2 * b.N;
+
+ return true;
+ }
+
+ IntersectionClass rayPlaneIntersection(const Plane &p,
+ const Vector &v1,
+ const Vector &v2,
+ Vector &v,
+ double &t) {
+ Vector Rd = v2 - v1;
+ double Vd = dot(p.N, Rd);
+ double V0 = dot(p.N, v1) + p.d;
+
+ if (carve::math::ZERO(Vd)) {
+ if (carve::math::ZERO(V0)) {
+ return INTERSECT_BAD;
+ } else {
+ return INTERSECT_NONE;
+ }
+ }
+
+ t = -V0 / Vd;
+ v = v1 + t * Rd;
+ return INTERSECT_PLANE;
+ }
+
+ IntersectionClass lineSegmentPlaneIntersection(const Plane &p,
+ const LineSegment &line,
+ Vector &v) {
+ double t;
+ IntersectionClass r = rayPlaneIntersection(p, line.v1, line.v2, v, t);
+
+ if (r <= 0) return r;
+
+ if ((t < 0.0 && !equal(v, line.v1)) || (t > 1.0 && !equal(v, line.v2)))
+ return INTERSECT_NONE;
+
+ return INTERSECT_PLANE;
+ }
+
+ RayIntersectionClass rayRayIntersection(const Ray &r1,
+ const Ray &r2,
+ Vector &v1,
+ Vector &v2,
+ double &mu1,
+ double &mu2) {
+ if (!r1.OK() || !r2.OK()) return RR_DEGENERATE;
+
+ Vector v_13 = r1.v - r2.v;
+
+ double d1343 = dot(v_13, r2.D);
+ double d4321 = dot(r2.D, r1.D);
+ double d1321 = dot(v_13, r1.D);
+ double d4343 = dot(r2.D, r2.D);
+ double d2121 = dot(r1.D, r1.D);
+
+ double numer = d1343 * d4321 - d1321 * d4343;
+ double denom = d2121 * d4343 - d4321 * d4321;
+
+ // dc - eb
+ // -------
+ // ab - cc
+
+ // dc/eb - 1
+ // ---------
+ // a/e - cc/eb
+
+ // dc/b - e
+ // --------
+ // a - cc/b
+
+ // d/b - e/c
+ // ---------
+ // a/c - c/b
+
+ if (fabs(denom) * double(1<<10) <= fabs(numer)) {
+ return RR_PARALLEL;
+ }
+
+ mu1 = numer / denom;
+ mu2 = (d1343 + d4321 * mu1) / d4343;
+
+ v1 = r1.v + mu1 * r1.D;
+ v2 = r2.v + mu2 * r2.D;
+
+ return (equal(v1, v2)) ? RR_INTERSECTION : RR_NO_INTERSECTION;
+ }
+
+ }
+}
diff --git a/extern/carve/lib/intersect.cpp b/extern/carve/lib/intersect.cpp
new file mode 100644
index 00000000000..35166a6411e
--- /dev/null
+++ b/extern/carve/lib/intersect.cpp
@@ -0,0 +1,1668 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/pointset.hpp>
+#include <carve/polyline.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "csg_detail.hpp"
+#include "csg_data.hpp"
+
+#include "intersect_debug.hpp"
+#include "intersect_common.hpp"
+#include "intersect_classify_common.hpp"
+
+#include "csg_collector.hpp"
+
+#include <carve/timing.hpp>
+#include <carve/colour.hpp>
+
+
+
+
+carve::csg::VertexPool::VertexPool() {
+}
+
+carve::csg::VertexPool::~VertexPool() {
+}
+
+void carve::csg::VertexPool::reset() {
+ pool.clear();
+}
+
+carve::csg::VertexPool::vertex_t *carve::csg::VertexPool::get(const vertex_t::vector_t &v) {
+ if (!pool.size() || pool.back().size() == blocksize) {
+ pool.push_back(std::vector<vertex_t>());
+ pool.back().reserve(blocksize);
+ }
+ pool.back().push_back(vertex_t(v));
+ return &pool.back().back();
+}
+
+bool carve::csg::VertexPool::inPool(vertex_t *v) const {
+ for (pool_t::const_iterator i = pool.begin(); i != pool.end(); ++i) {
+ if (v >= &(i->front()) && v <= &(i->back())) return true;
+ }
+ return false;
+}
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+void writePLY(const std::string &out_file, const carve::point::PointSet *points, bool ascii);
+void writePLY(const std::string &out_file, const carve::line::PolylineSet *lines, bool ascii);
+void writePLY(const std::string &out_file, const carve::mesh::MeshSet<3> *poly, bool ascii);
+
+static carve::mesh::MeshSet<3> *faceLoopsToPolyhedron(const carve::csg::FaceLoopList &fl) {
+ std::vector<carve::mesh::MeshSet<3>::face_t *> faces;
+ faces.reserve(fl.size());
+ for (carve::csg::FaceLoop *f = fl.head; f; f = f->next) {
+ faces.push_back(f->orig_face->create(f->vertices.begin(), f->vertices.end(), false));
+ }
+ carve::mesh::MeshSet<3> *poly = new carve::mesh::MeshSet<3>(faces);
+
+ return poly;
+}
+#endif
+
+namespace {
+ /**
+ * \brief Sort a range [\a beg, \a end) of vertices in order of increasing dot product of vertex - \a base on \dir.
+ *
+ * @tparam[in] T a forward iterator type.
+ * @param[in] dir The direction in which to sort vertices.
+ * @param[in] base
+ * @param[in] beg The start of the vertex range to sort.
+ * @param[in] end The end of the vertex range to sort.
+ * @param[out] out The sorted vertex result.
+ * @param[in] size_hint A hint regarding the size of the output
+ * vector (to avoid needing to be able to calculate \a
+ * end - \a beg).
+ */
+ template<typename iter_t>
+ void orderVertices(iter_t beg, const iter_t end,
+ const carve::mesh::MeshSet<3>::vertex_t::vector_t &dir,
+ const carve::mesh::MeshSet<3>::vertex_t::vector_t &base,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &out) {
+ typedef std::vector<std::pair<double, carve::mesh::MeshSet<3>::vertex_t *> > DVVector;
+ std::vector<std::pair<double, carve::mesh::MeshSet<3>::vertex_t *> > ordered_vertices;
+
+ ordered_vertices.reserve(std::distance(beg, end));
+
+ for (; beg != end; ++beg) {
+ carve::mesh::MeshSet<3>::vertex_t *v = (*beg);
+ ordered_vertices.push_back(std::make_pair(carve::geom::dot(v->v - base, dir), v));
+ }
+
+ std::sort(ordered_vertices.begin(), ordered_vertices.end());
+
+ out.clear();
+ out.reserve(ordered_vertices.size());
+ for (DVVector::const_iterator
+ i = ordered_vertices.begin(), e = ordered_vertices.end();
+ i != e;
+ ++i) {
+ out.push_back((*i).second);
+ }
+ }
+
+
+
+ /**
+ *
+ *
+ * @param dir
+ * @param base
+ * @param beg
+ * @param end
+ */
+ template<typename iter_t>
+ void selectOrderingProjection(iter_t beg, const iter_t end,
+ carve::mesh::MeshSet<3>::vertex_t::vector_t &dir,
+ carve::mesh::MeshSet<3>::vertex_t::vector_t &base) {
+ double dx, dy, dz;
+ carve::mesh::MeshSet<3>::vertex_t *min_x, *min_y, *min_z, *max_x, *max_y, *max_z;
+ if (beg == end) return;
+ min_x = max_x = min_y = max_y = min_z = max_z = *beg++;
+ for (; beg != end; ++beg) {
+ if (min_x->v.x > (*beg)->v.x) min_x = *beg;
+ if (min_y->v.y > (*beg)->v.y) min_y = *beg;
+ if (min_z->v.z > (*beg)->v.z) min_z = *beg;
+ if (max_x->v.x < (*beg)->v.x) max_x = *beg;
+ if (max_y->v.y < (*beg)->v.y) max_y = *beg;
+ if (max_z->v.z < (*beg)->v.z) max_z = *beg;
+ }
+
+ dx = max_x->v.x - min_x->v.x;
+ dy = max_y->v.y - min_y->v.y;
+ dz = max_z->v.z - min_z->v.z;
+
+ if (dx > dy) {
+ if (dx > dz) {
+ dir = max_x->v - min_x->v; base = min_x->v;
+ } else {
+ dir = max_z->v - min_z->v; base = min_z->v;
+ }
+ } else {
+ if (dy > dz) {
+ dir = max_y->v - min_y->v; base = min_y->v;
+ } else {
+ dir = max_z->v - min_z->v; base = min_z->v;
+ }
+ }
+ }
+}
+
+namespace {
+ struct dump_data {
+ carve::mesh::MeshSet<3>::vertex_t *i_pt;
+ carve::csg::IObj i_src;
+ carve::csg::IObj i_tgt;
+ dump_data(carve::mesh::MeshSet<3>::vertex_t *_i_pt,
+ carve::csg::IObj _i_src,
+ carve::csg::IObj _i_tgt) : i_pt(_i_pt), i_src(_i_src), i_tgt(_i_tgt) {
+ }
+ };
+
+
+
+ struct dump_sort {
+ bool operator()(const dump_data &a, const dump_data &b) const {
+ if (a.i_pt->v.x < b.i_pt->v.x) return true;
+ if (a.i_pt->v.x > b.i_pt->v.x) return false;
+ if (a.i_pt->v.y < b.i_pt->v.y) return true;
+ if (a.i_pt->v.y > b.i_pt->v.y) return false;
+ if (a.i_pt->v.z < b.i_pt->v.z) return true;
+ if (a.i_pt->v.z > b.i_pt->v.z) return false;
+ return false;
+ }
+ };
+
+
+
+ void dump_intersections(std::ostream &out, carve::csg::Intersections &csg_intersections) {
+ std::vector<dump_data> temp;
+
+ for (carve::csg::Intersections::const_iterator
+ i = csg_intersections.begin(),
+ ie = csg_intersections.end();
+ i != ie;
+ ++i) {
+ const carve::csg::IObj &i_src = ((*i).first);
+
+ for (carve::csg::Intersections::mapped_type::const_iterator
+ j = (*i).second.begin(),
+ je = (*i).second.end();
+ j != je;
+ ++j) {
+ const carve::csg::IObj &i_tgt = ((*j).first);
+ carve::mesh::MeshSet<3>::vertex_t *i_pt = ((*j).second);
+ temp.push_back(dump_data(i_pt, i_src, i_tgt));
+ }
+ }
+
+ std::sort(temp.begin(), temp.end(), dump_sort());
+
+ for (size_t i = 0; i < temp.size(); ++i) {
+ const carve::csg::IObj &i_src = temp[i].i_src;
+ const carve::csg::IObj &i_tgt = temp[i].i_tgt;
+ out
+ << "INTERSECTION: " << temp[i].i_pt << " (" << temp[i].i_pt->v << ") "
+ << "is " << i_src << ".." << i_tgt << std::endl;
+ }
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ std::vector<carve::geom3d::Vector> vertices;
+
+ for (carve::csg::Intersections::const_iterator
+ i = csg_intersections.begin(),
+ ie = csg_intersections.end();
+ i != ie;
+ ++i) {
+ for (carve::csg::Intersections::mapped_type::const_iterator
+ j = (*i).second.begin(),
+ je = (*i).second.end();
+ j != je;
+ ++j) {
+ carve::mesh::MeshSet<3>::vertex_t *i_pt = ((*j).second);
+ vertices.push_back(i_pt->v);
+ }
+ }
+
+ carve::point::PointSet points(vertices);
+
+ std::string outf("/tmp/intersection-points.ply");
+ ::writePLY(outf, &points, true);
+#endif
+ }
+
+
+
+ /**
+ * \brief Populate a collection with the faces adjoining an edge.
+ *
+ * @tparam face_set_t A collection type.
+ * @param e The edge for which to collect adjoining faces.
+ * @param faces
+ */
+ template<typename face_set_t>
+ inline void facesForVertex(carve::mesh::MeshSet<3>::vertex_t *v,
+ const carve::csg::detail::VEVecMap &ve,
+ face_set_t &faces) {
+ carve::csg::detail::VEVecMap::const_iterator vi = ve.find(v);
+ if (vi != ve.end()) {
+ for (carve::csg::detail::VEVecMap::data_type::const_iterator i = (*vi).second.begin(); i != (*vi).second.end(); ++i) {
+ faces.insert((*i)->face);
+ }
+ }
+ }
+
+ /**
+ * \brief Populate a collection with the faces adjoining an edge.
+ *
+ * @tparam face_set_t A collection type.
+ * @param e The edge for which to collect adjoining faces.
+ * @param faces
+ */
+ template<typename face_set_t>
+ inline void facesForEdge(carve::mesh::MeshSet<3>::edge_t *e,
+ face_set_t &faces) {
+ faces.insert(e->face);
+ }
+
+ /**
+ * \brief Populate a collection with the faces adjoining a face.
+ *
+ * @tparam face_set_t A collection type.
+ * @param f The face for which to collect adjoining faces.
+ * @param faces
+ */
+ template<typename face_set_t>
+ inline void facesForFace(carve::mesh::MeshSet<3>::face_t *f,
+ face_set_t &faces) {
+ faces.insert(f);
+ }
+
+ /**
+ * \brief Populate a collection with the faces adjoining an intersection object.
+ *
+ * @tparam face_set_t A collection type holding const carve::poly::Polyhedron::face_t *.
+ * @param obj The intersection object for which to collect adjoining faces.
+ * @param faces
+ */
+ template<typename face_set_t>
+ void facesForObject(const carve::csg::IObj &obj,
+ const carve::csg::detail::VEVecMap &ve,
+ face_set_t &faces) {
+ switch (obj.obtype) {
+ case carve::csg::IObj::OBTYPE_VERTEX:
+ facesForVertex(obj.vertex, ve, faces);
+ break;
+
+ case carve::csg::IObj::OBTYPE_EDGE:
+ facesForEdge(obj.edge, faces);
+ break;
+
+ case carve::csg::IObj::OBTYPE_FACE:
+ facesForFace(obj.face, faces);
+ break;
+
+ default:
+ break;
+ }
+ }
+
+
+
+}
+
+
+
+bool carve::csg::CSG::Hooks::hasHook(unsigned hook_num) {
+ return hooks[hook_num].size() > 0;
+}
+
+void carve::csg::CSG::Hooks::intersectionVertex(const carve::mesh::MeshSet<3>::vertex_t *vertex,
+ const IObjPairSet &intersections) {
+ for (std::list<Hook *>::iterator j = hooks[INTERSECTION_VERTEX_HOOK].begin();
+ j != hooks[INTERSECTION_VERTEX_HOOK].end();
+ ++j) {
+ (*j)->intersectionVertex(vertex, intersections);
+ }
+}
+
+void carve::csg::CSG::Hooks::processOutputFace(std::vector<carve::mesh::MeshSet<3>::face_t *> &faces,
+ const carve::mesh::MeshSet<3>::face_t *orig_face,
+ bool flipped) {
+ for (std::list<Hook *>::iterator j = hooks[PROCESS_OUTPUT_FACE_HOOK].begin();
+ j != hooks[PROCESS_OUTPUT_FACE_HOOK].end();
+ ++j) {
+ (*j)->processOutputFace(faces, orig_face, flipped);
+ }
+}
+
+void carve::csg::CSG::Hooks::resultFace(const carve::mesh::MeshSet<3>::face_t *new_face,
+ const carve::mesh::MeshSet<3>::face_t *orig_face,
+ bool flipped) {
+ for (std::list<Hook *>::iterator j = hooks[RESULT_FACE_HOOK].begin();
+ j != hooks[RESULT_FACE_HOOK].end();
+ ++j) {
+ (*j)->resultFace(new_face, orig_face, flipped);
+ }
+}
+
+void carve::csg::CSG::Hooks::registerHook(Hook *hook, unsigned hook_bits) {
+ for (unsigned i = 0; i < HOOK_MAX; ++i) {
+ if (hook_bits & (1U << i)) {
+ hooks[i].push_back(hook);
+ }
+ }
+}
+
+void carve::csg::CSG::Hooks::unregisterHook(Hook *hook) {
+ for (unsigned i = 0; i < HOOK_MAX; ++i) {
+ hooks[i].erase(std::remove(hooks[i].begin(), hooks[i].end(), hook), hooks[i].end());
+ }
+}
+
+void carve::csg::CSG::Hooks::reset() {
+ for (unsigned i = 0; i < HOOK_MAX; ++i) {
+ for (std::list<Hook *>::iterator j = hooks[i].begin(); j != hooks[i].end(); ++j) {
+ delete (*j);
+ }
+ hooks[i].clear();
+ }
+}
+
+carve::csg::CSG::Hooks::Hooks() : hooks() {
+ hooks.resize(HOOK_MAX);
+}
+
+carve::csg::CSG::Hooks::~Hooks() {
+ reset();
+}
+
+
+
+void carve::csg::CSG::makeVertexIntersections() {
+ static carve::TimingName FUNC_NAME("CSG::makeVertexIntersections()");
+ carve::TimingBlock block(FUNC_NAME);
+ vertex_intersections.clear();
+ for (Intersections::const_iterator
+ i = intersections.begin(),
+ ie = intersections.end();
+ i != ie;
+ ++i) {
+ const IObj &i_src = ((*i).first);
+
+ for (Intersections::mapped_type::const_iterator
+ j = (*i).second.begin(),
+ je = (*i).second.end();
+ j != je;
+ ++j) {
+ const IObj &i_tgt = ((*j).first);
+ carve::mesh::MeshSet<3>::vertex_t *i_pt = ((*j).second);
+
+ vertex_intersections[i_pt].insert(std::make_pair(i_src, i_tgt));
+ }
+ }
+}
+
+
+
+static carve::mesh::MeshSet<3>::vertex_t *chooseWeldPoint(
+ const carve::csg::detail::VSet &equivalent,
+ carve::csg::VertexPool &vertex_pool) {
+ // XXX: choose a better weld point.
+ if (!equivalent.size()) return NULL;
+
+ for (carve::csg::detail::VSet::const_iterator
+ i = equivalent.begin(), e = equivalent.end();
+ i != e;
+ ++i) {
+ if (!vertex_pool.inPool((*i))) return (*i);
+ }
+ return *equivalent.begin();
+}
+
+
+
+static const carve::mesh::MeshSet<3>::vertex_t *weld(
+ const carve::csg::detail::VSet &equivalent,
+ carve::csg::VertexIntersections &vertex_intersections,
+ carve::csg::VertexPool &vertex_pool) {
+ carve::mesh::MeshSet<3>::vertex_t *weld_point = chooseWeldPoint(equivalent, vertex_pool);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "weld: " << equivalent.size() << " vertices ( ";
+ for (carve::csg::detail::VSet::const_iterator
+ i = equivalent.begin(), e = equivalent.end();
+ i != e;
+ ++i) {
+ const carve::mesh::MeshSet<3>::vertex_t *v = (*i);
+ std::cerr << " " << v;
+ }
+ std::cerr << ") to " << weld_point << std::endl;
+#endif
+
+ if (!weld_point) return NULL;
+
+ carve::csg::VertexIntersections::mapped_type &weld_tgt = (vertex_intersections[weld_point]);
+
+ for (carve::csg::detail::VSet::const_iterator
+ i = equivalent.begin(), e = equivalent.end();
+ i != e;
+ ++i) {
+ carve::mesh::MeshSet<3>::vertex_t *v = (*i);
+
+ if (v != weld_point) {
+ carve::csg::VertexIntersections::iterator j = vertex_intersections.find(v);
+
+ if (j != vertex_intersections.end()) {
+ weld_tgt.insert((*j).second.begin(), (*j).second.end());
+ vertex_intersections.erase(j);
+ }
+ }
+ }
+ return weld_point;
+}
+
+
+
+void carve::csg::CSG::groupIntersections() {
+#if 0 // old code, to be removed.
+ static carve::TimingName GROUP_INTERSECTONS("groupIntersections()");
+
+ carve::TimingBlock block(GROUP_INTERSECTONS);
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> vertices;
+ detail::VVSMap graph;
+#if defined(CARVE_DEBUG)
+ std::cerr << "groupIntersections()" << ": vertex_intersections.size()==" << vertex_intersections.size() << std::endl;
+#endif
+
+ vertices.reserve(vertex_intersections.size());
+ for (carve::csg::VertexIntersections::const_iterator
+ i = vertex_intersections.begin(),
+ e = vertex_intersections.end();
+ i != e;
+ ++i)
+ {
+ vertices.push_back((*i).first);
+ }
+ carve::geom3d::AABB aabb;
+ aabb.fit(vertices.begin(), vertices.end(), carve::poly::vec_adapt_vertex_ptr());
+ Octree vertex_intersections_octree;
+ vertex_intersections_octree.setBounds(aabb);
+
+ vertex_intersections_octree.addVertices(vertices);
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> out;
+ for (size_t i = 0, l = vertices.size(); i != l; ++i) {
+ // let's find all the vertices near this one.
+ out.clear();
+ vertex_intersections_octree.findVerticesNearAllowDupes(vertices[i]->v, out);
+
+ for (size_t j = 0; j < out.size(); ++j) {
+ if (vertices[i] != out[j] && carve::geom::equal(vertices[i]->v, out[j]->v)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "EQ: " << vertices[i] << "," << out[j] << " " << vertices[i]->v << "," << out[j]->v << std::endl;
+#endif
+ graph[vertices[i]].insert(out[j]);
+ graph[out[j]].insert(vertices[i]);
+ }
+ }
+ }
+
+ detail::VSet visited, open;
+ while (graph.size()) {
+ visited.clear();
+ open.clear();
+ detail::VVSMap::iterator i = graph.begin();
+ open.insert((*i).first);
+ while (open.size()) {
+ detail::VSet::iterator t = open.begin();
+ const carve::mesh::MeshSet<3>::vertex_t *o = (*t);
+ open.erase(t);
+ i = graph.find(o);
+ CARVE_ASSERT(i != graph.end());
+ visited.insert(o);
+ for (detail::VVSMap::mapped_type::const_iterator
+ j = (*i).second.begin(),
+ je = (*i).second.end();
+ j != je;
+ ++j) {
+ if (visited.count((*j)) == 0) {
+ open.insert((*j));
+ }
+ }
+ graph.erase(i);
+ }
+ weld(visited, vertex_intersections, vertex_pool);
+ }
+#endif
+}
+
+
+
+void carve::csg::CSG::intersectingFacePairs(detail::Data &data) {
+ static carve::TimingName FUNC_NAME("CSG::intersectingFacePairs()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ // iterate over all intersection points.
+ for (VertexIntersections::const_iterator i = vertex_intersections.begin(), ie = vertex_intersections.end(); i != ie; ++i) {
+ carve::mesh::MeshSet<3>::vertex_t *i_pt = ((*i).first);
+ detail::VFSMap::mapped_type &face_set = (data.fmap_rev[i_pt]);
+
+ // for all pairs of intersecting objects at this point
+ for (VertexIntersections::data_type::const_iterator j = (*i).second.begin(), je = (*i).second.end(); j != je; ++j) {
+ const IObj &i_src = ((*j).first);
+ const IObj &i_tgt = ((*j).second);
+
+ // work out the faces involved. this updates fmap_rev.
+ facesForObject(i_src, data.vert_to_edges, face_set);
+ facesForObject(i_tgt, data.vert_to_edges, face_set);
+
+ // record the intersection with respect to any involved vertex.
+ if (i_src.obtype == IObj::OBTYPE_VERTEX) data.vmap[i_src.vertex] = i_pt;
+ if (i_tgt.obtype == IObj::OBTYPE_VERTEX) data.vmap[i_tgt.vertex] = i_pt;
+
+ // record the intersection with respect to any involved edge.
+ if (i_src.obtype == IObj::OBTYPE_EDGE) data.emap[i_src.edge].insert(i_pt);
+ if (i_tgt.obtype == IObj::OBTYPE_EDGE) data.emap[i_tgt.edge].insert(i_pt);
+ }
+
+ // record the intersection with respect to each face.
+ for (carve::csg::detail::VFSMap::mapped_type::const_iterator k = face_set.begin(), ke = face_set.end(); k != ke; ++k) {
+ carve::mesh::MeshSet<3>::face_t *f = (*k);
+ data.fmap[f].insert(i_pt);
+ }
+ }
+}
+
+
+
+void carve::csg::CSG::_generateVertexVertexIntersections(carve::mesh::MeshSet<3>::vertex_t *va,
+ carve::mesh::MeshSet<3>::edge_t *eb) {
+ if (intersections.intersects(va, eb->v1())) {
+ return;
+ }
+
+ double d_v1 = carve::geom::distance2(va->v, eb->v1()->v);
+
+ if (d_v1 < carve::EPSILON2) {
+ intersections.record(va, eb->v1(), va);
+ }
+}
+
+
+
+void carve::csg::CSG::generateVertexVertexIntersections(carve::mesh::MeshSet<3>::face_t *a,
+ const std::vector<carve::mesh::MeshSet<3>::face_t *> &b) {
+ carve::mesh::MeshSet<3>::edge_t *ea, *eb;
+
+ ea = a->edge;
+ do {
+ for (size_t i = 0; i < b.size(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *t = b[i];
+ eb = t->edge;
+ do {
+ _generateVertexVertexIntersections(ea->v1(), eb);
+ eb = eb->next;
+ } while (eb != t->edge);
+ }
+ ea = ea->next;
+ } while (ea != a->edge);
+}
+
+
+
+void carve::csg::CSG::_generateVertexEdgeIntersections(carve::mesh::MeshSet<3>::vertex_t *va,
+ carve::mesh::MeshSet<3>::edge_t *eb) {
+ if (intersections.intersects(va, eb)) {
+ return;
+ }
+
+ if (std::min(eb->v1()->v.x, eb->v2()->v.x) - carve::EPSILON > va->v.x ||
+ std::max(eb->v1()->v.x, eb->v2()->v.x) + carve::EPSILON < va->v.x ||
+ std::min(eb->v1()->v.y, eb->v2()->v.y) - carve::EPSILON > va->v.y ||
+ std::max(eb->v1()->v.y, eb->v2()->v.y) + carve::EPSILON < va->v.y ||
+ std::min(eb->v1()->v.z, eb->v2()->v.z) - carve::EPSILON > va->v.z ||
+ std::max(eb->v1()->v.z, eb->v2()->v.z) + carve::EPSILON < va->v.z) {
+ return;
+ }
+
+ double a = cross(eb->v2()->v - eb->v1()->v, va->v - eb->v1()->v).length2();
+ double b = (eb->v2()->v - eb->v1()->v).length2();
+
+ if (a < b * carve::EPSILON2) {
+ // vertex-edge intersection
+ intersections.record(eb, va, va);
+ if (eb->rev) intersections.record(eb->rev, va, va);
+ }
+}
+
+
+
+void carve::csg::CSG::generateVertexEdgeIntersections(carve::mesh::MeshSet<3>::face_t *a,
+ const std::vector<carve::mesh::MeshSet<3>::face_t *> &b) {
+ carve::mesh::MeshSet<3>::edge_t *ea, *eb;
+
+ ea = a->edge;
+ do {
+ for (size_t i = 0; i < b.size(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *t = b[i];
+ eb = t->edge;
+ do {
+ _generateVertexEdgeIntersections(ea->v1(), eb);
+ eb = eb->next;
+ } while (eb != t->edge);
+ }
+ ea = ea->next;
+ } while (ea != a->edge);
+}
+
+
+
+void carve::csg::CSG::_generateEdgeEdgeIntersections(carve::mesh::MeshSet<3>::edge_t *ea,
+ carve::mesh::MeshSet<3>::edge_t *eb) {
+ if (intersections.intersects(ea, eb)) {
+ return;
+ }
+
+ carve::mesh::MeshSet<3>::vertex_t *v1 = ea->v1(), *v2 = ea->v2();
+ carve::mesh::MeshSet<3>::vertex_t *v3 = eb->v1(), *v4 = eb->v2();
+
+ carve::geom::aabb<3> ea_aabb, eb_aabb;
+ ea_aabb.fit(v1->v, v2->v);
+ eb_aabb.fit(v3->v, v4->v);
+ if (ea_aabb.maxAxisSeparation(eb_aabb) > EPSILON) return;
+
+ carve::mesh::MeshSet<3>::vertex_t::vector_t p1, p2;
+ double mu1, mu2;
+
+ switch (carve::geom3d::rayRayIntersection(carve::geom3d::Ray(v2->v - v1->v, v1->v),
+ carve::geom3d::Ray(v4->v - v3->v, v3->v),
+ p1, p2, mu1, mu2)) {
+ case carve::RR_INTERSECTION: {
+ // edges intersect
+ if (mu1 >= 0.0 && mu1 <= 1.0 && mu2 >= 0.0 && mu2 <= 1.0) {
+ carve::mesh::MeshSet<3>::vertex_t *p = vertex_pool.get((p1 + p2) / 2.0);
+ intersections.record(ea, eb, p);
+ if (ea->rev) intersections.record(ea->rev, eb, p);
+ if (eb->rev) intersections.record(ea, eb->rev, p);
+ if (ea->rev && eb->rev) intersections.record(ea->rev, eb->rev, p);
+ }
+ break;
+ }
+ case carve::RR_PARALLEL: {
+ // edges parallel. any intersection of this type should have
+ // been handled by generateVertexEdgeIntersections().
+ break;
+ }
+ case carve::RR_DEGENERATE: {
+ throw carve::exception("degenerate edge");
+ break;
+ }
+ case carve::RR_NO_INTERSECTION: {
+ break;
+ }
+ }
+}
+
+
+
+void carve::csg::CSG::generateEdgeEdgeIntersections(carve::mesh::MeshSet<3>::face_t *a,
+ const std::vector<carve::mesh::MeshSet<3>::face_t *> &b) {
+ carve::mesh::MeshSet<3>::edge_t *ea, *eb;
+
+ ea = a->edge;
+ do {
+ for (size_t i = 0; i < b.size(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *t = b[i];
+ eb = t->edge;
+ do {
+ _generateEdgeEdgeIntersections(ea, eb);
+ eb = eb->next;
+ } while (eb != t->edge);
+ }
+ ea = ea->next;
+ } while (ea != a->edge);
+}
+
+
+
+void carve::csg::CSG::_generateVertexFaceIntersections(carve::mesh::MeshSet<3>::face_t *fa,
+ carve::mesh::MeshSet<3>::edge_t *eb) {
+ if (intersections.intersects(eb->v1(), fa)) {
+ return;
+ }
+
+ double d1 = carve::geom::distance(fa->plane, eb->v1()->v);
+
+ if (fabs(d1) < carve::EPSILON &&
+ fa->containsPoint(eb->v1()->v)) {
+ intersections.record(eb->v1(), fa, eb->v1());
+ }
+}
+
+
+
+void carve::csg::CSG::generateVertexFaceIntersections(carve::mesh::MeshSet<3>::face_t *a,
+ const std::vector<carve::mesh::MeshSet<3>::face_t *> &b) {
+ carve::mesh::MeshSet<3>::edge_t *ea, *eb;
+
+ for (size_t i = 0; i < b.size(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *t = b[i];
+ eb = t->edge;
+ do {
+ _generateVertexFaceIntersections(a, eb);
+ eb = eb->next;
+ } while (eb != t->edge);
+ }
+}
+
+
+
+void carve::csg::CSG::_generateEdgeFaceIntersections(carve::mesh::MeshSet<3>::face_t *fa,
+ carve::mesh::MeshSet<3>::edge_t *eb) {
+ if (intersections.intersects(eb, fa)) {
+ return;
+ }
+
+ carve::mesh::MeshSet<3>::vertex_t::vector_t _p;
+ if (fa->simpleLineSegmentIntersection(carve::geom3d::LineSegment(eb->v1()->v, eb->v2()->v), _p)) {
+ carve::mesh::MeshSet<3>::vertex_t *p = vertex_pool.get(_p);
+ intersections.record(eb, fa, p);
+ if (eb->rev) intersections.record(eb->rev, fa, p);
+ }
+}
+
+
+
+void carve::csg::CSG::generateEdgeFaceIntersections(carve::mesh::MeshSet<3>::face_t *a,
+ const std::vector<carve::mesh::MeshSet<3>::face_t *> &b) {
+ carve::mesh::MeshSet<3>::edge_t *ea, *eb;
+
+ for (size_t i = 0; i < b.size(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *t = b[i];
+ eb = t->edge;
+ do {
+ _generateEdgeFaceIntersections(a, eb);
+ eb = eb->next;
+ } while (eb != t->edge);
+ }
+}
+
+
+
+void carve::csg::CSG::generateIntersectionCandidates(carve::mesh::MeshSet<3> *a,
+ const face_rtree_t *a_node,
+ carve::mesh::MeshSet<3> *b,
+ const face_rtree_t *b_node,
+ face_pairs_t &face_pairs,
+ bool descend_a) {
+ if (!a_node->bbox.intersects(b_node->bbox)) {
+ return;
+ }
+
+ if (a_node->child && (descend_a || !b_node->child)) {
+ for (face_rtree_t *node = a_node->child; node; node = node->sibling) {
+ generateIntersectionCandidates(a, node, b, b_node, face_pairs, false);
+ }
+ } else if (b_node->child) {
+ for (face_rtree_t *node = b_node->child; node; node = node->sibling) {
+ generateIntersectionCandidates(a, a_node, b, node, face_pairs, true);
+ }
+ } else {
+ for (size_t i = 0; i < a_node->data.size(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *fa = a_node->data[i];
+ carve::geom::aabb<3> aabb_a = fa->getAABB();
+ if (aabb_a.maxAxisSeparation(b_node->bbox) > carve::EPSILON) continue;
+
+ for (size_t j = 0; j < b_node->data.size(); ++j) {
+ carve::mesh::MeshSet<3>::face_t *fb = b_node->data[j];
+ carve::geom::aabb<3> aabb_b = fb->getAABB();
+ if (aabb_b.maxAxisSeparation(aabb_a) > carve::EPSILON) continue;
+
+ std::pair<double, double> a_ra = fa->rangeInDirection(fa->plane.N, fa->edge->vert->v);
+ std::pair<double, double> b_ra = fb->rangeInDirection(fa->plane.N, fa->edge->vert->v);
+ if (carve::rangeSeparation(a_ra, b_ra) > carve::EPSILON) continue;
+
+ std::pair<double, double> a_rb = fa->rangeInDirection(fb->plane.N, fb->edge->vert->v);
+ std::pair<double, double> b_rb = fb->rangeInDirection(fb->plane.N, fb->edge->vert->v);
+ if (carve::rangeSeparation(a_rb, b_rb) > carve::EPSILON) continue;
+
+ if (!facesAreCoplanar(fa, fb)) {
+ face_pairs[fa].push_back(fb);
+ face_pairs[fb].push_back(fa);
+ }
+ }
+ }
+ }
+}
+
+
+
+
+void carve::csg::CSG::generateIntersections(carve::mesh::MeshSet<3> *a,
+ const face_rtree_t *a_rtree,
+ carve::mesh::MeshSet<3> *b,
+ const face_rtree_t *b_rtree,
+ detail::Data &data) {
+ face_pairs_t face_pairs;
+ generateIntersectionCandidates(a, a_rtree, b, b_rtree, face_pairs);
+
+ for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *f = (*i).first;
+ carve::mesh::MeshSet<3>::edge_t *e = f->edge;
+ do {
+ data.vert_to_edges[e->v1()].push_back(e);
+ e = e->next;
+ } while (e != f->edge);
+ }
+
+ for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) {
+ generateVertexVertexIntersections((*i).first, (*i).second);
+ }
+
+ for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) {
+ generateVertexEdgeIntersections((*i).first, (*i).second);
+ }
+
+ for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) {
+ generateEdgeEdgeIntersections((*i).first, (*i).second);
+ }
+
+ for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) {
+ generateVertexFaceIntersections((*i).first, (*i).second);
+ }
+
+ for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) {
+ generateEdgeFaceIntersections((*i).first, (*i).second);
+ }
+
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "makeVertexIntersections" << std::endl;
+#endif
+ makeVertexIntersections();
+
+#if defined(CARVE_DEBUG)
+ std::cerr << " intersections.size() " << intersections.size() << std::endl;
+ map_histogram(std::cerr, intersections);
+ std::cerr << " vertex_intersections.size() " << vertex_intersections.size() << std::endl;
+ map_histogram(std::cerr, vertex_intersections);
+#endif
+
+#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_INTERSECTIONS)
+ HOOK(drawIntersections(vertex_intersections););
+#endif
+
+#if defined(CARVE_DEBUG)
+ std::cerr << " intersections.size() " << intersections.size() << std::endl;
+ std::cerr << " vertex_intersections.size() " << vertex_intersections.size() << std::endl;
+#endif
+
+ // notify about intersections.
+ if (hooks.hasHook(Hooks::INTERSECTION_VERTEX_HOOK)) {
+ for (VertexIntersections::const_iterator i = vertex_intersections.begin();
+ i != vertex_intersections.end();
+ ++i) {
+ hooks.intersectionVertex((*i).first, (*i).second);
+ }
+ }
+
+ // from here on, only vertex_intersections is used for intersection
+ // information.
+
+ // intersections still contains the vertex_to_face map. maybe that
+ // should be moved out into another class.
+ static_cast<Intersections::super>(intersections).clear();
+}
+
+
+
+carve::csg::CSG::CSG() {
+}
+
+
+
+/**
+ * \brief For each intersected edge, decompose into a set of vertex pairs representing an ordered set of edge fragments.
+ *
+ * @tparam[in,out] data Internal intersection data. data.emap is used to produce data.divided_edges.
+ */
+void carve::csg::CSG::divideIntersectedEdges(detail::Data &data) {
+ static carve::TimingName FUNC_NAME("CSG::divideIntersectedEdges()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ for (detail::EVSMap::const_iterator i = data.emap.begin(), ei = data.emap.end(); i != ei; ++i) {
+ carve::mesh::MeshSet<3>::edge_t *edge = (*i).first;
+ const detail::EVSMap::mapped_type &vertices = (*i).second;
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &verts = data.divided_edges[edge];
+ orderVertices(vertices.begin(), vertices.end(),
+ edge->v2()->v - edge->v1()->v, edge->v1()->v,
+ verts);
+ }
+}
+
+
+
+carve::csg::CSG::~CSG() {
+}
+
+
+
+void carve::csg::CSG::makeFaceEdges(carve::csg::EdgeClassification &eclass,
+ detail::Data &data) {
+ detail::FSet face_b_set;
+ for (detail::FVSMap::const_iterator
+ i = data.fmap.begin(), ie = data.fmap.end();
+ i != ie;
+ ++i) {
+ carve::mesh::MeshSet<3>::face_t *face_a = (*i).first;
+ const detail::FVSMap::mapped_type &face_a_intersections = ((*i).second);
+ face_b_set.clear();
+
+ // work out the set of faces from the opposing polyhedron that intersect face_a.
+ for (detail::FVSMap::mapped_type::const_iterator
+ j = face_a_intersections.begin(), je = face_a_intersections.end();
+ j != je;
+ ++j) {
+ for (detail::VFSMap::mapped_type::const_iterator
+ k = data.fmap_rev[*j].begin(), ke = data.fmap_rev[*j].end();
+ k != ke;
+ ++k) {
+ carve::mesh::MeshSet<3>::face_t *face_b = (*k);
+ if (face_a != face_b && face_b->mesh->meshset != face_a->mesh->meshset) {
+ face_b_set.insert(face_b);
+ }
+ }
+ }
+
+ // run through each intersecting face.
+ for (detail::FSet::const_iterator
+ j = face_b_set.begin(), je = face_b_set.end();
+ j != je;
+ ++j) {
+ carve::mesh::MeshSet<3>::face_t *face_b = (*j);
+ const detail::FVSMap::mapped_type &face_b_intersections = (data.fmap[face_b]);
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> vertices;
+ vertices.reserve(std::min(face_a_intersections.size(), face_b_intersections.size()));
+
+ // record the points of intersection between face_a and face_b
+ std::set_intersection(face_a_intersections.begin(),
+ face_a_intersections.end(),
+ face_b_intersections.begin(),
+ face_b_intersections.end(),
+ std::back_inserter(vertices));
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "face pair: "
+ << face_a << ":" << face_b
+ << " N(verts) " << vertices.size() << std::endl;
+ for (std::vector<carve::mesh::MeshSet<3>::vertex_t *>::const_iterator i = vertices.begin(), e = vertices.end(); i != e; ++i) {
+ std::cerr << (*i) << " " << (*i)->v << " ("
+ << carve::geom::distance(face_a->plane, (*i)->v) << ","
+ << carve::geom::distance(face_b->plane, (*i)->v) << ")"
+ << std::endl;
+ //CARVE_ASSERT(carve::geom3d::distance(face_a->plane_eqn, *(*i)) < EPSILON);
+ //CARVE_ASSERT(carve::geom3d::distance(face_b->plane_eqn, *(*i)) < EPSILON);
+ }
+#endif
+
+ // if there are two points of intersection, then the added edge is simple to determine.
+ if (vertices.size() == 2) {
+ carve::mesh::MeshSet<3>::vertex_t *v1 = vertices[0];
+ carve::mesh::MeshSet<3>::vertex_t *v2 = vertices[1];
+ carve::geom3d::Vector c = (v1->v + v2->v) / 2;
+
+ // determine whether the midpoint of the implied edge is contained in face_a and face_b
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "face_a->nVertices() = " << face_a->nVertices() << " face_a->containsPointInProjection(c) = " << face_a->containsPointInProjection(c) << std::endl;
+ std::cerr << "face_b->nVertices() = " << face_b->nVertices() << " face_b->containsPointInProjection(c) = " << face_b->containsPointInProjection(c) << std::endl;
+#endif
+
+ if (face_a->containsPointInProjection(c) && face_b->containsPointInProjection(c)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "adding edge: " << v1 << "-" << v2 << std::endl;
+#if defined(DEBUG_DRAW_FACE_EDGES)
+ HOOK(drawEdge(v1, v2, 1, 1, 1, 1, 1, 1, 1, 1, 2.0););
+#endif
+#endif
+ // record the edge, with class information.
+ if (v1 > v2) std::swap(v1, v2);
+ eclass[ordered_edge(v1, v2)] = carve::csg::EC2(carve::csg::EDGE_ON, carve::csg::EDGE_ON);
+ data.face_split_edges[face_a].insert(std::make_pair(v1, v2));
+ data.face_split_edges[face_b].insert(std::make_pair(v1, v2));
+ }
+ continue;
+ }
+
+ // otherwise, it's more complex.
+ carve::geom3d::Vector base, dir;
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> ordered;
+
+ // skip coplanar edges. this simplifies the resulting
+ // mesh. eventually all coplanar face regions of two polyhedra
+ // must reach a point where they are no longer coplanar (or the
+ // polyhedra are identical).
+ if (!facesAreCoplanar(face_a, face_b)) {
+ // order the intersection vertices (they must lie along a
+ // vector, as the faces aren't coplanar).
+ selectOrderingProjection(vertices.begin(), vertices.end(), dir, base);
+ orderVertices(vertices.begin(), vertices.end(), dir, base, ordered);
+
+ // for each possible edge in the ordering, test the midpoint,
+ // and record if it's contained in face_a and face_b.
+ for (int k = 0, ke = (int)ordered.size() - 1; k < ke; ++k) {
+ carve::mesh::MeshSet<3>::vertex_t *v1 = ordered[k];
+ carve::mesh::MeshSet<3>::vertex_t *v2 = ordered[k + 1];
+ carve::geom3d::Vector c = (v1->v + v2->v) / 2;
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "testing edge: " << v1 << "-" << v2 << " at " << c << std::endl;
+ std::cerr << "a: " << face_a->containsPointInProjection(c) << " b: " << face_b->containsPointInProjection(c) << std::endl;
+ std::cerr << "face_a->containsPointInProjection(c): " << face_a->containsPointInProjection(c) << std::endl;
+ std::cerr << "face_b->containsPointInProjection(c): " << face_b->containsPointInProjection(c) << std::endl;
+#endif
+
+ if (face_a->containsPointInProjection(c) && face_b->containsPointInProjection(c)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "adding edge: " << v1 << "-" << v2 << std::endl;
+#if defined(DEBUG_DRAW_FACE_EDGES)
+ HOOK(drawEdge(v1, v2, .5, .5, .5, 1, .5, .5, .5, 1, 2.0););
+#endif
+#endif
+ // record the edge, with class information.
+ if (v1 > v2) std::swap(v1, v2);
+ eclass[ordered_edge(v1, v2)] = carve::csg::EC2(carve::csg::EDGE_ON, carve::csg::EDGE_ON);
+ data.face_split_edges[face_a].insert(std::make_pair(v1, v2));
+ data.face_split_edges[face_b].insert(std::make_pair(v1, v2));
+ }
+ }
+ }
+ }
+ }
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ {
+ V2Set edges;
+ for (detail::FV2SMap::const_iterator i = data.face_split_edges.begin(); i != data.face_split_edges.end(); ++i) {
+ edges.insert((*i).second.begin(), (*i).second.end());
+ }
+
+ detail::VSet vertices;
+ for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
+ vertices.insert((*i).first);
+ vertices.insert((*i).second);
+ }
+
+ carve::line::PolylineSet intersection_graph;
+ intersection_graph.vertices.resize(vertices.size());
+ std::map<const carve::mesh::MeshSet<3>::vertex_t *, size_t> vmap;
+
+ size_t j = 0;
+ for (detail::VSet::const_iterator i = vertices.begin(); i != vertices.end(); ++i) {
+ intersection_graph.vertices[j].v = (*i)->v;
+ vmap[(*i)] = j++;
+ }
+
+ for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
+ size_t line[2];
+ line[0] = vmap[(*i).first];
+ line[1] = vmap[(*i).second];
+ intersection_graph.addPolyline(false, line, line + 2);
+ }
+
+ std::string out("/tmp/intersection-edges.ply");
+ ::writePLY(out, &intersection_graph, true);
+ }
+#endif
+}
+
+
+
+/**
+ *
+ *
+ * @param fll
+ */
+static void checkFaceLoopIntegrity(carve::csg::FaceLoopList &fll) {
+ static carve::TimingName FUNC_NAME("CSG::checkFaceLoopIntegrity()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ std::unordered_map<carve::csg::V2, int> counts;
+ for (carve::csg::FaceLoop *fl = fll.head; fl; fl = fl->next) {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = (fl->vertices);
+ carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
+ v1 = loop[loop.size() - 1];
+ for (unsigned i = 0; i < loop.size(); ++i) {
+ v2 = loop[i];
+ if (v1 < v2) {
+ counts[std::make_pair(v1, v2)]++;
+ } else {
+ counts[std::make_pair(v2, v1)]--;
+ }
+ v1 = v2;
+ }
+ }
+ for (std::unordered_map<carve::csg::V2, int>::const_iterator
+ x = counts.begin(), xe = counts.end(); x != xe; ++x) {
+ if ((*x).second) {
+ std::cerr << "FACE LOOP ERROR: " << (*x).first.first << "-" << (*x).first.second << " : " << (*x).second << std::endl;
+ }
+ }
+}
+
+
+
+/**
+ *
+ *
+ * @param a
+ * @param b
+ * @param vclass
+ * @param eclass
+ * @param a_face_loops
+ * @param b_face_loops
+ * @param a_edge_count
+ * @param b_edge_count
+ * @param hooks
+ */
+void carve::csg::CSG::calc(carve::mesh::MeshSet<3> *a,
+ const face_rtree_t *a_rtree,
+ carve::mesh::MeshSet<3> *b,
+ const face_rtree_t *b_rtree,
+ carve::csg::VertexClassification &vclass,
+ carve::csg::EdgeClassification &eclass,
+ carve::csg::FaceLoopList &a_face_loops,
+ carve::csg::FaceLoopList &b_face_loops,
+ size_t &a_edge_count,
+ size_t &b_edge_count) {
+ detail::Data data;
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "init" << std::endl;
+#endif
+ init();
+
+ generateIntersections(a, a_rtree, b, b_rtree, data);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "intersectingFacePairs" << std::endl;
+#endif
+ intersectingFacePairs(data);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "emap:" << std::endl;
+ map_histogram(std::cerr, data.emap);
+ std::cerr << "fmap:" << std::endl;
+ map_histogram(std::cerr, data.fmap);
+ std::cerr << "fmap_rev:" << std::endl;
+ map_histogram(std::cerr, data.fmap_rev);
+#endif
+
+ // std::cerr << "removeCoplanarFaces" << std::endl;
+ // fp_intersections.removeCoplanarFaces();
+
+#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_OCTREE)
+ HOOK(drawOctree(a->octree););
+ HOOK(drawOctree(b->octree););
+#endif
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "divideIntersectedEdges" << std::endl;
+#endif
+ divideIntersectedEdges(data);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "makeFaceEdges" << std::endl;
+#endif
+ // makeFaceEdges(data.face_split_edges, eclass, data.fmap, data.fmap_rev);
+ makeFaceEdges(eclass, data);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "generateFaceLoops" << std::endl;
+#endif
+ a_edge_count = generateFaceLoops(a, data, a_face_loops);
+ b_edge_count = generateFaceLoops(b, data, b_face_loops);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "generated " << a_edge_count << " edges for poly a" << std::endl;
+ std::cerr << "generated " << b_edge_count << " edges for poly b" << std::endl;
+#endif
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ {
+ std::string out("/tmp/a_split.ply");
+ writePLY(out, faceLoopsToPolyhedron(a_face_loops), false);
+ }
+ {
+ std::string out("/tmp/b_split.ply");
+ writePLY(out, faceLoopsToPolyhedron(b_face_loops), false);
+ }
+#endif
+
+ checkFaceLoopIntegrity(a_face_loops);
+ checkFaceLoopIntegrity(b_face_loops);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "classify" << std::endl;
+#endif
+ // initialize some classification information.
+ for (std::vector<carve::mesh::MeshSet<3>::vertex_t>::iterator
+ i = a->vertex_storage.begin(), e = a->vertex_storage.end(); i != e; ++i) {
+ vclass[map_vertex(data.vmap, &(*i))].cls[0] = POINT_ON;
+ }
+ for (std::vector<carve::mesh::MeshSet<3>::vertex_t>::iterator
+ i = b->vertex_storage.begin(), e = b->vertex_storage.end(); i != e; ++i) {
+ vclass[map_vertex(data.vmap, &(*i))].cls[1] = POINT_ON;
+ }
+ for (VertexIntersections::const_iterator
+ i = vertex_intersections.begin(), e = vertex_intersections.end(); i != e; ++i) {
+ vclass[(*i).first] = PC2(POINT_ON, POINT_ON);
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << data.divided_edges.size() << " edges are split" << std::endl;
+ std::cerr << data.face_split_edges.size() << " faces are split" << std::endl;
+
+ std::cerr << "poly a: " << a_face_loops.size() << " face loops" << std::endl;
+ std::cerr << "poly b: " << b_face_loops.size() << " face loops" << std::endl;
+#endif
+
+ // std::cerr << "OCTREE A:" << std::endl;
+ // dump_octree_stats(a->octree.root, 0);
+ // std::cerr << "OCTREE B:" << std::endl;
+ // dump_octree_stats(b->octree.root, 0);
+}
+
+
+
+/**
+ *
+ *
+ * @param shared_edges
+ * @param result_list
+ * @param shared_edge_ptr
+ */
+void returnSharedEdges(carve::csg::V2Set &shared_edges,
+ std::list<carve::mesh::MeshSet<3> *> &result_list,
+ carve::csg::V2Set *shared_edge_ptr) {
+ // need to convert shared edges to point into result
+ typedef std::map<carve::geom3d::Vector, carve::mesh::MeshSet<3>::vertex_t *> remap_type;
+ remap_type remap;
+ for (std::list<carve::mesh::MeshSet<3> *>::iterator list_it =
+ result_list.begin(); list_it != result_list.end(); list_it++) {
+ carve::mesh::MeshSet<3> *result = *list_it;
+ if (result) {
+ for (std::vector<carve::mesh::MeshSet<3>::vertex_t>::iterator it =
+ result->vertex_storage.begin(); it != result->vertex_storage.end(); it++) {
+ remap.insert(std::make_pair((*it).v, &(*it)));
+ }
+ }
+ }
+ for (carve::csg::V2Set::iterator it = shared_edges.begin();
+ it != shared_edges.end(); it++) {
+ remap_type::iterator first_it = remap.find(((*it).first)->v);
+ remap_type::iterator second_it = remap.find(((*it).second)->v);
+ CARVE_ASSERT(first_it != remap.end() && second_it != remap.end());
+ shared_edge_ptr->insert(std::make_pair(first_it->second, second_it->second));
+ }
+}
+
+
+
+/**
+ *
+ *
+ * @param a
+ * @param b
+ * @param collector
+ * @param hooks
+ * @param shared_edges_ptr
+ * @param classify_type
+ *
+ * @return
+ */
+carve::mesh::MeshSet<3> *carve::csg::CSG::compute(carve::mesh::MeshSet<3> *a,
+ carve::mesh::MeshSet<3> *b,
+ carve::csg::CSG::Collector &collector,
+ carve::csg::V2Set *shared_edges_ptr,
+ CLASSIFY_TYPE classify_type) {
+ static carve::TimingName FUNC_NAME("CSG::compute");
+ carve::TimingBlock block(FUNC_NAME);
+
+ VertexClassification vclass;
+ EdgeClassification eclass;
+
+ FLGroupList a_loops_grouped;
+ FLGroupList b_loops_grouped;
+
+ FaceLoopList a_face_loops;
+ FaceLoopList b_face_loops;
+
+ size_t a_edge_count;
+ size_t b_edge_count;
+
+ face_rtree_t *a_rtree = face_rtree_t::construct_STR(a->faceBegin(), a->faceEnd(), 4, 4);
+ face_rtree_t *b_rtree = face_rtree_t::construct_STR(b->faceBegin(), b->faceEnd(), 4, 4);
+
+ {
+ static carve::TimingName FUNC_NAME("CSG::compute - calc()");
+ carve::TimingBlock block(FUNC_NAME);
+ calc(a, a_rtree, b, b_rtree, vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count);
+ }
+
+ detail::LoopEdges a_edge_map;
+ detail::LoopEdges b_edge_map;
+
+ {
+ static carve::TimingName FUNC_NAME("CSG::compute - makeEdgeMap()");
+ carve::TimingBlock block(FUNC_NAME);
+ makeEdgeMap(a_face_loops, a_edge_count, a_edge_map);
+ makeEdgeMap(b_face_loops, b_edge_count, b_edge_map);
+
+ }
+
+ {
+ static carve::TimingName FUNC_NAME("CSG::compute - sortFaceLoopLists()");
+ carve::TimingBlock block(FUNC_NAME);
+ a_edge_map.sortFaceLoopLists();
+ b_edge_map.sortFaceLoopLists();
+ }
+
+ V2Set shared_edges;
+
+ {
+ static carve::TimingName FUNC_NAME("CSG::compute - findSharedEdges()");
+ carve::TimingBlock block(FUNC_NAME);
+ findSharedEdges(a_edge_map, b_edge_map, shared_edges);
+ }
+
+ {
+ static carve::TimingName FUNC_NAME("CSG::compute - groupFaceLoops()");
+ carve::TimingBlock block(FUNC_NAME);
+ groupFaceLoops(a, a_face_loops, a_edge_map, shared_edges, a_loops_grouped);
+ groupFaceLoops(b, b_face_loops, b_edge_map, shared_edges, b_loops_grouped);
+#if defined(CARVE_DEBUG)
+ std::cerr << "*** a_loops_grouped.size(): " << a_loops_grouped.size() << std::endl;
+ std::cerr << "*** b_loops_grouped.size(): " << b_loops_grouped.size() << std::endl;
+#endif
+ }
+
+#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_GROUPS)
+ {
+ float n = 1.0 / (a_loops_grouped.size() + b_loops_grouped.size() + 1);
+ float H = 0.0, S = 1.0, V = 1.0;
+ float r, g, b;
+ for (FLGroupList::const_iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ carve::colour::HSV2RGB(H, S, V, r, g, b); H += n;
+ drawFaceLoopList((*i).face_loops, r, g, b, 1.0, r * .5, g * .5, b * .5, 1.0, true);
+ }
+ for (FLGroupList::const_iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
+ carve::colour::HSV2RGB(H, S, V, r, g, b); H += n;
+ drawFaceLoopList((*i).face_loops, r, g, b, 1.0, r * .5, g * .5, b * .5, 1.0, true);
+ }
+
+ for (FLGroupList::const_iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ drawFaceLoopListWireframe((*i).face_loops);
+ }
+ for (FLGroupList::const_iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
+ drawFaceLoopListWireframe((*i).face_loops);
+ }
+ }
+#endif
+
+ switch (classify_type) {
+ case CLASSIFY_EDGE:
+ classifyFaceGroupsEdge(shared_edges,
+ vclass,
+ a,
+ a_rtree,
+ a_loops_grouped,
+ a_edge_map,
+ b,
+ b_rtree,
+ b_loops_grouped,
+ b_edge_map,
+ collector);
+ break;
+ case CLASSIFY_NORMAL:
+ classifyFaceGroups(shared_edges,
+ vclass,
+ a,
+ a_rtree,
+ a_loops_grouped,
+ a_edge_map,
+ b,
+ b_rtree,
+ b_loops_grouped,
+ b_edge_map,
+ collector);
+ break;
+ }
+
+ carve::mesh::MeshSet<3> *result = collector.done(hooks);
+ if (result != NULL && shared_edges_ptr != NULL) {
+ std::list<carve::mesh::MeshSet<3> *> result_list;
+ result_list.push_back(result);
+ returnSharedEdges(shared_edges, result_list, shared_edges_ptr);
+ }
+ return result;
+}
+
+
+
+/**
+ *
+ *
+ * @param a
+ * @param b
+ * @param op
+ * @param hooks
+ * @param shared_edges
+ * @param classify_type
+ *
+ * @return
+ */
+carve::mesh::MeshSet<3> *carve::csg::CSG::compute(carve::mesh::MeshSet<3> *a,
+ carve::mesh::MeshSet<3> *b,
+ carve::csg::CSG::OP op,
+ carve::csg::V2Set *shared_edges,
+ CLASSIFY_TYPE classify_type) {
+ Collector *coll = makeCollector(op, a, b);
+ if (!coll) return NULL;
+
+ carve::mesh::MeshSet<3> *result = compute(a, b, *coll, shared_edges, classify_type);
+
+ delete coll;
+
+ return result;
+}
+
+
+
+/**
+ *
+ *
+ * @param closed
+ * @param open
+ * @param FaceClass
+ * @param result
+ * @param hooks
+ * @param shared_edges_ptr
+ *
+ * @return
+ */
+bool carve::csg::CSG::sliceAndClassify(carve::mesh::MeshSet<3> *closed,
+ carve::mesh::MeshSet<3> *open,
+ std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> > &result,
+ carve::csg::V2Set *shared_edges_ptr) {
+ if (!closed->isClosed()) return false;
+ carve::csg::VertexClassification vclass;
+ carve::csg::EdgeClassification eclass;
+
+ carve::csg::FLGroupList a_loops_grouped;
+ carve::csg::FLGroupList b_loops_grouped;
+
+ carve::csg::FaceLoopList a_face_loops;
+ carve::csg::FaceLoopList b_face_loops;
+
+ size_t a_edge_count;
+ size_t b_edge_count;
+
+ face_rtree_t *closed_rtree = face_rtree_t::construct_STR(closed->faceBegin(), closed->faceEnd(), 4, 4);
+ face_rtree_t *open_rtree = face_rtree_t::construct_STR(open->faceBegin(), open->faceEnd(), 4, 4);
+
+ calc(closed, closed_rtree, open, open_rtree, vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count);
+
+ detail::LoopEdges a_edge_map;
+ detail::LoopEdges b_edge_map;
+
+ makeEdgeMap(a_face_loops, a_edge_count, a_edge_map);
+ makeEdgeMap(b_face_loops, b_edge_count, b_edge_map);
+
+ carve::csg::V2Set shared_edges;
+
+ findSharedEdges(a_edge_map, b_edge_map, shared_edges);
+
+ groupFaceLoops(closed, a_face_loops, a_edge_map, shared_edges, a_loops_grouped);
+ groupFaceLoops(open, b_face_loops, b_edge_map, shared_edges, b_loops_grouped);
+
+ halfClassifyFaceGroups(shared_edges,
+ vclass,
+ closed,
+ closed_rtree,
+ a_loops_grouped,
+ a_edge_map,
+ open,
+ open_rtree,
+ b_loops_grouped,
+ b_edge_map,
+ result);
+
+ if (shared_edges_ptr != NULL) {
+ std::list<carve::mesh::MeshSet<3> *> result_list;
+ for (std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> >::iterator it = result.begin(); it != result.end(); it++) {
+ result_list.push_back(it->second);
+ }
+ returnSharedEdges(shared_edges, result_list, shared_edges_ptr);
+ }
+ return true;
+}
+
+
+
+/**
+ *
+ *
+ * @param a
+ * @param b
+ * @param a_sliced
+ * @param b_sliced
+ * @param hooks
+ * @param shared_edges_ptr
+ */
+void carve::csg::CSG::slice(carve::mesh::MeshSet<3> *a,
+ carve::mesh::MeshSet<3> *b,
+ std::list<carve::mesh::MeshSet<3> *> &a_sliced,
+ std::list<carve::mesh::MeshSet<3> *> &b_sliced,
+ carve::csg::V2Set *shared_edges_ptr) {
+ carve::csg::VertexClassification vclass;
+ carve::csg::EdgeClassification eclass;
+
+ carve::csg::FLGroupList a_loops_grouped;
+ carve::csg::FLGroupList b_loops_grouped;
+
+ carve::csg::FaceLoopList a_face_loops;
+ carve::csg::FaceLoopList b_face_loops;
+
+ size_t a_edge_count;
+ size_t b_edge_count;
+
+ face_rtree_t *a_rtree = face_rtree_t::construct_STR(a->faceBegin(), a->faceEnd(), 4, 4);
+ face_rtree_t *b_rtree = face_rtree_t::construct_STR(b->faceBegin(), b->faceEnd(), 4, 4);
+
+ calc(a, a_rtree, b, b_rtree, vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count);
+
+ detail::LoopEdges a_edge_map;
+ detail::LoopEdges b_edge_map;
+
+ makeEdgeMap(a_face_loops, a_edge_count, a_edge_map);
+ makeEdgeMap(b_face_loops, b_edge_count, b_edge_map);
+
+ carve::csg::V2Set shared_edges;
+
+ findSharedEdges(a_edge_map, b_edge_map, shared_edges);
+
+ groupFaceLoops(a, a_face_loops, a_edge_map, shared_edges, a_loops_grouped);
+ groupFaceLoops(b, b_face_loops, b_edge_map, shared_edges, b_loops_grouped);
+
+ for (carve::csg::FLGroupList::iterator
+ i = a_loops_grouped.begin(), e = a_loops_grouped.end();
+ i != e; ++i) {
+ Collector *all = makeCollector(ALL, a, b);
+ all->collect(&*i, hooks);
+ a_sliced.push_back(all->done(hooks));
+
+ delete all;
+ }
+
+ for (carve::csg::FLGroupList::iterator
+ i = b_loops_grouped.begin(), e = b_loops_grouped.end();
+ i != e; ++i) {
+ Collector *all = makeCollector(ALL, a, b);
+ all->collect(&*i, hooks);
+ b_sliced.push_back(all->done(hooks));
+
+ delete all;
+ }
+ if (shared_edges_ptr != NULL) {
+ std::list<carve::mesh::MeshSet<3> *> result_list;
+ result_list.insert(result_list.end(), a_sliced.begin(), a_sliced.end());
+ result_list.insert(result_list.end(), b_sliced.begin(), b_sliced.end());
+ returnSharedEdges(shared_edges, result_list, shared_edges_ptr);
+ }
+}
+
+
+
+/**
+ *
+ *
+ */
+void carve::csg::CSG::init() {
+ intersections.clear();
+ vertex_intersections.clear();
+ vertex_pool.reset();
+}
diff --git a/extern/carve/lib/intersect_classify_common.hpp b/extern/carve/lib/intersect_classify_common.hpp
new file mode 100644
index 00000000000..359c9af0e64
--- /dev/null
+++ b/extern/carve/lib/intersect_classify_common.hpp
@@ -0,0 +1,46 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#pragma once
+
+#include "intersect_common.hpp"
+
+template<typename T>
+static int is_same(const std::vector<T> &a,
+ const std::vector<T> &b) {
+ if (a.size() != b.size()) return false;
+
+ const size_t S = a.size();
+ size_t i, j, p;
+
+ for (p = 0; p < S; ++p) {
+ if (a[0] == b[p]) break;
+ }
+ if (p == S) return 0;
+
+ for (i = 1, j = p + 1; j < S; ++i, ++j) if (a[i] != b[j]) goto not_fwd;
+ for ( j = 0; i < S; ++i, ++j) if (a[i] != b[j]) goto not_fwd;
+ return +1;
+
+not_fwd:
+ for (i = 1, j = p - 1; j != (size_t)-1; ++i, --j) if (a[i] != b[j]) goto not_rev;
+ for ( j = S - 1; i < S; ++i, --j) if (a[i] != b[j]) goto not_rev;
+ return -1;
+
+not_rev:
+ return 0;
+}
diff --git a/extern/carve/lib/intersect_classify_common_impl.hpp b/extern/carve/lib/intersect_classify_common_impl.hpp
new file mode 100644
index 00000000000..3c141c81151
--- /dev/null
+++ b/extern/carve/lib/intersect_classify_common_impl.hpp
@@ -0,0 +1,362 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#pragma once
+
+namespace carve {
+ namespace csg {
+ typedef std::unordered_map<
+ carve::mesh::MeshSet<3>::vertex_t *,
+ std::list<FLGroupList::iterator> > GroupLookup;
+
+
+ inline bool isSameFwd(const V2Set &a, const V2Set &b) {
+ if (a.size() != b.size()) return false;
+ for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
+ if (b.find((*i)) == b.end()) return false;
+ }
+ return true;
+ }
+
+ inline bool isSameRev(const V2Set &a, const V2Set &b) {
+ if (a.size() != b.size()) return false;
+ for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
+ if (b.find(std::make_pair((*i).second, (*i).first)) == b.end()) return false;
+ }
+ return true;
+ }
+
+
+ static void performClassifySimpleOnFaceGroups(FLGroupList &a_groups,
+ FLGroupList &b_groups,
+ carve::mesh::MeshSet<3> *poly_a,
+ carve::mesh::MeshSet<3> *poly_b,
+ CSG::Collector &collector,
+ CSG::Hooks &hooks) {
+ // Simple ON faces groups are face groups that consist of a single
+ // face, and which have copy in both inputs. These are trivially ON.
+ // This has the side effect of short circuiting the case where the
+ // two inputs share geometry.
+ GroupLookup a_map, b_map;
+
+ // First, hash FaceLoopGroups with one FaceLoop based upon their
+ // minimum vertex pointer - this pointer must be shared between
+ // FaceLoops that this test catches.
+ for (FLGroupList::iterator i = a_groups.begin(); i != a_groups.end(); ++i) {
+ if ((*i).face_loops.size() != 1) continue;
+ FaceLoop *f = (*i).face_loops.head;
+ carve::mesh::MeshSet<3>::vertex_t *v = *std::min_element(f->vertices.begin(), f->vertices.end());
+ a_map[v].push_back(i);
+ }
+
+ for (FLGroupList::iterator i = b_groups.begin(); i != b_groups.end(); ++i) {
+ if ((*i).face_loops.size() != 1) continue;
+ FaceLoop *f = (*i).face_loops.head;
+ carve::mesh::MeshSet<3>::vertex_t *v = *std::min_element(f->vertices.begin(), f->vertices.end());
+ if (a_map.find(v) != a_map.end()) {
+ b_map[v].push_back(i);
+ }
+ }
+
+ // Then, iterate through the FaceLoops hashed in the first map, and
+ // find candidate matches in the second map.
+ for (GroupLookup::iterator j = b_map.begin(), je = b_map.end(); j != je; ++j) {
+ carve::mesh::MeshSet<3>::vertex_t *v = (*j).first;
+ GroupLookup::iterator i = a_map.find(v);
+
+ for (std::list<FLGroupList::iterator>::iterator bi = (*j).second.begin(), be = (*j).second.end(); bi != be;) {
+ FLGroupList::iterator b(*bi);
+ FaceLoop *f_b = (*b).face_loops.head;
+
+ // For each candidate match pair, see if their vertex pointers
+ // are the same, allowing for rotation and inversion.
+ for (std::list<FLGroupList::iterator>::iterator ai = (*i).second.begin(), ae = (*i).second.end(); ai != ae; ++ai) {
+ FLGroupList::iterator a(*ai);
+ FaceLoop *f_a = (*a).face_loops.head;
+
+ int s = is_same(f_a->vertices, f_b->vertices);
+ if (!s) continue;
+
+ // if they are ordered in the same direction, then they are
+ // oriented out, otherwise oriented in.
+ FaceClass fc = s == +1 ? FACE_ON_ORIENT_OUT : FACE_ON_ORIENT_IN;
+
+ (*a).classification.push_back(ClassificationInfo(NULL, fc));
+ (*b).classification.push_back(ClassificationInfo(NULL, fc));
+
+ collector.collect(&*a, hooks);
+ collector.collect(&*b, hooks);
+
+ a_groups.erase(a);
+ b_groups.erase(b);
+
+ (*i).second.erase(ai);
+ bi = (*j).second.erase(bi);
+
+ goto done;
+ }
+ ++bi;
+ done:;
+ }
+ }
+ }
+
+ template <typename CLASSIFIER>
+ static void performClassifyEasyFaceGroups(FLGroupList &group,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ VertexClassification &vclass,
+ const CLASSIFIER &classifier,
+ CSG::Collector &collector,
+ CSG::Hooks &hooks) {
+
+ for (FLGroupList::iterator i = group.begin(); i != group.end();) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "............group " << &(*i) << std::endl;
+#endif
+ FaceLoopGroup &grp = (*i);
+ FaceLoopList &curr = (grp.face_loops);
+ FaceClass fc;
+
+ for (FaceLoop *f = curr.head; f; f = f->next) {
+ for (size_t j = 0; j < f->vertices.size(); ++j) {
+ if (!classifier.pointOn(vclass, f, j)) {
+ PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, f->vertices[j]->v);
+ if (pc == POINT_IN || pc == POINT_OUT) {
+ classifier.explain(f, j, pc);
+ }
+ if (pc == POINT_IN) { fc = FACE_IN; goto accept; }
+ if (pc == POINT_OUT) { fc = FACE_OUT; goto accept; }
+ }
+ }
+ }
+ ++i;
+ continue;
+ accept: {
+ grp.classification.push_back(ClassificationInfo(NULL, fc));
+ collector.collect(&grp, hooks);
+ i = group.erase(i);
+ }
+ }
+ }
+
+
+ template <typename CLASSIFIER>
+ static void performClassifyHardFaceGroups(FLGroupList &group,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ const CLASSIFIER & /* classifier */,
+ CSG::Collector &collector,
+ CSG::Hooks &hooks) {
+ for (FLGroupList::iterator
+ i = group.begin(); i != group.end();) {
+ int n_in = 0, n_out = 0, n_on = 0;
+ FaceLoopGroup &grp = (*i);
+ FaceLoopList &curr = (grp.face_loops);
+ V2Set &perim = ((*i).perimeter);
+ FaceClass fc =FACE_UNCLASSIFIED;
+
+ for (FaceLoop *f = curr.head; f; f = f->next) {
+ carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
+ v1 = f->vertices.back();
+ for (size_t j = 0; j < f->vertices.size(); ++j) {
+ v2 = f->vertices[j];
+ if (v1 < v2 && perim.find(std::make_pair(v1, v2)) == perim.end()) {
+ carve::geom3d::Vector c = (v1->v + v2->v) / 2.0;
+
+ PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, c);
+
+ switch (pc) {
+ case POINT_IN: n_in++; break;
+ case POINT_OUT: n_out++; break;
+ case POINT_ON: n_on++; break;
+ default: break; // does not happen.
+ }
+ }
+ v1 = v2;
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << ">>> n_in: " << n_in << " n_on: " << n_on << " n_out: " << n_out << std::endl;
+#endif
+
+ if (!n_in && !n_out) {
+ ++i;
+ continue;
+ }
+
+ if (n_in) fc = FACE_IN;
+ if (n_out) fc = FACE_OUT;
+
+ grp.classification.push_back(ClassificationInfo(NULL, fc));
+ collector.collect(&grp, hooks);
+ i = group.erase(i);
+ }
+ }
+
+ template <typename CLASSIFIER>
+ void performFaceLoopWork(carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ FLGroupList &b_loops_grouped,
+ const CLASSIFIER &classifier,
+ CSG::Collector &collector,
+ CSG::Hooks &hooks) {
+ for (FLGroupList::iterator i = b_loops_grouped.begin(), e = b_loops_grouped.end(); i != e;) {
+ FaceClass fc;
+
+ if (classifier.faceLoopSanityChecker(*i)) {
+ std::cerr << "UNEXPECTED face loop with size != 1." << std::endl;
+ ++i;
+ continue;
+ }
+ CARVE_ASSERT((*i).face_loops.size() == 1);
+
+ FaceLoop *fla = (*i).face_loops.head;
+
+ const carve::mesh::MeshSet<3>::face_t *f = (fla->orig_face);
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = (fla->vertices);
+ std::vector<carve::geom2d::P2> proj;
+ proj.reserve(loop.size());
+ for (unsigned j = 0; j < loop.size(); ++j) {
+ proj.push_back(f->project(loop[j]->v));
+ }
+ carve::geom2d::P2 pv;
+ if (!carve::geom2d::pickContainedPoint(proj, pv)) {
+ CARVE_FAIL("Failed");
+ }
+ carve::geom3d::Vector v = f->unproject(pv, f->plane);
+
+ const carve::mesh::MeshSet<3>::face_t *hit_face;
+ PointClass pc = carve::mesh::classifyPoint(poly_a, poly_a_rtree, v, false, NULL, &hit_face);
+ switch (pc) {
+ case POINT_IN: fc = FACE_IN; break;
+ case POINT_OUT: fc = FACE_OUT; break;
+ case POINT_ON: {
+ double d = carve::geom::distance(hit_face->plane, v);
+#if defined(CARVE_DEBUG)
+ std::cerr << "d = " << d << std::endl;
+#endif
+ fc = d < 0 ? FACE_IN : FACE_OUT;
+ break;
+ }
+ default:
+ CARVE_FAIL("unhandled switch case -- should not happen");
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << "CLASS: " << (fc == FACE_IN ? "FACE_IN" : "FACE_OUT" ) << std::endl;
+#endif
+
+ (*i).classification.push_back(ClassificationInfo(NULL, fc));
+ collector.collect(&*i, hooks);
+ i = b_loops_grouped.erase(i);
+ }
+
+ }
+
+ template <typename CLASSIFIER>
+ void performClassifyFaceGroups(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped,
+ VertexClassification &vclass,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree,
+ const CLASSIFIER &classifier,
+ CSG::Collector &collector,
+ CSG::Hooks &hooks) {
+
+ classifier.classifySimple(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_b);
+ classifier.classifyEasy(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
+ classifier.classifyHard(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
+
+ {
+ GroupLookup a_map;
+ FLGroupList::iterator i, j;
+ FaceClass fc;
+
+ for (i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ V2Set::iterator it_end = (*i).perimeter.end();
+ V2Set::iterator it_begin = (*i).perimeter.begin();
+
+ if(it_begin != it_end) {
+ a_map[std::min_element(it_begin, it_end)->first].push_back(i);
+ }
+ }
+
+ for (i = b_loops_grouped.begin(); i != b_loops_grouped.end();) {
+ GroupLookup::iterator a = a_map.end();
+
+ V2Set::iterator it_end = (*i).perimeter.end();
+ V2Set::iterator it_begin = (*i).perimeter.begin();
+
+ if(it_begin != it_end) {
+ a = a_map.find(std::min_element(it_begin, it_end)->first);
+ }
+
+ if (a == a_map.end()) { ++i; continue; }
+
+ for (std::list<FLGroupList::iterator>::iterator ji = (*a).second.begin(), je = (*a).second.end(); ji != je; ++ji) {
+ j = (*ji);
+ if (isSameFwd((*i).perimeter, (*j).perimeter)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "SAME FWD PAIR" << std::endl;
+#endif
+ fc = FACE_ON_ORIENT_OUT;
+ goto face_pair;
+ } else if (isSameRev((*i).perimeter, (*j).perimeter)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "SAME REV PAIR" << std::endl;
+#endif
+ fc = FACE_ON_ORIENT_IN;
+ goto face_pair;
+ }
+ }
+ ++i;
+ continue;
+
+ face_pair: {
+ V2Set::iterator it_end = (*j).perimeter.end();
+ V2Set::iterator it_begin = (*j).perimeter.begin();
+
+ if(it_begin != it_end) {
+ a_map[std::min_element(it_begin, it_end)->first].remove(j);
+ }
+
+ (*i).classification.push_back(ClassificationInfo(NULL, fc));
+ (*j).classification.push_back(ClassificationInfo(NULL, fc));
+
+ collector.collect(&*i, hooks);
+ collector.collect(&*j, hooks);
+
+ j = a_loops_grouped.erase(j);
+ i = b_loops_grouped.erase(i);
+ }
+ }
+ }
+
+ // XXX: this may leave some face groups that are IN or OUT, and
+ // consist of a single face loop.
+ classifier.postRemovalCheck(a_loops_grouped, b_loops_grouped);
+
+ classifier.faceLoopWork(a_loops_grouped, b_loops_grouped, vclass, poly_a, poly_a_rtree, poly_b, poly_b_rtree);
+
+ classifier.finish(a_loops_grouped, b_loops_grouped);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/intersect_classify_edge.cpp b/extern/carve/lib/intersect_classify_edge.cpp
new file mode 100644
index 00000000000..d2c1fdd7c24
--- /dev/null
+++ b/extern/carve/lib/intersect_classify_edge.cpp
@@ -0,0 +1,820 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#if defined(HAVE_STDINT_H)
+#include <stdint.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/debug_hooks.hpp>
+#include <carve/colour.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "csg_detail.hpp"
+
+#include "intersect_common.hpp"
+#include "intersect_classify_common.hpp"
+
+#define ANGLE_EPSILON 1e-6
+
+namespace carve {
+ namespace csg {
+
+ namespace {
+
+ inline bool single_bit_set(uint32_t v) {
+ v &= v - 1;
+ return v == 0;
+ }
+
+ struct EdgeSurface {
+ FaceLoop *fwd;
+ double fwd_ang;
+ FaceLoop *rev;
+ double rev_ang;
+
+ EdgeSurface() : fwd(NULL), fwd_ang(0.0), rev(NULL), rev_ang(0.0) { }
+ };
+
+
+ typedef std::map<const carve::mesh::MeshSet<3>::mesh_t *, EdgeSurface> GrpEdgeSurfMap;
+
+ typedef std::pair<FaceLoopGroup *, const carve::mesh::MeshSet<3>::mesh_t *> ClassificationKey;
+
+ struct ClassificationData {
+ uint32_t class_bits : 5;
+ uint32_t class_decided : 1;
+
+ int c[5];
+
+ ClassificationData() {
+ class_bits = FACE_ANY_BIT;
+ class_decided = 0;
+ memset(c, 0, sizeof(c));
+ }
+ };
+
+ struct hash_classification {
+ size_t operator()(const ClassificationKey &f) const {
+ return (size_t)f.first ^ (size_t)f.second;
+ }
+ };
+
+ typedef std::unordered_map<ClassificationKey, ClassificationData, hash_classification> Classification;
+
+
+ struct hash_group_ptr {
+ size_t operator()(const FaceLoopGroup * const &f) const {
+ return (size_t)f;
+ }
+ };
+
+
+ typedef std::pair<size_t, const carve::mesh::MeshSet<3>::vertex_t *> PerimKey;
+
+ struct hash_perim_key {
+ size_t operator()(const PerimKey &v) const {
+ return (size_t)v.first ^ (size_t)v.second;
+ }
+ };
+
+ typedef std::unordered_map<std::pair<size_t, const carve::mesh::MeshSet<3>::vertex_t *>,
+ std::unordered_set<FaceLoopGroup *, hash_group_ptr>,
+ hash_perim_key> PerimMap;
+
+
+
+ struct hash_group_pair {
+ size_t operator()(const std::pair<int, const FaceLoopGroup *> &v) const {
+ return (size_t)v.first ^ (size_t)v.second;
+ }
+ };
+
+ typedef std::unordered_map<const FaceLoopGroup *,
+ std::unordered_set<std::pair<int, const FaceLoopGroup *>, hash_group_pair>,
+ hash_group_ptr> CandidateOnMap;
+
+
+
+ static inline void remove(carve::mesh::MeshSet<3>::vertex_t *a,
+ carve::mesh::MeshSet<3>::vertex_t *b,
+ carve::csg::detail::VVSMap &shared_edge_graph) {
+ carve::csg::detail::VVSMap::iterator i = shared_edge_graph.find(a);
+ CARVE_ASSERT(i != shared_edge_graph.end());
+ size_t n = (*i).second.erase(b);
+ CARVE_ASSERT(n == 1);
+ if ((*i).second.size() == 0) shared_edge_graph.erase(i);
+ }
+
+
+
+ static inline void remove(V2 edge,
+ carve::csg::detail::VVSMap &shared_edge_graph) {
+ remove(edge.first, edge.second, shared_edge_graph);
+ remove(edge.second, edge.first, shared_edge_graph);
+ }
+
+
+
+ static void walkGraphSegment(carve::csg::detail::VVSMap &shared_edge_graph,
+ const carve::csg::detail::VSet &branch_points,
+ V2 initial,
+ const carve::csg::detail::LoopEdges & /* a_edge_map */,
+ const carve::csg::detail::LoopEdges & /* b_edge_map */,
+ std::list<V2> &out) {
+ V2 curr;
+ curr = initial;
+ bool closed = false;
+
+ out.clear();
+ for (;;) {
+ // walk forward.
+ out.push_back(curr);
+ remove(curr, shared_edge_graph);
+
+ if (curr.second == initial.first) { closed = true; break; }
+ if (branch_points.find(curr.second) != branch_points.end()) break;
+ carve::csg::detail::VVSMap::const_iterator o = shared_edge_graph.find(curr.second);
+ if (o == shared_edge_graph.end()) break;
+ CARVE_ASSERT((*o).second.size() == 1);
+ curr.first = curr.second;
+ curr.second = *((*o).second.begin());
+ // test here that the set of incident groups hasn't changed.
+ }
+
+ if (!closed) {
+ // walk backward.
+ curr = initial;
+ for (;;) {
+ if (branch_points.find(curr.first) != branch_points.end()) break;
+ carve::csg::detail::VVSMap::const_iterator o = shared_edge_graph.find(curr.first);
+ if (o == shared_edge_graph.end()) break;
+ curr.second = curr.first;
+ curr.first = *((*o).second.begin());
+ // test here that the set of incident groups hasn't changed.
+
+ out.push_front(curr);
+ remove(curr, shared_edge_graph);
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "intersection segment: " << out.size() << " edges." << std::endl;
+#if defined(DEBUG_DRAW_INTERSECTION_LINE)
+ {
+ static float H = 0.0, S = 1.0, V = 1.0;
+ float r, g, b;
+
+ H = fmod((H + .37), 1.0);
+ S = 0.5 + fmod((S - 0.37), 0.5);
+ carve::colour::HSV2RGB(H, S, V, r, g, b);
+
+ if (out.size() > 1) {
+ drawEdges(out.begin(), ++out.begin(),
+ 0.0, 0.0, 0.0, 1.0,
+ r, g, b, 1.0,
+ 3.0);
+ drawEdges(++out.begin(), --out.end(),
+ r, g, b, 1.0,
+ r, g, b, 1.0,
+ 3.0);
+ drawEdges(--out.end(), out.end(),
+ r, g, b, 1.0,
+ 1.0, 1.0, 1.0, 1.0,
+ 3.0);
+ } else {
+ drawEdges(out.begin(), out.end(),
+ r, g, b, 1.0,
+ r, g, b, 1.0,
+ 3.0);
+ }
+ }
+#endif
+#endif
+ }
+
+
+
+ static carve::geom3d::Vector perpendicular(const carve::geom3d::Vector &v) {
+ if (fabs(v.x) < fabs(v.y)) {
+ if (fabs(v.x) < fabs(v.z)) {
+ return cross(v, carve::geom::VECTOR(1.0, 0.0, 0.0)).normalized();
+ } else {
+ return cross(v, carve::geom::VECTOR(0.0, 0.0, 1.0)).normalized();
+ }
+ } else {
+ if (fabs(v.y) < fabs(v.z)) {
+ return cross(v, carve::geom::VECTOR(0.0, 1.0, 0.0)).normalized();
+ } else {
+ return cross(v, carve::geom::VECTOR(1.0, 0.0, 1.0)).normalized();
+ }
+ }
+ }
+
+
+
+ static void classifyAB(const GrpEdgeSurfMap &a_edge_surfaces,
+ const GrpEdgeSurfMap &b_edge_surfaces,
+ Classification &classifications) {
+ // two faces in the a surface
+ for (GrpEdgeSurfMap::const_iterator ib = b_edge_surfaces.begin(), eb = b_edge_surfaces.end(); ib != eb; ++ib) {
+
+ if ((*ib).second.fwd) {
+ FaceLoopGroup *b_grp = ((*ib).second.fwd->group);
+
+ for (GrpEdgeSurfMap::const_iterator ia = a_edge_surfaces.begin(), ea = a_edge_surfaces.end(); ia != ea; ++ia) {
+
+ if ((*ia).second.fwd && (*ia).second.rev) {
+ const carve::mesh::MeshSet<3>::mesh_t *a_gid = (*ia).first;
+
+ ClassificationData &data = classifications[std::make_pair(b_grp, a_gid)];
+ if (data.class_decided) continue;
+
+ // an angle between (*ia).fwd_ang and (*ia).rev_ang is outside/above group a.
+ FaceClass fc;
+
+ if (fabs((*ib).second.fwd_ang - (*ia).second.fwd_ang) < ANGLE_EPSILON) {
+ fc = FACE_ON_ORIENT_OUT;
+ } else if (fabs((*ib).second.fwd_ang - (*ia).second.rev_ang) < ANGLE_EPSILON) {
+ fc = FACE_ON_ORIENT_IN;
+ } else {
+ double a1 = (*ia).second.fwd_ang;
+ double a2 = (*ia).second.rev_ang;
+ if (a1 < a2) {
+ if (a1 < (*ib).second.fwd_ang && (*ib).second.fwd_ang < a2) {
+ fc = FACE_IN;
+ } else {
+ fc = FACE_OUT;
+ }
+ } else {
+ if (a2 < (*ib).second.fwd_ang && (*ib).second.fwd_ang < a1) {
+ fc = FACE_OUT;
+ } else {
+ fc = FACE_IN;
+ }
+ }
+ }
+ data.c[fc + 2]++;
+ }
+ }
+ }
+
+ if ((*ib).second.rev) {
+ FaceLoopGroup *b_grp = ((*ib).second.rev->group);
+
+ for (GrpEdgeSurfMap::const_iterator ia = a_edge_surfaces.begin(), ea = a_edge_surfaces.end(); ia != ea; ++ia) {
+
+ if ((*ia).second.fwd && (*ia).second.rev) {
+ const carve::mesh::MeshSet<3>::mesh_t *a_gid = (*ia).first;
+
+ ClassificationData &data = (classifications[std::make_pair(b_grp, a_gid)]);
+ if (data.class_decided) continue;
+
+ // an angle between (*ia).fwd_ang and (*ia).rev_ang is outside/above group a.
+ FaceClass fc;
+
+ if (fabs((*ib).second.rev_ang - (*ia).second.fwd_ang) < ANGLE_EPSILON) {
+ fc = FACE_ON_ORIENT_IN;
+ } else if (fabs((*ib).second.rev_ang - (*ia).second.rev_ang) < ANGLE_EPSILON) {
+ fc = FACE_ON_ORIENT_OUT;
+ } else {
+ double a1 = (*ia).second.fwd_ang;
+ double a2 = (*ia).second.rev_ang;
+ if (a1 < a2) {
+ if (a1 < (*ib).second.rev_ang && (*ib).second.rev_ang < a2) {
+ fc = FACE_IN;
+ } else {
+ fc = FACE_OUT;
+ }
+ } else {
+ if (a2 < (*ib).second.rev_ang && (*ib).second.rev_ang < a1) {
+ fc = FACE_OUT;
+ } else {
+ fc = FACE_IN;
+ }
+ }
+ }
+ data.c[fc + 2]++;
+ }
+ }
+ }
+ }
+ }
+
+
+ static bool processForwardEdgeSurfaces(GrpEdgeSurfMap &edge_surfaces,
+ const std::list<FaceLoop *> &fwd,
+ const carve::geom3d::Vector &edge_vector,
+ const carve::geom3d::Vector &base_vector) {
+ for (std::list<FaceLoop *>::const_iterator i = fwd.begin(), e = fwd.end(); i != e; ++i) {
+ EdgeSurface &es = (edge_surfaces[(*i)->orig_face->mesh]);
+ if (es.fwd != NULL) return false;
+ es.fwd = (*i);
+ es.fwd_ang = carve::geom3d::antiClockwiseAngle((*i)->orig_face->plane.N, base_vector, edge_vector);
+ }
+ return true;
+ }
+
+ static bool processReverseEdgeSurfaces(GrpEdgeSurfMap &edge_surfaces,
+ const std::list<FaceLoop *> &rev,
+ const carve::geom3d::Vector &edge_vector,
+ const carve::geom3d::Vector &base_vector) {
+ for (std::list<FaceLoop *>::const_iterator i = rev.begin(), e = rev.end(); i != e; ++i) {
+ EdgeSurface &es = (edge_surfaces[(*i)->orig_face->mesh]);
+ if (es.rev != NULL) return false;
+ es.rev = (*i);
+ es.rev_ang = carve::geom3d::antiClockwiseAngle(-(*i)->orig_face->plane.N, base_vector, edge_vector);
+ }
+ return true;
+ }
+
+
+
+ static void processOneEdge(const V2 &edge,
+ const carve::csg::detail::LoopEdges &a_edge_map,
+ const carve::csg::detail::LoopEdges &b_edge_map,
+ Classification &a_classification,
+ Classification &b_classification) {
+ GrpEdgeSurfMap a_edge_surfaces;
+ GrpEdgeSurfMap b_edge_surfaces;
+
+ carve::geom3d::Vector edge_vector = (edge.second->v - edge.first->v).normalized();
+ carve::geom3d::Vector base_vector = perpendicular(edge_vector);
+
+ carve::csg::detail::LoopEdges::const_iterator ae_f = a_edge_map.find(edge);
+ carve::csg::detail::LoopEdges::const_iterator ae_r = a_edge_map.find(flip(edge));
+ CARVE_ASSERT(ae_f != a_edge_map.end() || ae_r != a_edge_map.end());
+
+ carve::csg::detail::LoopEdges::const_iterator be_f = b_edge_map.find(edge);
+ carve::csg::detail::LoopEdges::const_iterator be_r = b_edge_map.find(flip(edge));
+ CARVE_ASSERT(be_f != b_edge_map.end() || be_r != b_edge_map.end());
+
+ if (ae_f != a_edge_map.end() && !processForwardEdgeSurfaces(a_edge_surfaces, (*ae_f).second, edge_vector, base_vector)) return;
+ if (ae_r != a_edge_map.end() && !processReverseEdgeSurfaces(a_edge_surfaces, (*ae_r).second, edge_vector, base_vector)) return;
+ if (be_f != b_edge_map.end() && !processForwardEdgeSurfaces(b_edge_surfaces, (*be_f).second, edge_vector, base_vector)) return;
+ if (be_r != b_edge_map.end() && !processReverseEdgeSurfaces(b_edge_surfaces, (*be_r).second, edge_vector, base_vector)) return;
+
+ classifyAB(a_edge_surfaces, b_edge_surfaces, b_classification);
+ classifyAB(b_edge_surfaces, a_edge_surfaces, a_classification);
+ }
+
+
+
+ static void traceIntersectionGraph(const V2Set &shared_edges,
+ const FLGroupList & /* a_loops_grouped */,
+ const FLGroupList & /* b_loops_grouped */,
+ const carve::csg::detail::LoopEdges &a_edge_map,
+ const carve::csg::detail::LoopEdges &b_edge_map) {
+
+ carve::csg::detail::VVSMap shared_edge_graph;
+ carve::csg::detail::VSet branch_points;
+
+ // first, make the intersection graph.
+ for (V2Set::const_iterator i = shared_edges.begin(); i != shared_edges.end(); ++i) {
+ const V2Set::key_type &edge = (*i);
+ carve::csg::detail::VVSMap::mapped_type &out = (shared_edge_graph[edge.first]);
+ out.insert(edge.second);
+ if (out.size() == 3) branch_points.insert(edge.first);
+
+#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_INTERSECTION_LINE)
+ HOOK(drawEdge(edge.first, edge.second, 1, 1, 1, 1, 1, 1, 1, 1, 1.0););
+#endif
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << "graph nodes: " << shared_edge_graph.size() << std::endl;
+ std::cerr << "branch nodes: " << branch_points.size() << std::endl;
+#endif
+
+ std::list<V2> out;
+ while (shared_edge_graph.size()) {
+ carve::csg::detail::VVSMap::iterator i = shared_edge_graph.begin();
+ carve::mesh::MeshSet<3>::vertex_t *v1 = (*i).first;
+ carve::mesh::MeshSet<3>::vertex_t *v2 = *((*i).second.begin());
+ walkGraphSegment(shared_edge_graph, branch_points, V2(v1, v2), a_edge_map, b_edge_map, out);
+ }
+ }
+
+ void hashByPerimeter(FLGroupList &grp, PerimMap &perim_map) {
+ for (FLGroupList::iterator i = grp.begin(); i != grp.end(); ++i) {
+ size_t perim_size = (*i).perimeter.size();
+ // can be the case for non intersecting groups. (and groups that intersect at a point?)
+ if (!perim_size) continue;
+ const carve::mesh::MeshSet<3>::vertex_t *perim_min = std::min_element((*i).perimeter.begin(), (*i).perimeter.end())->first;
+ perim_map[std::make_pair(perim_size, perim_min)].insert(&(*i));
+ }
+ }
+
+
+
+ bool same_edge_set_fwd(const V2Set &a, const V2Set &b) {
+ if (a.size() != b.size()) return false;
+ for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
+ if (b.find(*i) == b.end()) return false;
+ }
+ return true;
+ }
+
+
+
+ bool same_edge_set_rev(const V2Set &a, const V2Set &b) {
+ if (a.size() != b.size()) return false;
+ for (V2Set::const_iterator i = a.begin(), e = a.end(); i != e; ++i) {
+ if (b.find(std::make_pair((*i).second, (*i).first)) == b.end()) return false;
+ }
+ return true;
+ }
+
+
+
+ int same_edge_set(const V2Set &a, const V2Set &b) {
+ if (same_edge_set_fwd(a, b)) return +1;
+ if (same_edge_set_rev(a, b)) return -1;
+ return 0;
+ }
+
+
+
+ void generateCandidateOnSets(FLGroupList &a_grp,
+ FLGroupList &b_grp,
+ CandidateOnMap &candidate_on_map,
+ Classification &a_classification,
+ Classification &b_classification) {
+ PerimMap a_grp_by_perim, b_grp_by_perim;
+
+ hashByPerimeter(a_grp, a_grp_by_perim);
+ hashByPerimeter(b_grp, b_grp_by_perim);
+
+ for (PerimMap::iterator i = a_grp_by_perim.begin(), ie = a_grp_by_perim.end(); i != ie; ++i) {
+ PerimMap::iterator j = b_grp_by_perim.find((*i).first);
+ if (j == b_grp_by_perim.end()) continue;
+
+ for (PerimMap::mapped_type::iterator a = (*i).second.begin(), ae = (*i).second.end(); a != ae; ++a) {
+ for (PerimMap::mapped_type::iterator b = (*j).second.begin(), be = (*j).second.end(); b != be; ++b) {
+ int x = same_edge_set((*a)->perimeter, (*b)->perimeter);
+ if (!x) continue;
+ candidate_on_map[(*a)].insert(std::make_pair(x, (*b)));
+ if ((*a)->face_loops.count == 1 && (*b)->face_loops.count == 1) {
+ uint32_t fcb = x == +1 ? FACE_ON_ORIENT_OUT_BIT : FACE_ON_ORIENT_IN_BIT;
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "paired groups: " << (*a) << ", " << (*b) << std::endl;
+#endif
+
+ ClassificationData &a_data = a_classification[std::make_pair((*a), (*b)->face_loops.head->orig_face->mesh)];
+ a_data.class_bits = fcb; a_data.class_decided = 1;
+
+ ClassificationData &b_data = b_classification[std::make_pair((*b), (*a)->face_loops.head->orig_face->mesh)];
+ b_data.class_bits = fcb; b_data.class_decided = 1;
+ }
+ }
+ }
+ }
+ }
+
+ }
+
+
+ static inline std::string CODE(const FaceLoopGroup *grp) {
+ const std::list<ClassificationInfo> &cinfo = (grp->classification);
+ if (cinfo.size() == 0) {
+ return "?";
+ }
+
+ FaceClass fc = FACE_UNCLASSIFIED;
+
+ for (std::list<ClassificationInfo>::const_iterator i = grp->classification.begin(), e = grp->classification.end(); i != e; ++i) {
+ if ((*i).intersected_mesh == NULL) {
+ // classifier only returns global info
+ fc = (*i).classification;
+ break;
+ }
+
+ if ((*i).intersectedMeshIsClosed()) {
+ if ((*i).classification == FACE_UNCLASSIFIED) continue;
+ if (fc == FACE_UNCLASSIFIED) {
+ fc = (*i).classification;
+ } else if (fc != (*i).classification) {
+ return "X";
+ }
+ }
+ }
+ if (fc == FACE_IN) return "I";
+ if (fc == FACE_ON_ORIENT_IN) return "<";
+ if (fc == FACE_ON_ORIENT_OUT) return ">";
+ if (fc == FACE_OUT) return "O";
+ return "*";
+ }
+
+ void CSG::classifyFaceGroupsEdge(const V2Set &shared_edges,
+ VertexClassification &vclass,
+ carve::mesh::MeshSet<3> *poly_a,
+ const face_rtree_t *poly_a_rtree,
+ FLGroupList &a_loops_grouped,
+ const detail::LoopEdges &a_edge_map,
+ carve::mesh::MeshSet<3> *poly_b,
+ const face_rtree_t *poly_b_rtree,
+ FLGroupList &b_loops_grouped,
+ const detail::LoopEdges &b_edge_map,
+ CSG::Collector &collector) {
+ Classification a_classification;
+ Classification b_classification;
+
+ CandidateOnMap candidate_on_map;
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "a input loops (" << a_loops_grouped.size() << "): ";
+ for (FLGroupList::iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ std::cerr << &*i << " ";
+ }
+ std::cerr << std::endl;
+ std::cerr << "b input loops (" << b_loops_grouped.size() << "): ";
+ for (FLGroupList::iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
+ std::cerr << &*i << " ";
+ }
+ std::cerr << std::endl;
+#endif
+
+#if defined(DISPLAY_GRP_GRAPH)
+ // XXX: this is hopelessly inefficient.
+ std::map<const FaceLoopGroup *, std::set<const FaceLoopGroup *> > grp_graph_fwd, grp_graph_rev;
+ {
+ for (FLGroupList::iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ FaceLoopGroup *src = &(*i);
+ for (V2Set::const_iterator k = src->perimeter.begin(); k != src->perimeter.end(); ++k) {
+ V2 fwd = *k;
+ V2 rev = std::make_pair(fwd.second, fwd.first);
+ for (FLGroupList::iterator j = a_loops_grouped.begin(); j != a_loops_grouped.end(); ++j) {
+ FaceLoopGroup *tgt = &(*j);
+ if (tgt->perimeter.find(fwd) != tgt->perimeter.end()) { grp_graph_fwd[src].insert(tgt); }
+ if (tgt->perimeter.find(rev) != tgt->perimeter.end()) { grp_graph_rev[src].insert(tgt); }
+ }
+ for (FLGroupList::iterator j = b_loops_grouped.begin(); j != b_loops_grouped.end(); ++j) {
+ FaceLoopGroup *tgt = &(*j);
+ if (tgt->perimeter.find(fwd) != tgt->perimeter.end()) { grp_graph_fwd[src].insert(tgt); }
+ if (tgt->perimeter.find(rev) != tgt->perimeter.end()) { grp_graph_rev[src].insert(tgt); }
+ }
+ }
+ }
+ for (FLGroupList::iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
+ FaceLoopGroup *src = &(*i);
+ for (V2Set::const_iterator k = src->perimeter.begin(); k != src->perimeter.end(); ++k) {
+ V2 fwd = *k;
+ V2 rev = std::make_pair(fwd.second, fwd.first);
+ for (FLGroupList::iterator j = a_loops_grouped.begin(); j != a_loops_grouped.end(); ++j) {
+ FaceLoopGroup *tgt = &(*j);
+ if (tgt->perimeter.find(fwd) != tgt->perimeter.end()) { grp_graph_fwd[src].insert(tgt); }
+ if (tgt->perimeter.find(rev) != tgt->perimeter.end()) { grp_graph_rev[src].insert(tgt); }
+ }
+ for (FLGroupList::iterator j = b_loops_grouped.begin(); j != b_loops_grouped.end(); ++j) {
+ FaceLoopGroup *tgt = &(*j);
+ if (tgt->perimeter.find(fwd) != tgt->perimeter.end()) { grp_graph_fwd[src].insert(tgt); }
+ if (tgt->perimeter.find(rev) != tgt->perimeter.end()) { grp_graph_rev[src].insert(tgt); }
+ }
+ }
+ }
+ }
+#endif
+
+ generateCandidateOnSets(a_loops_grouped, b_loops_grouped, candidate_on_map, a_classification, b_classification);
+
+
+ for (V2Set::const_iterator i = shared_edges.begin(); i != shared_edges.end(); ++i) {
+ const V2 &edge = (*i);
+ processOneEdge(edge, a_edge_map, b_edge_map, a_classification, b_classification);
+ }
+
+
+ for (Classification::iterator i = a_classification.begin(), e = a_classification.end(); i != e; ++i) {
+ if (!(*i).second.class_decided) {
+ if ((*i).second.c[FACE_IN + 2] == 0) (*i).second.class_bits &= ~ FACE_IN_BIT;
+ if ((*i).second.c[FACE_ON_ORIENT_IN + 2] == 0) (*i).second.class_bits &= ~ FACE_ON_ORIENT_IN_BIT;
+ if ((*i).second.c[FACE_ON_ORIENT_OUT + 2] == 0) (*i).second.class_bits &= ~ FACE_ON_ORIENT_OUT_BIT;
+ if ((*i).second.c[FACE_OUT + 2] == 0) (*i).second.class_bits &= ~ FACE_OUT_BIT;
+
+ // XXX: this is the wrong thing to do. It's intended just as a test.
+ if ((*i).second.class_bits == (FACE_IN_BIT | FACE_OUT_BIT)) {
+ if ((*i).second.c[FACE_OUT + 2] > (*i).second.c[FACE_IN + 2]) {
+ (*i).second.class_bits = FACE_OUT_BIT;
+ } else {
+ (*i).second.class_bits = FACE_IN_BIT;
+ }
+ }
+
+ if (single_bit_set((*i).second.class_bits)) (*i).second.class_decided = 1;
+ }
+ }
+
+ for (Classification::iterator i = b_classification.begin(), e = b_classification.end(); i != e; ++i) {
+ if (!(*i).second.class_decided) {
+ if ((*i).second.c[FACE_IN + 2] == 0) (*i).second.class_bits &= ~ FACE_IN_BIT;
+ if ((*i).second.c[FACE_ON_ORIENT_IN + 2] == 0) (*i).second.class_bits &= ~ FACE_ON_ORIENT_IN_BIT;
+ if ((*i).second.c[FACE_ON_ORIENT_OUT + 2] == 0) (*i).second.class_bits &= ~ FACE_ON_ORIENT_OUT_BIT;
+ if ((*i).second.c[FACE_OUT + 2] == 0) (*i).second.class_bits &= ~ FACE_OUT_BIT;
+
+ // XXX: this is the wrong thing to do. It's intended just as a test.
+ if ((*i).second.class_bits == (FACE_IN_BIT | FACE_OUT_BIT)) {
+ if ((*i).second.c[FACE_OUT + 2] > (*i).second.c[FACE_IN + 2]) {
+ (*i).second.class_bits = FACE_OUT_BIT;
+ } else {
+ (*i).second.class_bits = FACE_IN_BIT;
+ }
+ }
+
+ if (single_bit_set((*i).second.class_bits)) (*i).second.class_decided = 1;
+ }
+ }
+
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "poly a:" << std::endl;
+ for (Classification::iterator i = a_classification.begin(), e = a_classification.end(); i != e; ++i) {
+ FaceLoopGroup *grp = ((*i).first.first);
+
+ std::cerr << " group: " << grp << " gid: " << (*i).first.second
+ << " "
+ << ((*i).second.class_decided ? "+" : "-")
+ << " "
+ << ((*i).second.class_bits & FACE_IN_BIT ? "I" : ".")
+ << ((*i).second.class_bits & FACE_ON_ORIENT_IN_BIT ? "<" : ".")
+ << ((*i).second.class_bits & FACE_ON_ORIENT_OUT_BIT ? ">" : ".")
+ << ((*i).second.class_bits & FACE_OUT_BIT ? "O" : ".")
+ << " ["
+ << std::setw(4) << (*i).second.c[0] << " "
+ << std::setw(4) << (*i).second.c[1] << " "
+ << std::setw(4) << (*i).second.c[2] << " "
+ << std::setw(4) << (*i).second.c[3] << " "
+ << std::setw(4) << (*i).second.c[4] << "]" << std::endl;
+ }
+
+ std::cerr << "poly b:" << std::endl;
+ for (Classification::iterator i = b_classification.begin(), e = b_classification.end(); i != e; ++i) {
+ FaceLoopGroup *grp = ((*i).first.first);
+
+ std::cerr << " group: " << grp << " gid: " << (*i).first.second
+ << " "
+ << ((*i).second.class_decided ? "+" : "-")
+ << " "
+ << ((*i).second.class_bits & FACE_IN_BIT ? "I" : ".")
+ << ((*i).second.class_bits & FACE_ON_ORIENT_IN_BIT ? "<" : ".")
+ << ((*i).second.class_bits & FACE_ON_ORIENT_OUT_BIT ? ">" : ".")
+ << ((*i).second.class_bits & FACE_OUT_BIT ? "O" : ".")
+ << " ["
+ << std::setw(4) << (*i).second.c[0] << " "
+ << std::setw(4) << (*i).second.c[1] << " "
+ << std::setw(4) << (*i).second.c[2] << " "
+ << std::setw(4) << (*i).second.c[3] << " "
+ << std::setw(4) << (*i).second.c[4] << "]" << std::endl;
+ }
+#endif
+
+ for (Classification::iterator i = a_classification.begin(), e = a_classification.end(); i != e; ++i) {
+ FaceLoopGroup *grp = ((*i).first.first);
+
+ grp->classification.push_back(ClassificationInfo());
+ ClassificationInfo &info = grp->classification.back();
+
+ info.intersected_mesh = (*i).first.second;
+
+ if ((*i).second.class_decided) {
+ info.classification = class_bit_to_class((*i).second.class_bits);
+ } else {
+ info.classification = FACE_UNCLASSIFIED;
+ }
+ }
+
+ for (Classification::iterator i = b_classification.begin(), e = b_classification.end(); i != e; ++i) {
+ FaceLoopGroup *grp = ((*i).first.first);
+
+ grp->classification.push_back(ClassificationInfo());
+ ClassificationInfo &info = grp->classification.back();
+
+ info.intersected_mesh = (*i).first.second;
+
+ if ((*i).second.class_decided) {
+ info.classification = class_bit_to_class((*i).second.class_bits);
+ } else {
+ info.classification = FACE_UNCLASSIFIED;
+ }
+ }
+
+ for (FLGroupList::iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ if ((*i).classification.size() == 0) {
+#if defined(CARVE_DEBUG)
+ std::cerr << " non intersecting group (poly a): " << &(*i) << std::endl;
+#endif
+ bool classified = false;
+ for (FaceLoop *fl = (*i).face_loops.head; !classified && fl != NULL; fl = fl->next) {
+ for (size_t fli = 0; !classified && fli < fl->vertices.size(); ++fli) {
+ if (vclass[fl->vertices[fli]].cls[1] == POINT_UNK) {
+ vclass[fl->vertices[fli]].cls[1] = carve::mesh::classifyPoint(poly_b, poly_b_rtree, fl->vertices[fli]->v);
+ }
+ switch (vclass[fl->vertices[fli]].cls[1]) {
+ case POINT_IN:
+ (*i).classification.push_back(ClassificationInfo(NULL, FACE_IN));
+ classified = true;
+ break;
+ case POINT_OUT:
+ (*i).classification.push_back(ClassificationInfo(NULL, FACE_OUT));
+ classified = true;
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ if (!classified) {
+ throw carve::exception("non intersecting group is not IN or OUT! (poly_a)");
+ }
+ }
+ }
+
+ for (FLGroupList::iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
+ if ((*i).classification.size() == 0) {
+#if defined(CARVE_DEBUG)
+ std::cerr << " non intersecting group (poly b): " << &(*i) << std::endl;
+#endif
+ bool classified = false;
+ for (FaceLoop *fl = (*i).face_loops.head; !classified && fl != NULL; fl = fl->next) {
+ for (size_t fli = 0; !classified && fli < fl->vertices.size(); ++fli) {
+ if (vclass[fl->vertices[fli]].cls[0] == POINT_UNK) {
+ vclass[fl->vertices[fli]].cls[0] = carve::mesh::classifyPoint(poly_a, poly_a_rtree, fl->vertices[fli]->v);
+ }
+ switch (vclass[fl->vertices[fli]].cls[0]) {
+ case POINT_IN:
+ (*i).classification.push_back(ClassificationInfo(NULL, FACE_IN));
+ classified = true;
+ break;
+ case POINT_OUT:
+ (*i).classification.push_back(ClassificationInfo(NULL, FACE_OUT));
+ classified = true;
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ if (!classified) {
+ throw carve::exception("non intersecting group is not IN or OUT! (poly_b)");
+ }
+ }
+ }
+
+#if defined(DISPLAY_GRP_GRAPH)
+#define POLY(grp) (std::string((grp)->face_loops.head->orig_face->polyhedron == poly_a ? "[A:" : "[B:") + CODE(grp) + "]")
+
+ for (std::map<const FaceLoopGroup *, std::set<const FaceLoopGroup *> >::iterator i = grp_graph_fwd.begin(); i != grp_graph_fwd.end(); ++i) {
+ const FaceLoopGroup *grp = (*i).first;
+
+ std::cerr << "GRP: " << grp << POLY(grp) << std::endl;
+
+ std::set<const FaceLoopGroup *> &fwd_set = grp_graph_fwd[grp];
+ std::set<const FaceLoopGroup *> &rev_set = grp_graph_rev[grp];
+ std::cerr << " FWD: ";
+ for (std::set<const FaceLoopGroup *>::const_iterator j = fwd_set.begin(); j != fwd_set.end(); ++j) {
+ std::cerr << " " << (*j) << POLY(*j);
+ }
+ std::cerr << std::endl;
+ std::cerr << " REV: ";
+ for (std::set<const FaceLoopGroup *>::const_iterator j = rev_set.begin(); j != rev_set.end(); ++j) {
+ std::cerr << " " << (*j) << POLY(*j);
+ }
+ std::cerr << std::endl;
+ }
+#endif
+
+ for (FLGroupList::iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
+ collector.collect(&*i, hooks);
+ }
+
+ for (FLGroupList::iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
+ collector.collect(&*i, hooks);
+ }
+
+ // traceIntersectionGraph(shared_edges, a_loops_grouped, b_loops_grouped, a_edge_map, b_edge_map);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/intersect_classify_group.cpp b/extern/carve/lib/intersect_classify_group.cpp
new file mode 100644
index 00000000000..4251af63f89
--- /dev/null
+++ b/extern/carve/lib/intersect_classify_group.cpp
@@ -0,0 +1,220 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/debug_hooks.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "intersect_common.hpp"
+#include "intersect_classify_common.hpp"
+#include "intersect_classify_common_impl.hpp"
+
+
+namespace carve {
+ namespace csg {
+
+ namespace {
+
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ // VC++ 6.0 gets an internal compiler when compiling
+ // the FaceMaker template. Not sure why but for now we just bypass
+ // the template
+ class FaceMaker0 {
+ public:
+ CSG::Collector &collector;
+ CSG::Hooks &hooks;
+
+ FaceMaker0(CSG::Collector &c, CSG::Hooks &h) : collector(c), hooks(h) {
+ }
+ bool pointOn(VertexClassification &vclass, FaceLoop *f, size_t index) const {
+ return vclass[f->vertices[index]].cls[1] == POINT_ON;
+ }
+ void explain(FaceLoop *f, size_t index, PointClass pc) const {
+#if defined(CARVE_DEBUG)
+ std::cerr << "face loop " << f << " from poly " << "ab"[0] << " is easy because vertex " << index << " (" << *f->vertices[index] << ") is " << ENUM(pc) << std::endl;
+#endif
+ }
+ };
+ class FaceMaker1 {
+ public:
+ CSG::Collector &collector;
+ CSG::Hooks &hooks;
+
+ FaceMaker1(CSG::Collector &c, CSG::Hooks &h) : collector(c), hooks(h) {
+ }
+ bool pointOn(VertexClassification &vclass, FaceLoop *f, size_t index) const {
+ return vclass[f->vertices[index]].cls[0] == POINT_ON;
+ }
+ void explain(FaceLoop *f, size_t index, PointClass pc) const {
+#if defined(CARVE_DEBUG)
+ std::cerr << "face loop " << f << " from poly " << "ab"[1] << " is easy because vertex " << index << " (" << *f->vertices[index] << ") is " << ENUM(pc) << std::endl;
+#endif
+ }
+ };
+#else
+ template <int poly_num>
+ class FaceMaker {
+ FaceMaker &operator=(const FaceMaker &);
+
+ public:
+ CSG::Collector &collector;
+ CSG::Hooks &hooks;
+
+ FaceMaker(CSG::Collector &c, CSG::Hooks &h) : collector(c), hooks(h) {
+ }
+
+ bool pointOn(VertexClassification &vclass, FaceLoop *f, size_t index) const {
+ return vclass[f->vertices[index]].cls[1 - poly_num] == POINT_ON;
+ }
+
+ void explain(FaceLoop *f, size_t index, PointClass pc) const {
+#if defined(CARVE_DEBUG)
+ std::cerr << "face loop " << f << " from poly " << "ab"[poly_num] << " is easy because vertex " << index << " (" << f->vertices[index]->v << ") is " << ENUM(pc) << std::endl;
+#endif
+ }
+ };
+ typedef FaceMaker<0> FaceMaker0;
+ typedef FaceMaker<1> FaceMaker1;
+#endif
+ class ClassifyFaceGroups {
+ ClassifyFaceGroups &operator=(const ClassifyFaceGroups &);
+
+ public:
+ CSG::Collector &collector;
+ CSG::Hooks &hooks;
+
+ ClassifyFaceGroups(CSG::Collector &c, CSG::Hooks &h) : collector(c), hooks(h) {
+ }
+
+ void classifySimple(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & /* vclass */,
+ carve::mesh::MeshSet<3> *poly_a,
+ carve::mesh::MeshSet<3> *poly_b) const {
+ if (a_loops_grouped.size() < b_loops_grouped.size()) {
+ performClassifySimpleOnFaceGroups(a_loops_grouped, b_loops_grouped, poly_a, poly_b, collector, hooks);
+ } else {
+ performClassifySimpleOnFaceGroups(b_loops_grouped, a_loops_grouped, poly_b, poly_a, collector, hooks);
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of simple on groups: " << a_loops_grouped.size() << " a groups" << std::endl;
+ std::cerr << "after removal of simple on groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ void classifyEasy(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped,
+ VertexClassification &vclass,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree) const {
+ performClassifyEasyFaceGroups(a_loops_grouped, poly_b, poly_b_rtree, vclass, FaceMaker0(collector, hooks), collector, hooks);
+ performClassifyEasyFaceGroups(b_loops_grouped, poly_a, poly_a_rtree, vclass, FaceMaker1(collector, hooks), collector, hooks);
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of easy groups: " << a_loops_grouped.size() << " a groups" << std::endl;
+ std::cerr << "after removal of easy groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ void classifyHard(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & /* vclass */,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree) const {
+ performClassifyHardFaceGroups(a_loops_grouped, poly_b, poly_b_rtree, FaceMaker0(collector, hooks), collector, hooks);
+ performClassifyHardFaceGroups(b_loops_grouped, poly_a, poly_a_rtree, FaceMaker1(collector, hooks), collector, hooks);
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of hard groups: " << a_loops_grouped.size() << " a groups" << std::endl;
+ std::cerr << "after removal of hard groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ void faceLoopWork(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & /* vclass */,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree) const {
+ performFaceLoopWork(poly_b, poly_b_rtree, a_loops_grouped, *this, collector, hooks);
+ performFaceLoopWork(poly_a, poly_a_rtree, b_loops_grouped, *this, collector, hooks);
+ }
+
+ void postRemovalCheck(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped) const {
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of on groups: " << a_loops_grouped.size() << " a groups" << std::endl;
+ std::cerr << "after removal of on groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ bool faceLoopSanityChecker(FaceLoopGroup &i) const {
+ return i.face_loops.size() != 1;
+ }
+
+ void finish(FLGroupList &a_loops_grouped,FLGroupList &b_loops_grouped) const {
+#if defined(CARVE_DEBUG)
+ if (a_loops_grouped.size() || b_loops_grouped.size())
+ std::cerr << "UNCLASSIFIED! a=" << a_loops_grouped.size() << ", b=" << b_loops_grouped.size() << std::endl;
+#endif
+ }
+ };
+ }
+
+ void CSG::classifyFaceGroups(const V2Set & /* shared_edges */,
+ VertexClassification &vclass,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ FLGroupList &a_loops_grouped,
+ const detail::LoopEdges & /* a_edge_map */,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree,
+ FLGroupList &b_loops_grouped,
+ const detail::LoopEdges & /* b_edge_map */,
+ CSG::Collector &collector) {
+ ClassifyFaceGroups classifier(collector, hooks);
+#if defined(CARVE_DEBUG)
+ std::cerr << "initial groups: " << a_loops_grouped.size() << " a groups" << std::endl;
+ std::cerr << "initial groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ performClassifyFaceGroups(
+ a_loops_grouped,
+ b_loops_grouped,
+ vclass,
+ poly_a,
+ poly_a_rtree,
+ poly_b,
+ poly_b_rtree,
+ classifier,
+ collector,
+ hooks);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/intersect_common.hpp b/extern/carve/lib/intersect_common.hpp
new file mode 100644
index 00000000000..06f3cfdd4ec
--- /dev/null
+++ b/extern/carve/lib/intersect_common.hpp
@@ -0,0 +1,83 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#pragma once
+
+
+static inline bool facesAreCoplanar(const carve::mesh::MeshSet<3>::face_t *a, const carve::mesh::MeshSet<3>::face_t *b) {
+ carve::geom3d::Ray temp;
+ // XXX: Find a better definition. This may be a source of problems
+ // if floating point inaccuracies cause an incorrect answer.
+ return !carve::geom3d::planeIntersection(a->plane, b->plane, temp);
+}
+
+#if defined(CARVE_DEBUG)
+
+#include <carve/debug_hooks.hpp>
+
+#endif
+
+namespace carve {
+ namespace csg {
+
+ static inline carve::mesh::MeshSet<3>::vertex_t *map_vertex(const VVMap &vmap, carve::mesh::MeshSet<3>::vertex_t *v) {
+ VVMap::const_iterator i = vmap.find(v);
+ if (i == vmap.end()) return v;
+ return (*i).second;
+ }
+
+#if defined(CARVE_DEBUG)
+
+ class IntersectDebugHooks;
+ extern IntersectDebugHooks *g_debug;
+
+#define HOOK(x) do { if (g_debug) { g_debug->x } } while(0)
+
+ static inline void drawFaceLoopList(const FaceLoopList &ll,
+ float rF, float gF, float bF, float aF,
+ float rB, float gB, float bB, float aB,
+ bool lit) {
+ for (FaceLoop *flb = ll.head; flb; flb = flb->next) {
+ const carve::mesh::MeshSet<3>::face_t *f = (flb->orig_face);
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = flb->vertices;
+ HOOK(drawFaceLoop2(loop, f->plane.N, rF, gF, bF, aF, rB, gB, bB, aB, true, lit););
+ HOOK(drawFaceLoopWireframe(loop, f->plane.N, 1, 1, 1, 0.1f););
+ }
+ }
+
+ static inline void drawFaceLoopListWireframe(const FaceLoopList &ll) {
+ for (FaceLoop *flb = ll.head; flb; flb = flb->next) {
+ const carve::mesh::MeshSet<3>::face_t *f = (flb->orig_face);
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = flb->vertices;
+ HOOK(drawFaceLoopWireframe(loop, f->plane.N, 1, 1, 1, 0.1f););
+ }
+ }
+
+ template<typename T>
+ static inline void drawEdges(T begin, T end,
+ float rB, float gB, float bB, float aB,
+ float rE, float gE, float bE, float aE,
+ float w) {
+ for (; begin != end; ++begin) {
+ HOOK(drawEdge((*begin).first, (*begin).second, rB, gB, bB, aB, rE, gE, bE, aE, w););
+ }
+ }
+
+#endif
+
+ }
+}
diff --git a/extern/carve/lib/intersect_debug.cpp b/extern/carve/lib/intersect_debug.cpp
new file mode 100644
index 00000000000..c16854d5655
--- /dev/null
+++ b/extern/carve/lib/intersect_debug.cpp
@@ -0,0 +1,65 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "intersect_debug.hpp"
+
+namespace carve {
+ namespace csg {
+
+#if defined(CARVE_DEBUG)
+
+#define DEBUG_DRAW_FACE_EDGES
+#define DEBUG_DRAW_INTERSECTIONS
+// #define DEBUG_DRAW_OCTREE
+#define DEBUG_DRAW_INTERSECTION_LINE
+// #define DEBUG_DRAW_GROUPS
+// #define DEBUG_PRINT_RESULT_FACES
+
+ IntersectDebugHooks *g_debug = NULL;
+
+ IntersectDebugHooks *intersect_installDebugHooks(IntersectDebugHooks *hooks) {
+ IntersectDebugHooks *h = g_debug;
+ g_debug = hooks;
+ return h;
+ }
+
+ bool intersect_debugEnabled() { return true; }
+
+#else
+
+ IntersectDebugHooks *intersect_installDebugHooks(IntersectDebugHooks * /* hooks */) {
+ return NULL;
+ }
+
+ bool intersect_debugEnabled() { return false; }
+
+#endif
+
+ }
+}
diff --git a/extern/carve/lib/intersect_debug.hpp b/extern/carve/lib/intersect_debug.hpp
new file mode 100644
index 00000000000..be73a7c3dae
--- /dev/null
+++ b/extern/carve/lib/intersect_debug.hpp
@@ -0,0 +1,29 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#include <carve/debug_hooks.hpp>
+
+#if defined(CARVE_DEBUG)
+
+#define DEBUG_DRAW_FACE_EDGES
+#define DEBUG_DRAW_INTERSECTIONS
+// #define DEBUG_DRAW_OCTREE
+#define DEBUG_DRAW_INTERSECTION_LINE
+// #define DEBUG_DRAW_GROUPS
+// #define DEBUG_PRINT_RESULT_FACES
+
+#endif
diff --git a/extern/carve/lib/intersect_face_division.cpp b/extern/carve/lib/intersect_face_division.cpp
new file mode 100644
index 00000000000..6f2aa65ed67
--- /dev/null
+++ b/extern/carve/lib/intersect_face_division.cpp
@@ -0,0 +1,1709 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/polyline.hpp>
+#include <carve/debug_hooks.hpp>
+#include <carve/timing.hpp>
+#include <carve/triangulator.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "csg_detail.hpp"
+#include "csg_data.hpp"
+
+#include "intersect_common.hpp"
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+void writePLY(const std::string &out_file, const carve::line::PolylineSet *lines, bool ascii);
+#endif
+
+
+
+namespace {
+
+
+
+ template<typename T>
+ void populateVectorFromList(std::list<T> &l, std::vector<T> &v) {
+ v.clear();
+ v.reserve(l.size());
+ for (typename std::list<T>::iterator i = l.begin(); i != l.end(); ++i) {
+ v.push_back(T());
+ std::swap(*i, v.back());
+ }
+ l.clear();
+ }
+
+ template<typename T>
+ void populateListFromVector(std::vector<T> &v, std::list<T> &l) {
+ l.clear();
+ for (size_t i = 0; i < v.size(); ++i) {
+ l.push_back(T());
+ std::swap(v[i], l.back());
+ }
+ v.clear();
+ }
+
+
+
+ struct GraphEdge {
+ GraphEdge *next;
+ GraphEdge *prev;
+ GraphEdge *loop_next;
+ carve::mesh::MeshSet<3>::vertex_t *src;
+ carve::mesh::MeshSet<3>::vertex_t *tgt;
+ double ang;
+ int visited;
+
+ GraphEdge(carve::mesh::MeshSet<3>::vertex_t *_src, carve::mesh::MeshSet<3>::vertex_t *_tgt) :
+ next(NULL), prev(NULL), loop_next(NULL),
+ src(_src), tgt(_tgt),
+ ang(0.0), visited(-1) {
+ }
+ };
+
+
+
+ struct GraphEdges {
+ GraphEdge *edges;
+ carve::geom2d::P2 proj;
+
+ GraphEdges() : edges(NULL), proj() {
+ }
+ };
+
+
+
+ struct Graph {
+ typedef std::unordered_map<carve::mesh::MeshSet<3>::vertex_t *, GraphEdges> graph_t;
+
+ graph_t graph;
+
+ Graph() : graph() {
+ }
+
+ ~Graph() {
+ int c = 0;
+
+ GraphEdge *edge;
+ for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ edge = (*i).second.edges;
+ while (edge) {
+ GraphEdge *temp = edge;
+ ++c;
+ edge = edge->next;
+ delete temp;
+ }
+ }
+
+ if (c) {
+ std::cerr << "warning: "
+ << c
+ << " edges should have already been removed at graph destruction time"
+ << std::endl;
+ }
+ }
+
+ const carve::geom2d::P2 &projection(carve::mesh::MeshSet<3>::vertex_t *v) const {
+ graph_t::const_iterator i = graph.find(v);
+ CARVE_ASSERT(i != graph.end());
+ return (*i).second.proj;
+ }
+
+ void computeProjection(carve::mesh::MeshSet<3>::face_t *face) {
+ for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ (*i).second.proj = face->project((*i).first->v);
+ }
+ for (graph_t::iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ for (GraphEdge *e = (*i).second.edges; e; e = e->next) {
+ e->ang = carve::math::ANG(carve::geom2d::atan2(projection(e->tgt) - projection(e->src)));
+ }
+ }
+ }
+
+ void print(std::ostream &out, const carve::csg::VertexIntersections *vi) const {
+ for (graph_t::const_iterator i = graph.begin(), e = graph.end(); i != e; ++i) {
+ out << (*i).first << (*i).first->v << '(' << projection((*i).first).x << ',' << projection((*i).first).y << ") :";
+ for (const GraphEdge *e = (*i).second.edges; e; e = e->next) {
+ out << ' ' << e->tgt << e->tgt->v << '(' << projection(e->tgt).x << ',' << projection(e->tgt).y << ')';
+ }
+ out << std::endl;
+ if (vi) {
+ carve::csg::VertexIntersections::const_iterator j = vi->find((*i).first);
+ if (j != vi->end()) {
+ out << " (int) ";
+ for (carve::csg::IObjPairSet::const_iterator
+ k = (*j).second.begin(), ke = (*j).second.end(); k != ke; ++k) {
+ if ((*k).first < (*k).second) {
+ out << (*k).first << ".." << (*k).second << "; ";
+ }
+ }
+ out << std::endl;
+ }
+ }
+ }
+ }
+
+ void addEdge(carve::mesh::MeshSet<3>::vertex_t *v1, carve::mesh::MeshSet<3>::vertex_t *v2) {
+ GraphEdges &edges = graph[v1];
+ GraphEdge *edge = new GraphEdge(v1, v2);
+ if (edges.edges) edges.edges->prev = edge;
+ edge->next = edges.edges;
+ edges.edges = edge;
+ }
+
+ void removeEdge(GraphEdge *edge) {
+ if (edge->prev != NULL) {
+ edge->prev->next = edge->next;
+ } else {
+ if (edge->next != NULL) {
+ GraphEdges &edges = (graph[edge->src]);
+ edges.edges = edge->next;
+ } else {
+ graph.erase(edge->src);
+ }
+ }
+ if (edge->next != NULL) {
+ edge->next->prev = edge->prev;
+ }
+ delete edge;
+ }
+
+ bool empty() const {
+ return graph.size() == 0;
+ }
+
+ GraphEdge *pickStartEdge() {
+ // Try and find a vertex from which there is only one outbound edge. Won't always succeed.
+ for (graph_t::iterator i = graph.begin(); i != graph.end(); ++i) {
+ GraphEdges &ge = i->second;
+ if (ge.edges->next == NULL) {
+ return ge.edges;
+ }
+ }
+ return (*graph.begin()).second.edges;
+ }
+
+ GraphEdge *outboundEdges(carve::mesh::MeshSet<3>::vertex_t *v) {
+ return graph[v].edges;
+ }
+ };
+
+
+
+ /**
+ * \brief Take a set of new edges and split a face based upon those edges.
+ *
+ * @param[in] face The face to be split.
+ * @param[in] edges
+ * @param[out] face_loops Output list of face loops
+ * @param[out] hole_loops Output list of hole loops
+ * @param vi
+ */
+ static void splitFace(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::V2Set &edges,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops,
+ const carve::csg::VertexIntersections & /* vi */) {
+ Graph graph;
+
+ for (carve::csg::V2Set::const_iterator
+ i = edges.begin(), e = edges.end();
+ i != e;
+ ++i) {
+ carve::mesh::MeshSet<3>::vertex_t *v1 = ((*i).first), *v2 = ((*i).second);
+ if (carve::geom::equal(v1->v, v2->v)) std::cerr << "WARNING! " << v1->v << "==" << v2->v << std::endl;
+ graph.addEdge(v1, v2);
+ }
+
+ graph.computeProjection(face);
+
+ while (!graph.empty()) {
+ GraphEdge *edge;
+ GraphEdge *start;
+ start = edge = graph.pickStartEdge();
+
+ edge->visited = 0;
+
+ int len = 0;
+
+ for (;;) {
+ double in_ang = M_PI + edge->ang;
+ if (in_ang > M_TWOPI) in_ang -= M_TWOPI;
+
+ GraphEdge *opts;
+ GraphEdge *out = NULL;
+ double best = M_TWOPI + 1.0;
+
+ for (opts = graph.outboundEdges(edge->tgt); opts; opts = opts->next) {
+ if (opts->tgt == edge->src) {
+ if (out == NULL && opts->next == NULL) out = opts;
+ } else {
+ double out_ang = carve::math::ANG(in_ang - opts->ang);
+
+ if (out == NULL || out_ang < best) {
+ out = opts;
+ best = out_ang;
+ }
+ }
+ }
+
+ CARVE_ASSERT(out != NULL);
+
+ edge->loop_next = out;
+
+ if (out->visited >= 0) {
+ while (start != out) {
+ GraphEdge *e = start;
+ start = start->loop_next;
+ e->loop_next = NULL;
+ e->visited = -1;
+ }
+ len = edge->visited - out->visited + 1;
+ break;
+ }
+
+ out->visited = edge->visited + 1;
+ edge = out;
+ }
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> loop(len);
+ std::vector<carve::geom2d::P2> projected(len);
+
+ edge = start;
+ for (int i = 0; i < len; ++i) {
+ GraphEdge *next = edge->loop_next;
+ loop[i] = edge->src;
+ projected[i] = graph.projection(edge->src);
+ graph.removeEdge(edge);
+ edge = next;
+ }
+
+ CARVE_ASSERT(edge == start);
+
+ if (carve::geom2d::signedArea(projected) < 0) {
+ face_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ face_loops.back().swap(loop);
+ } else {
+ hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ hole_loops.back().swap(loop);
+ }
+ }
+ }
+
+
+
+ /**
+ * \brief Determine the relationship between a face loop and a hole loop.
+ *
+ * Determine whether a face and hole share an edge, or a vertex,
+ * or do not touch. Find a hole vertex that is not part of the
+ * face, and a hole,face vertex pair that are coincident, if such
+ * a pair exists.
+ *
+ * @param[in] f A face loop.
+ * @param[in] f_sort A vector indexing \a f in address order
+ * @param[in] h A hole loop.
+ * @param[in] h_sort A vector indexing \a h in address order
+ * @param[out] f_idx Index of a face vertex that is shared with the hole.
+ * @param[out] h_idx Index of the hole vertex corresponding to \a f_idx.
+ * @param[out] unmatched_h_idx Index of a hole vertex that is not part of the face.
+ * @param[out] shares_vertex Boolean indicating that the face and the hole share a vertex.
+ * @param[out] shares_edge Boolean indicating that the face and the hole share an edge.
+ */
+ static void compareFaceLoopAndHoleLoop(const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f,
+ const std::vector<unsigned> &f_sort,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h,
+ const std::vector<unsigned> &h_sort,
+ unsigned &f_idx,
+ unsigned &h_idx,
+ int &unmatched_h_idx,
+ bool &shares_vertex,
+ bool &shares_edge) {
+ const size_t F = f.size();
+ const size_t H = h.size();
+
+ shares_vertex = shares_edge = false;
+ unmatched_h_idx = -1;
+
+ unsigned I, J;
+ for (I = J = 0; I < F && J < H;) {
+ unsigned i = f_sort[I], j = h_sort[J];
+ if (f[i] == h[j]) {
+ shares_vertex = true;
+ f_idx = i;
+ h_idx = j;
+ if (f[(i + F - 1) % F] == h[(j + 1) % H]) {
+ shares_edge = true;
+ }
+ carve::mesh::MeshSet<3>::vertex_t *t = f[i];
+ do { ++I; } while (I < F && f[f_sort[I]] == t);
+ do { ++J; } while (J < H && h[h_sort[J]] == t);
+ } else if (f[i] < h[j]) {
+ ++I;
+ } else {
+ unmatched_h_idx = j;
+ ++J;
+ }
+ }
+ if (J < H) {
+ unmatched_h_idx = h_sort[J];
+ }
+ }
+
+
+
+ /**
+ * \brief Compute an embedding for a set of face loops and hole loops.
+ *
+ * Because face and hole loops may be contained within each other,
+ * it must be determined which hole loops are directly contained
+ * within a face loop.
+ *
+ * @param[in] face The face from which these face and hole loops derive.
+ * @param[in] face_loops
+ * @param[in] hole_loops
+ * @param[out] containing_faces A vector which for each hole loop
+ * lists the indices of the face
+ * loops it is containined in.
+ * @param[out] hole_shared_vertices A map from a face,hole pair to
+ * a shared vertex pair.
+ */
+ static void computeContainment(carve::mesh::MeshSet<3>::face_t *face,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops,
+ std::vector<std::vector<int> > &containing_faces,
+ std::map<int, std::map<int, std::pair<unsigned, unsigned> > > &hole_shared_vertices) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "input: "
+ << face_loops.size() << "faces, "
+ << hole_loops.size() << "holes."
+ << std::endl;
+#endif
+
+ std::vector<std::vector<carve::geom2d::P2> > face_loops_projected, hole_loops_projected;
+ std::vector<carve::geom::aabb<2> > face_loop_aabb, hole_loop_aabb;
+ std::vector<std::vector<unsigned> > face_loops_sorted, hole_loops_sorted;
+
+ std::vector<double> face_loop_areas, hole_loop_areas;
+
+ face_loops_projected.resize(face_loops.size());
+ face_loops_sorted.resize(face_loops.size());
+ face_loop_aabb.resize(face_loops.size());
+ face_loop_areas.resize(face_loops.size());
+
+ hole_loops_projected.resize(hole_loops.size());
+ hole_loops_sorted.resize(hole_loops.size());
+ hole_loop_aabb.resize(hole_loops.size());
+ hole_loop_areas.resize(hole_loops.size());
+
+ // produce a projection of each face loop onto a 2D plane, and an
+ // index vector which sorts vertices by address.
+ for (size_t m = 0; m < face_loops.size(); ++m) {
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f_loop = (face_loops[m]);
+ face_loops_projected[m].reserve(f_loop.size());
+ face_loops_sorted[m].reserve(f_loop.size());
+ for (size_t n = 0; n < f_loop.size(); ++n) {
+ face_loops_projected[m].push_back(face->project(f_loop[n]->v));
+ face_loops_sorted[m].push_back(n);
+ }
+ face_loop_areas.push_back(carve::geom2d::signedArea(face_loops_projected[m]));
+ std::sort(face_loops_sorted[m].begin(), face_loops_sorted[m].end(),
+ carve::make_index_sort(face_loops[m].begin()));
+ face_loop_aabb[m].fit(face_loops_projected[m].begin(), face_loops_projected[m].end());
+ }
+
+ // produce a projection of each hole loop onto a 2D plane, and an
+ // index vector which sorts vertices by address.
+ for (size_t m = 0; m < hole_loops.size(); ++m) {
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h_loop = (hole_loops[m]);
+ hole_loops_projected[m].reserve(h_loop.size());
+ hole_loops_projected[m].reserve(h_loop.size());
+ for (size_t n = 0; n < h_loop.size(); ++n) {
+ hole_loops_projected[m].push_back(face->project(h_loop[n]->v));
+ hole_loops_sorted[m].push_back(n);
+ }
+ hole_loop_areas.push_back(carve::geom2d::signedArea(hole_loops_projected[m]));
+ std::sort(hole_loops_sorted[m].begin(), hole_loops_sorted[m].end(),
+ carve::make_index_sort(hole_loops[m].begin()));
+ hole_loop_aabb[m].fit(hole_loops_projected[m].begin(), hole_loops_projected[m].end());
+ }
+
+ containing_faces.resize(hole_loops.size());
+
+ for (unsigned i = 0; i < hole_loops.size(); ++i) {
+
+ for (unsigned j = 0; j < face_loops.size(); ++j) {
+ if (!face_loop_aabb[j].completelyContains(hole_loop_aabb[i])) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "face: " << j
+ << " hole: " << i
+ << " skipped test (aabb fail)"
+ << std::endl;
+#endif
+ continue;
+ }
+
+ unsigned f_idx, h_idx;
+ int unmatched_h_idx;
+ bool shares_vertex, shares_edge;
+ compareFaceLoopAndHoleLoop(face_loops[j],
+ face_loops_sorted[j],
+ hole_loops[i],
+ hole_loops_sorted[i],
+ f_idx, h_idx,
+ unmatched_h_idx,
+ shares_vertex,
+ shares_edge);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "face: " << j
+ << " hole: " << i
+ << " shares_vertex: " << shares_vertex
+ << " shares_edge: " << shares_edge
+ << std::endl;
+#endif
+
+ carve::geom3d::Vector test = hole_loops[i][0]->v;
+ carve::geom2d::P2 test_p = face->project(test);
+
+ if (shares_vertex) {
+ hole_shared_vertices[i][j] = std::make_pair(h_idx, f_idx);
+ // Hole touches face. Should be able to connect it up
+ // trivially. Still need to record its containment, so that
+ // the assignment below works.
+ if (unmatched_h_idx != -1) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "using unmatched vertex: " << unmatched_h_idx << std::endl;
+#endif
+ test = hole_loops[i][unmatched_h_idx]->v;
+ test_p = face->project(test);
+ } else {
+ // XXX: hole shares ALL vertices with face. Pick a point
+ // internal to the projected poly.
+ if (shares_edge) {
+ // Hole shares edge with face => face can't contain hole.
+ continue;
+ }
+
+ // XXX: how is this possible? Doesn't share an edge, but
+ // also doesn't have any vertices that are not in
+ // common. Degenerate hole?
+
+ // XXX: come up with a test case for this.
+ CARVE_FAIL("implement me");
+ }
+ }
+
+
+ // XXX: use loop area to avoid some point-in-poly tests? Loop
+ // area is faster, but not sure which is more robust.
+ if (carve::geom2d::pointInPolySimple(face_loops_projected[j], test_p)) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "contains: " << i << " - " << j << std::endl;
+#endif
+ containing_faces[i].push_back(j);
+ } else {
+#if defined(CARVE_DEBUG)
+ std::cerr << "does not contain: " << i << " - " << j << std::endl;
+#endif
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ if (containing_faces[i].size() == 0) {
+ //HOOK(drawFaceLoopWireframe(hole_loops[i], face->normal, 1.0, 0.0, 0.0, 1.0););
+ std::cerr << "hole loop: ";
+ for (unsigned j = 0; j < hole_loops[i].size(); ++j) {
+ std::cerr << " " << hole_loops[i][j] << ":" << hole_loops[i][j]->v;
+ }
+ std::cerr << std::endl;
+ for (unsigned j = 0; j < face_loops.size(); ++j) {
+ //HOOK(drawFaceLoopWireframe(face_loops[j], face->normal, 0.0, 1.0, 0.0, 1.0););
+ }
+ }
+#endif
+
+ // CARVE_ASSERT(containing_faces[i].size() >= 1);
+ }
+ }
+
+
+
+ /**
+ * \brief Merge face loops and hole loops to produce a set of face loops without holes.
+ *
+ * @param[in] face The face from which these face loops derive.
+ * @param[in,out] f_loops A list of face loops.
+ * @param[in] h_loops A list of hole loops to be incorporated into face loops.
+ */
+ static void mergeFacesAndHoles(carve::mesh::MeshSet<3>::face_t *face,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &f_loops,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &h_loops,
+ carve::csg::CSG::Hooks & /* hooks */) {
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
+
+ std::vector<std::vector<int> > containing_faces;
+ std::map<int, std::map<int, std::pair<unsigned, unsigned> > > hole_shared_vertices;
+
+ {
+ // move input face and hole loops to temp vectors.
+ size_t m;
+ face_loops.resize(f_loops.size());
+ m = 0;
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::iterator
+ i = f_loops.begin(), ie = f_loops.end();
+ i != ie;
+ ++i, ++m) {
+ face_loops[m].swap((*i));
+ }
+
+ hole_loops.resize(h_loops.size());
+ m = 0;
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::iterator
+ i = h_loops.begin(), ie = h_loops.end();
+ i != ie;
+ ++i, ++m) {
+ hole_loops[m].swap((*i));
+ }
+ f_loops.clear();
+ h_loops.clear();
+ }
+
+ // work out the embedding of holes and faces.
+ computeContainment(face, face_loops, hole_loops, containing_faces, hole_shared_vertices);
+
+ int unassigned = (int)hole_loops.size();
+
+ std::vector<std::vector<int> > face_holes;
+ face_holes.resize(face_loops.size());
+
+ for (unsigned i = 0; i < containing_faces.size(); ++i) {
+ if (containing_faces[i].size() == 0) {
+ std::map<int, std::map<int, std::pair<unsigned, unsigned> > >::iterator it = hole_shared_vertices.find(i);
+ if (it != hole_shared_vertices.end()) {
+ std::map<int, std::pair<unsigned, unsigned> >::iterator it2 = (*it).second.begin();
+ int f = (*it2).first;
+ unsigned h_idx = (*it2).second.first;
+ unsigned f_idx = (*it2).second.second;
+
+ // patch the hole into the face directly. because
+ // f_loop[f_idx] == h_loop[h_idx], we don't need to
+ // duplicate the f_loop vertex.
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &f_loop = face_loops[f];
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &h_loop = hole_loops[i];
+
+ f_loop.insert(f_loop.begin() + f_idx + 1, h_loop.size(), NULL);
+
+ unsigned p = f_idx + 1;
+ for (unsigned a = h_idx + 1; a < h_loop.size(); ++a, ++p) {
+ f_loop[p] = h_loop[a];
+ }
+ for (unsigned a = 0; a <= h_idx; ++a, ++p) {
+ f_loop[p] = h_loop[a];
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "hook face " << f << " to hole " << i << "(vertex)" << std::endl;
+#endif
+ } else {
+ std::cerr << "uncontained hole loop does not share vertices with any face loop!" << std::endl;
+ }
+ unassigned--;
+ }
+ }
+
+
+ // work out which holes are directly contained within which faces.
+ while (unassigned) {
+ std::set<int> removed;
+
+ for (unsigned i = 0; i < containing_faces.size(); ++i) {
+ if (containing_faces[i].size() == 1) {
+ int f = containing_faces[i][0];
+ face_holes[f].push_back(i);
+#if defined(CARVE_DEBUG)
+ std::cerr << "hook face " << f << " to hole " << i << std::endl;
+#endif
+ removed.insert(f);
+ unassigned--;
+ }
+ }
+ for (std::set<int>::iterator f = removed.begin(); f != removed.end(); ++f) {
+ for (unsigned i = 0; i < containing_faces.size(); ++i) {
+ containing_faces[i].erase(std::remove(containing_faces[i].begin(),
+ containing_faces[i].end(),
+ *f),
+ containing_faces[i].end());
+ }
+ }
+ }
+
+#if 0
+ // use old templated projection code to patch holes into faces.
+ for (unsigned i = 0; i < face_loops.size(); ++i) {
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_hole_loops;
+ face_hole_loops.resize(face_holes[i].size());
+ for (unsigned j = 0; j < face_holes[i].size(); ++j) {
+ face_hole_loops[j].swap(hole_loops[face_holes[i][j]]);
+ }
+ if (face_hole_loops.size()) {
+
+ f_loops.push_back(carve::triangulate::incorporateHolesIntoPolygon(
+ carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project),
+ face_loops[i],
+ face_hole_loops));
+ } else {
+ f_loops.push_back(face_loops[i]);
+ }
+ }
+
+#else
+ // use new 2d-only hole patching code.
+ for (size_t i = 0; i < face_loops.size(); ++i) {
+ if (!face_holes[i].size()) {
+ f_loops.push_back(face_loops[i]);
+ continue;
+ }
+
+ std::vector<std::vector<carve::geom2d::P2> > projected_poly;
+ projected_poly.resize(face_holes[i].size() + 1);
+ projected_poly[0].reserve(face_loops[i].size());
+ for (size_t j = 0; j < face_loops[i].size(); ++j) {
+ projected_poly[0].push_back(face->project(face_loops[i][j]->v));
+ }
+ for (size_t j = 0; j < face_holes[i].size(); ++j) {
+ projected_poly[j+1].reserve(hole_loops[face_holes[i][j]].size());
+ for (size_t k = 0; k < hole_loops[face_holes[i][j]].size(); ++k) {
+ projected_poly[j+1].push_back(face->project(hole_loops[face_holes[i][j]][k]->v));
+ }
+ }
+
+ std::vector<std::pair<size_t, size_t> > result = carve::triangulate::incorporateHolesIntoPolygon(projected_poly);
+
+ f_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &out = f_loops.back();
+ out.reserve(result.size());
+ for (size_t j = 0; j < result.size(); ++j) {
+ if (result[j].first == 0) {
+ out.push_back(face_loops[i][result[j].second]);
+ } else {
+ out.push_back(hole_loops[face_holes[i][result[j].first-1]][result[j].second]);
+ }
+ }
+ }
+#endif
+ }
+
+
+
+ /**
+ * \brief Assemble the base loop for a face.
+ *
+ * The base loop is the original face loop, including vertices
+ * created by intersections crossing any of its edges.
+ *
+ * @param[in] face The face to process.
+ * @param[in] vmap
+ * @param[in] face_split_edges
+ * @param[in] divided_edges A mapping from edge pointer to sets of
+ * ordered vertices corrsponding to the intersection points
+ * on that edge.
+ * @param[out] base_loop A vector of the vertices of the base loop.
+ */
+ static void assembleBaseLoop(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::detail::Data &data,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop) {
+ base_loop.clear();
+
+ // XXX: assumes that face->edges is in the same order as
+ // face->vertices. (Which it is)
+ carve::mesh::MeshSet<3>::edge_t *e = face->edge;
+ do {
+ base_loop.push_back(carve::csg::map_vertex(data.vmap, e->vert));
+
+ carve::csg::detail::EVVMap::const_iterator ev = data.divided_edges.find(e);
+
+ if (ev != data.divided_edges.end()) {
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &ev_vec = ((*ev).second);
+
+ for (size_t k = 0, ke = ev_vec.size(); k < ke;) {
+ base_loop.push_back(ev_vec[k++]);
+ }
+ }
+ e = e->next;
+ } while (e != face->edge);
+ }
+
+
+
+ // the crossing_data structure holds temporary information regarding
+ // paths, and their relationship to the loop of edges that forms the
+ // face perimeter.
+ struct crossing_data {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> *path;
+ size_t edge_idx[2];
+
+ crossing_data(std::vector<carve::mesh::MeshSet<3>::vertex_t *> *p, size_t e1, size_t e2) : path(p) {
+ edge_idx[0] = e1; edge_idx[1] = e2;
+ }
+
+ bool operator<(const crossing_data &c) const {
+ // the sort order for paths is in order of increasing initial
+ // position on the edge loop, but decreasing final position.
+ return edge_idx[0] < c.edge_idx[0] || (edge_idx[0] == c.edge_idx[0] && edge_idx[1] > c.edge_idx[1]);
+ }
+ };
+
+
+
+ bool processCrossingEdges(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::VertexIntersections &vertex_intersections,
+ carve::csg::CSG::Hooks &hooks,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &paths,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &loops,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops_out) {
+ const size_t N = base_loop.size();
+ std::vector<crossing_data> endpoint_indices;
+
+ endpoint_indices.reserve(paths.size());
+
+ for (size_t i = 0; i < paths.size(); ++i) {
+ endpoint_indices.push_back(crossing_data(&paths[i], N, N));
+ }
+
+ // locate endpoints of paths on the base loop.
+ for (size_t i = 0; i < N; ++i) {
+ for (size_t j = 0; j < paths.size(); ++j) {
+ // test beginning of path.
+ if (paths[j].front() == base_loop[i]) {
+ if (endpoint_indices[j].edge_idx[0] == N) {
+ endpoint_indices[j].edge_idx[0] = i;
+ } else {
+ // there is a duplicated vertex in the face perimeter. The
+ // path might attach to either of the duplicate instances
+ // so we have to work out which is the right one to attach
+ // to. We assume it's the index currently being examined,
+ // if the path heads in a direction that's internal to the
+ // angle made by the prior and next edges of the face
+ // perimeter. Otherwise, leave it as the currently
+ // selected index (until another duplicate is found, if it
+ // exists, and is tested).
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p = *endpoint_indices[j].path;
+ const size_t pN = p.size();
+
+ carve::mesh::MeshSet<3>::vertex_t *a, *b, *c;
+ a = base_loop[(i+N-1)%N];
+ b = base_loop[i];
+ c = base_loop[(i+1)%N];
+
+ carve::mesh::MeshSet<3>::vertex_t *adj = (p[0] == base_loop[i]) ? p[1] : p[pN-2];
+
+ if (carve::geom2d::internalToAngle(face->project(c->v),
+ face->project(b->v),
+ face->project(a->v),
+ face->project(adj->v))) {
+ endpoint_indices[j].edge_idx[0] = i;
+ }
+ }
+ }
+
+ // test end of path.
+ if (paths[j].back() == base_loop[i]) {
+ if (endpoint_indices[j].edge_idx[1] == N) {
+ endpoint_indices[j].edge_idx[1] = i;
+ } else {
+ // Work out which of the duplicated vertices is the right
+ // one to attach to, as above.
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p = *endpoint_indices[j].path;
+ const size_t pN = p.size();
+
+ carve::mesh::MeshSet<3>::vertex_t *a, *b, *c;
+ a = base_loop[(i+N-1)%N];
+ b = base_loop[i];
+ c = base_loop[(i+1)%N];
+
+ carve::mesh::MeshSet<3>::vertex_t *adj = (p[0] == base_loop[i]) ? p[1] : p[pN-2];
+
+ if (carve::geom2d::internalToAngle(face->project(c->v),
+ face->project(b->v),
+ face->project(a->v),
+ face->project(adj->v))) {
+ endpoint_indices[j].edge_idx[1] = i;
+ }
+ }
+ }
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### N: " << N << std::endl;
+ for (size_t i = 0; i < paths.size(); ++i) {
+ std::cerr << "### path: " << i << " endpoints: " << endpoint_indices[i].edge_idx[0] << " - " << endpoint_indices[i].edge_idx[1] << std::endl;
+ }
+#endif
+
+
+ // divide paths up into those that connect to the base loop in two
+ // places (cross), and those that do not (noncross).
+ std::vector<crossing_data> cross, noncross;
+ cross.reserve(endpoint_indices.size() + 1);
+ noncross.reserve(endpoint_indices.size());
+
+ for (size_t i = 0; i < endpoint_indices.size(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### orienting path: " << i << " endpoints: " << endpoint_indices[i].edge_idx[0] << " - " << endpoint_indices[i].edge_idx[1] << std::endl;
+#endif
+ if (endpoint_indices[i].edge_idx[0] != N && endpoint_indices[i].edge_idx[1] != N) {
+ // Orient each path correctly. Paths should progress from
+ // smaller perimeter index to larger, but if the path starts
+ // and ends at the same perimeter index, then the decision
+ // needs to be made based upon area.
+ if (endpoint_indices[i].edge_idx[0] == endpoint_indices[i].edge_idx[1]) {
+ // The path forms a loop that starts and ends at the same
+ // vertex of the perimeter. In this case, we need to orient
+ // the path so that the constructed loop has the right
+ // signed area.
+ double area = carve::geom2d::signedArea(endpoint_indices[i].path->begin() + 1,
+ endpoint_indices[i].path->end(),
+ carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project));
+ std::cerr << "HITS THIS CODE - area=" << area << std::endl;
+ if (area < 0) {
+ // XXX: Create test case to check that this is the correct sign for the area.
+ std::reverse(endpoint_indices[i].path->begin(), endpoint_indices[i].path->end());
+ }
+ } else {
+ if (endpoint_indices[i].edge_idx[0] > endpoint_indices[i].edge_idx[1]) {
+ std::swap(endpoint_indices[i].edge_idx[0], endpoint_indices[i].edge_idx[1]);
+ std::reverse(endpoint_indices[i].path->begin(), endpoint_indices[i].path->end());
+ }
+ }
+ }
+
+ if (endpoint_indices[i].edge_idx[0] != N &&
+ endpoint_indices[i].edge_idx[1] != N &&
+ endpoint_indices[i].edge_idx[0] != endpoint_indices[i].edge_idx[1]) {
+ cross.push_back(endpoint_indices[i]);
+ } else {
+ noncross.push_back(endpoint_indices[i]);
+ }
+ }
+
+ // add a temporary crossing path that connects the beginning and the
+ // end of the base loop. this stops us from needing special case
+ // code to handle the left over loop after all the other crossing
+ // paths are considered.
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop_temp_path;
+ base_loop_temp_path.reserve(2);
+ base_loop_temp_path.push_back(base_loop.front());
+ base_loop_temp_path.push_back(base_loop.back());
+
+ cross.push_back(crossing_data(&base_loop_temp_path, 0, base_loop.size() - 1));
+#if defined(CARVE_DEBUG)
+ std::cerr << "### crossing edge count (with sentinel): " << cross.size() << std::endl;
+#endif
+
+ // sort paths by increasing beginning point and decreasing ending point.
+ std::sort(cross.begin(), cross.end());
+ std::sort(noncross.begin(), noncross.end());
+
+ // divide up the base loop based upon crossing paths.
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > divided_base_loop;
+ divided_base_loop.reserve(cross.size());
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> out;
+
+ for (size_t i = 0; i < cross.size(); ++i) {
+ size_t j;
+ for (j = i + 1;
+ j < cross.size() &&
+ cross[i].edge_idx[0] == cross[j].edge_idx[0] &&
+ cross[i].edge_idx[1] == cross[j].edge_idx[1];
+ ++j) {}
+ if (j - i >= 2) {
+ // when there are multiple paths that begin and end at the
+ // same point, they need to be ordered so that the constructed
+ // loops have the right orientation. this means that the loop
+ // made by taking path(i+1) forward, then path(i) backward
+ // needs to have negative area. this combined area is equal to
+ // the area of path(i+1) minus the area of path(i). in turn
+ // this means that the loop made by path path(i+1) alone has
+ // to have smaller signed area than loop made by path(i).
+ // thus, we sort paths in order of decreasing area.
+
+ std::vector<std::pair<double, std::vector<carve::mesh::MeshSet<3>::vertex_t *> *> > order;
+ order.reserve(j - i);
+ for (size_t k = i; k < j; ++k) {
+ double area = carve::geom2d::signedArea(cross[k].path->begin(),
+ cross[k].path->end(),
+ carve::mesh::MeshSet<3>::face_t::projection_mapping(face->project));
+#if defined(CARVE_DEBUG)
+ std::cerr << "### k=" << k << " area=" << area << std::endl;
+#endif
+ order.push_back(std::make_pair(-area, cross[k].path));
+ }
+ std::sort(order.begin(), order.end());
+ for (size_t k = i; k < j; ++k) {
+ cross[k].path = order[k-i].second;
+#if defined(CARVE_DEBUG)
+ std::cerr << "### post-sort k=" << k << " cross[k].path->size()=" << cross[k].path->size() << std::endl;
+#endif
+ }
+ }
+ }
+
+ for (size_t i = 0; i < cross.size(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### i=" << i << " working on edge: " << cross[i].edge_idx[0] << " - " << cross[i].edge_idx[1] << std::endl;
+#endif
+ size_t e1_0 = cross[i].edge_idx[0];
+ size_t e1_1 = cross[i].edge_idx[1];
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p1 = *cross[i].path;
+#if defined(CARVE_DEBUG)
+ std::cerr << "### path size = " << p1.size() << std::endl;
+#endif
+
+ out.clear();
+
+ if (i < cross.size() - 1 &&
+ cross[i+1].edge_idx[1] <= cross[i].edge_idx[1]) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### complex case" << std::endl;
+#endif
+ // complex case. crossing path with other crossing paths embedded within.
+ size_t pos = e1_0;
+
+ size_t skip = i+1;
+
+ while (pos != e1_1) {
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &p2 = *cross[skip].path;
+ size_t e2_0 = cross[skip].edge_idx[0];
+ size_t e2_1 = cross[skip].edge_idx[1];
+
+ // copy up to the beginning of the next path.
+ std::copy(base_loop.begin() + pos, base_loop.begin() + e2_0, std::back_inserter(out));
+
+ CARVE_ASSERT(base_loop[e2_0] == p2[0]);
+ // copy the next path in the right direction.
+ std::copy(p2.begin(), p2.end() - 1, std::back_inserter(out));
+
+ // move to the position of the end of the path.
+ pos = e2_1;
+
+ // advance to the next hit path.
+ do {
+ ++skip;
+ } while(skip != cross.size() && cross[skip].edge_idx[0] < e2_1);
+
+ if (skip == cross.size()) break;
+
+ // if the next hit path is past the start point of the current path, we're done.
+ if (cross[skip].edge_idx[0] >= e1_1) break;
+ }
+
+ // copy up to the end of the path.
+ std::copy(base_loop.begin() + pos, base_loop.begin() + e1_1, std::back_inserter(out));
+
+ CARVE_ASSERT(base_loop[e1_1] == p1.back());
+ std::copy(p1.rbegin(), p1.rend() - 1, std::back_inserter(out));
+ } else {
+ size_t loop_size = (e1_1 - e1_0) + (p1.size() - 1);
+ out.reserve(loop_size);
+
+ std::copy(base_loop.begin() + e1_0, base_loop.begin() + e1_1, std::back_inserter(out));
+ std::copy(p1.rbegin(), p1.rend() - 1, std::back_inserter(out));
+
+ CARVE_ASSERT(out.size() == loop_size);
+ }
+ divided_base_loop.push_back(out);
+
+#if defined(CARVE_DEBUG)
+ {
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve(out.size());
+ for (size_t n = 0; n < out.size(); ++n) {
+ projected.push_back(face->project(out[n]->v));
+ }
+
+ double A = carve::geom2d::signedArea(projected);
+ std::cerr << "### out area=" << A << std::endl;
+ CARVE_ASSERT(A <= 0);
+ }
+#endif
+ }
+
+ if (!noncross.size() && !loops.size()) {
+ populateListFromVector(divided_base_loop, face_loops_out);
+ return true;
+ }
+
+ // for each divided base loop, work out which noncrossing paths and
+ // loops are part of it. use the old algorithm to combine these into
+ // the divided base loop. if none, the divided base loop is just
+ // output.
+ std::vector<std::vector<carve::geom2d::P2> > proj;
+ std::vector<carve::geom::aabb<2> > proj_aabb;
+ proj.resize(divided_base_loop.size());
+ proj_aabb.resize(divided_base_loop.size());
+
+ // calculate an aabb for each divided base loop, to avoid expensive
+ // point-in-poly tests.
+ for (size_t i = 0; i < divided_base_loop.size(); ++i) {
+ proj[i].reserve(divided_base_loop[i].size());
+ for (size_t j = 0; j < divided_base_loop[i].size(); ++j) {
+ proj[i].push_back(face->project(divided_base_loop[i][j]->v));
+ }
+ proj_aabb[i].fit(proj[i].begin(), proj[i].end());
+ }
+
+ for (size_t i = 0; i < divided_base_loop.size(); ++i) {
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> *> inc;
+ carve::geom2d::P2 test;
+
+ // for each noncrossing path, choose an endpoint that isn't on the
+ // base loop as a test point.
+ for (size_t j = 0; j < noncross.size(); ++j) {
+ if (noncross[j].edge_idx[0] < N) {
+ if (noncross[j].path->front() == base_loop[noncross[j].edge_idx[0]]) {
+ // noncrossing paths may be loops that run from the edge, back to the same vertex.
+ if (noncross[j].path->front() == noncross[j].path->back()) {
+ CARVE_ASSERT(noncross[j].path->size() > 2);
+ test = face->project((*noncross[j].path)[1]->v);
+ } else {
+ test = face->project(noncross[j].path->back()->v);
+ }
+ } else {
+ test = face->project(noncross[j].path->front()->v);
+ }
+ } else {
+ test = face->project(noncross[j].path->front()->v);
+ }
+
+ if (proj_aabb[i].intersects(test) &&
+ carve::geom2d::pointInPoly(proj[i], test).iclass != carve::POINT_OUT) {
+ inc.push_back(noncross[j].path);
+ }
+ }
+
+ // for each loop, just test with any point.
+ for (size_t j = 0; j < loops.size(); ++j) {
+ test = face->project(loops[j].front()->v);
+
+ if (proj_aabb[i].intersects(test) &&
+ carve::geom2d::pointInPoly(proj[i], test).iclass != carve::POINT_OUT) {
+ inc.push_back(&loops[j]);
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### divided base loop:" << i << " inc.size()=" << inc.size() << std::endl;
+ std::cerr << "### inc = [";
+ for (size_t j = 0; j < inc.size(); ++j) {
+ std::cerr << " " << inc[j];
+ }
+ std::cerr << " ]" << std::endl;
+#endif
+
+ if (inc.size()) {
+ carve::csg::V2Set face_edges;
+
+ for (size_t j = 0; j < divided_base_loop[i].size() - 1; ++j) {
+ face_edges.insert(std::make_pair(divided_base_loop[i][j],
+ divided_base_loop[i][j+1]));
+ }
+
+ face_edges.insert(std::make_pair(divided_base_loop[i].back(),
+ divided_base_loop[i].front()));
+
+ for (size_t j = 0; j < inc.size(); ++j) {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &path = *inc[j];
+ for (size_t k = 0; k < path.size() - 1; ++k) {
+ face_edges.insert(std::make_pair(path[k], path[k+1]));
+ face_edges.insert(std::make_pair(path[k+1], path[k]));
+ }
+ }
+
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
+
+ splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
+
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ std::copy(face_loops.begin(), face_loops.end(), std::back_inserter(face_loops_out));
+ } else {
+ face_loops_out.push_back(divided_base_loop[i]);
+ }
+ }
+ return true;
+ }
+
+
+
+ void composeEdgesIntoPaths(const carve::csg::V2Set &edges,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &extra_endpoints,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &paths,
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &loops) {
+ using namespace carve::csg;
+
+ detail::VVSMap vertex_graph;
+ detail::VSet endpoints;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> path;
+
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > temp;
+
+ // build graph from edges.
+ for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### edge: " << (*i).first << " - " << (*i).second << std::endl;
+#endif
+ vertex_graph[(*i).first].insert((*i).second);
+ vertex_graph[(*i).second].insert((*i).first);
+ }
+
+ // find the endpoints in the graph.
+ // every vertex with number of incident edges != 2 is an endpoint.
+ for (detail::VVSMap::const_iterator i = vertex_graph.begin(); i != vertex_graph.end(); ++i) {
+ if ((*i).second.size() != 2) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### endpoint: " << (*i).first << std::endl;
+#endif
+ endpoints.insert((*i).first);
+ }
+ }
+
+ // every vertex on the perimeter of the face is also an endpoint.
+ for (size_t i = 0; i < extra_endpoints.size(); ++i) {
+ if (vertex_graph.find(extra_endpoints[i]) != vertex_graph.end()) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### extra endpoint: " << extra_endpoints[i] << std::endl;
+#endif
+ endpoints.insert(extra_endpoints[i]);
+ }
+ }
+
+ while (endpoints.size()) {
+ carve::mesh::MeshSet<3>::vertex_t *v = *endpoints.begin();
+ detail::VVSMap::iterator p = vertex_graph.find(v);
+ if (p == vertex_graph.end()) {
+ endpoints.erase(endpoints.begin());
+ continue;
+ }
+
+ path.clear();
+ path.push_back(v);
+
+ for (;;) {
+ CARVE_ASSERT(p != vertex_graph.end());
+
+ // pick a connected vertex to move to.
+ if ((*p).second.size() == 0) break;
+
+ carve::mesh::MeshSet<3>::vertex_t *n = *((*p).second.begin());
+ detail::VVSMap::iterator q = vertex_graph.find(n);
+
+ // remove the link.
+ (*p).second.erase(n);
+ (*q).second.erase(v);
+
+ // move on.
+ v = n;
+ path.push_back(v);
+
+ if ((*p).second.size() == 0) vertex_graph.erase(p);
+ if ((*q).second.size() == 0) {
+ vertex_graph.erase(q);
+ q = vertex_graph.end();
+ }
+
+ p = q;
+
+ if (v == path[0] || p == vertex_graph.end() || endpoints.find(v) != endpoints.end()) break;
+ }
+ CARVE_ASSERT(endpoints.find(path.back()) != endpoints.end());
+
+ temp.push_back(path);
+ }
+
+ populateVectorFromList(temp, paths);
+ temp.clear();
+
+ // now only loops should remain in the graph.
+ while (vertex_graph.size()) {
+ detail::VVSMap::iterator p = vertex_graph.begin();
+ carve::mesh::MeshSet<3>::vertex_t *v = (*p).first;
+ CARVE_ASSERT((*p).second.size() == 2);
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> path;
+ path.clear();
+ path.push_back(v);
+
+ for (;;) {
+ CARVE_ASSERT(p != vertex_graph.end());
+ // pick a connected vertex to move to.
+
+ carve::mesh::MeshSet<3>::vertex_t *n = *((*p).second.begin());
+ detail::VVSMap::iterator q = vertex_graph.find(n);
+
+ // remove the link.
+ (*p).second.erase(n);
+ (*q).second.erase(v);
+
+ // move on.
+ v = n;
+ path.push_back(v);
+
+ if ((*p).second.size() == 0) vertex_graph.erase(p);
+ if ((*q).second.size() == 0) vertex_graph.erase(q);
+
+ p = q;
+
+ if (v == path[0]) break;
+ }
+
+ temp.push_back(path);
+ }
+ populateVectorFromList(temp, loops);
+ }
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ void dumpFacesAndHoles(const std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops,
+ const std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &hole_loops) {
+ std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t> v_included;
+
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = face_loops.begin(); i != face_loops.end(); ++i) {
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ if (v_included.find((*i)[j]) == v_included.end()) {
+ size_t &p = v_included[(*i)[j]];
+ p = v_included.size() - 1;
+ }
+ }
+ }
+
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = hole_loops.begin(); i != hole_loops.end(); ++i) {
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ if (v_included.find((*i)[j]) == v_included.end()) {
+ size_t &p = v_included[(*i)[j]];
+ p = v_included.size() - 1;
+ }
+ }
+ }
+
+ carve::line::PolylineSet fh;
+ fh.vertices.resize(v_included.size());
+ for (std::map<carve::mesh::MeshSet<3>::vertex_t *, size_t>::const_iterator
+ i = v_included.begin(); i != v_included.end(); ++i) {
+ fh.vertices[(*i).second].v = (*i).first->v;
+ }
+
+ {
+ std::vector<size_t> connected;
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = face_loops.begin(); i != face_loops.end(); ++i) {
+ connected.clear();
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ connected.push_back(v_included[(*i)[j]]);
+ }
+ fh.addPolyline(true, connected.begin(), connected.end());
+ }
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ i = hole_loops.begin(); i != hole_loops.end(); ++i) {
+ connected.clear();
+ for (size_t j = 0; j < (*i).size(); ++j) {
+ connected.push_back(v_included[(*i)[j]]);
+ }
+ fh.addPolyline(true, connected.begin(), connected.end());
+ }
+ }
+
+ std::string out("/tmp/hole_merge.ply");
+ ::writePLY(out, &fh, true);
+ }
+#endif
+
+
+
+ template<typename T>
+ std::string ptrstr(const T *ptr) {
+ std::ostringstream s;
+ s << ptr;
+ return s.str().substr(1);
+ }
+
+ void dumpAsGraph(carve::mesh::MeshSet<3>::face_t *face,
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &base_loop,
+ const carve::csg::V2Set &face_edges,
+ const carve::csg::V2Set &split_edges) {
+ std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2> proj;
+
+ for (size_t i = 0; i < base_loop.size(); ++i) {
+ proj[base_loop[i]] = face->project(base_loop[i]->v);
+ }
+ for (carve::csg::V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ proj[(*i).first] = face->project((*i).first->v);
+ proj[(*i).second] = face->project((*i).second->v);
+ }
+
+ {
+ carve::geom2d::P2 lo, hi;
+ std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2>::iterator i;
+ i = proj.begin();
+ lo = hi = (*i).second;
+ for (; i != proj.end(); ++i) {
+ lo.x = std::min(lo.x, (*i).second.x); lo.y = std::min(lo.y, (*i).second.y);
+ hi.x = std::max(hi.x, (*i).second.x); hi.y = std::max(hi.y, (*i).second.y);
+ }
+ for (i = proj.begin(); i != proj.end(); ++i) {
+ (*i).second.x = ((*i).second.x - lo.x) / (hi.x - lo.x) * 10;
+ (*i).second.y = ((*i).second.y - lo.y) / (hi.y - lo.y) * 10;
+ }
+ }
+
+ std::cerr << "graph G {\nnode [shape=circle,style=filled,fixedsize=true,width=\".1\",height=\".1\"];\nedge [len=4]\n";
+ for (std::map<carve::mesh::MeshSet<3>::vertex_t *, carve::geom2d::P2>::iterator i = proj.begin(); i != proj.end(); ++i) {
+ std::cerr << " " << ptrstr((*i).first) << " [pos=\"" << (*i).second.x << "," << (*i).second.y << "!\"];\n";
+ }
+ for (carve::csg::V2Set::const_iterator i = face_edges.begin(); i != face_edges.end(); ++i) {
+ std::cerr << " " << ptrstr((*i).first) << " -- " << ptrstr((*i).second) << ";\n";
+ }
+ for (carve::csg::V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ std::cerr << " " << ptrstr((*i).first) << " -- " << ptrstr((*i).second) << " [color=\"blue\"];\n";
+ }
+ std::cerr << "};\n";
+ }
+
+ void generateOneFaceLoop(carve::mesh::MeshSet<3>::face_t *face,
+ const carve::csg::detail::Data &data,
+ const carve::csg::VertexIntersections &vertex_intersections,
+ carve::csg::CSG::Hooks &hooks,
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > &face_loops) {
+ using namespace carve::csg;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
+
+ assembleBaseLoop(face, data, base_loop);
+
+ detail::FV2SMap::const_iterator fse_iter = data.face_split_edges.find(face);
+
+ face_loops.clear();
+
+ if (fse_iter == data.face_split_edges.end()) {
+ // simple case: input face is output face (possibly with the
+ // addition of vertices at intersections).
+ face_loops.push_back(base_loop);
+ return;
+ }
+
+ // complex case: input face is split into multiple output faces.
+ V2Set face_edges;
+
+ for (size_t j = 0, je = base_loop.size() - 1; j < je; ++j) {
+ face_edges.insert(std::make_pair(base_loop[j], base_loop[j + 1]));
+ }
+ face_edges.insert(std::make_pair(base_loop.back(), base_loop[0]));
+
+ // collect the split edges (as long as they're not on the perimeter)
+ const detail::FV2SMap::mapped_type &fse = ((*fse_iter).second);
+
+ // split_edges contains all of the edges created by intersections
+ // that aren't part of the perimeter of the face.
+ V2Set split_edges;
+
+ for (detail::FV2SMap::mapped_type::const_iterator
+ j = fse.begin(), je = fse.end();
+ j != je;
+ ++j) {
+ carve::mesh::MeshSet<3>::vertex_t *v1 = ((*j).first), *v2 = ((*j).second);
+
+ if (face_edges.find(std::make_pair(v1, v2)) == face_edges.end() &&
+ face_edges.find(std::make_pair(v2, v1)) == face_edges.end()) {
+
+ split_edges.insert(ordered_edge(v1, v2));
+ }
+ }
+
+ // face is unsplit.
+ if (!split_edges.size()) {
+ face_loops.push_back(base_loop);
+ return;
+ }
+
+#if defined(CARVE_DEBUG)
+ dumpAsGraph(face, base_loop, face_edges, split_edges);
+#endif
+
+#if 0
+ // old face splitting method.
+ for (V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ face_edges.insert(std::make_pair((*i).first, (*i).second));
+ face_edges.insert(std::make_pair((*i).second, (*i).first));
+ }
+ splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
+
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ return;
+#endif
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### split_edges.size(): " << split_edges.size() << std::endl;
+#endif
+ if (split_edges.size() == 1) {
+ // handle the common case of a face that's split by a single edge.
+ carve::mesh::MeshSet<3>::vertex_t *v1 = split_edges.begin()->first;
+ carve::mesh::MeshSet<3>::vertex_t *v2 = split_edges.begin()->second;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *>::iterator vi1 = std::find(base_loop.begin(), base_loop.end(), v1);
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *>::iterator vi2 = std::find(base_loop.begin(), base_loop.end(), v2);
+
+ if (vi1 != base_loop.end() && vi2 != base_loop.end()) {
+ // this is an inserted edge that connects two points on the base loop. nice and simple.
+ if (vi2 < vi1) std::swap(vi1, vi2);
+
+ size_t loop1_size = vi2 - vi1 + 1;
+ size_t loop2_size = base_loop.size() + 2 - loop1_size;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> l1;
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> l2;
+
+ l1.reserve(loop1_size);
+ l2.reserve(loop2_size);
+
+ std::copy(vi1, vi2+1, std::back_inserter(l1));
+ std::copy(vi2, base_loop.end(), std::back_inserter(l2));
+ std::copy(base_loop.begin(), vi1+1, std::back_inserter(l2));
+
+ CARVE_ASSERT(l1.size() == loop1_size);
+ CARVE_ASSERT(l2.size() == loop2_size);
+
+ face_loops.push_back(l1);
+ face_loops.push_back(l2);
+
+ return;
+ }
+ }
+
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > paths;
+ std::vector<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > loops;
+
+ // Take the split edges and compose them into a set of paths and
+ // loops. Loops are edge paths that do not touch the boundary, or
+ // any other path or loop - they are holes cut out of the centre
+ // of the face. Paths are made up of all the other edge segments,
+ // and start and end at the face perimeter, or where they meet
+ // another path (sometimes both cases will be true).
+ composeEdgesIntoPaths(split_edges, base_loop, paths, loops);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "### paths.size(): " << paths.size() << std::endl;
+ std::cerr << "### loops.size(): " << loops.size() << std::endl;
+#endif
+
+ if (!paths.size()) {
+ // Loops found by composeEdgesIntoPaths() can't touch the
+ // boundary, or each other, so we can deal with the no paths
+ // case simply. The hole loops are the loops produced by
+ // composeEdgesIntoPaths() oriented so that their signed area
+ // wrt. the face is negative. The face loops are the base loop
+ // plus the hole loops, reversed.
+ face_loops.push_back(base_loop);
+
+ for (size_t i = 0; i < loops.size(); ++i) {
+ hole_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ hole_loops.back().reserve(loops[i].size()-1);
+ std::copy(loops[i].begin(), loops[i].end()-1, std::back_inserter(hole_loops.back()));
+
+ face_loops.push_back(std::vector<carve::mesh::MeshSet<3>::vertex_t *>());
+ face_loops.back().reserve(loops[i].size()-1);
+ std::copy(loops[i].rbegin()+1, loops[i].rend(), std::back_inserter(face_loops.back()));
+
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve(face_loops.back().size());
+ for (size_t i = 0; i < face_loops.back().size(); ++i) {
+ projected.push_back(face->project(face_loops.back()[i]->v));
+ }
+
+ if (carve::geom2d::signedArea(projected) > 0.0) {
+ std::swap(face_loops.back(), hole_loops.back());
+ }
+ }
+
+ // if there are holes, then they need to be merged with faces.
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ } else {
+ if (!processCrossingEdges(face, vertex_intersections, hooks, base_loop, paths, loops, face_loops)) {
+ // complex case - fall back to old edge tracing code.
+#if defined(CARVE_DEBUG)
+ std::cerr << "### processCrossingEdges failed. Falling back to edge tracing code" << std::endl;
+#endif
+ for (V2Set::const_iterator i = split_edges.begin(); i != split_edges.end(); ++i) {
+ face_edges.insert(std::make_pair((*i).first, (*i).second));
+ face_edges.insert(std::make_pair((*i).second, (*i).first));
+ }
+ splitFace(face, face_edges, face_loops, hole_loops, vertex_intersections);
+
+ if (hole_loops.size()) {
+ mergeFacesAndHoles(face, face_loops, hole_loops, hooks);
+ }
+ }
+ }
+ }
+
+
+
+}
+
+
+
+/**
+ * \brief Build a set of face loops for all (split) faces of a Polyhedron.
+ *
+ * @param[in] poly The polyhedron to process
+ * @param vmap
+ * @param face_split_edges
+ * @param divided_edges
+ * @param[out] face_loops_out The resulting face loops
+ *
+ * @return The number of edges generated.
+ */
+size_t carve::csg::CSG::generateFaceLoops(carve::mesh::MeshSet<3> *poly,
+ const detail::Data &data,
+ FaceLoopList &face_loops_out) {
+ static carve::TimingName FUNC_NAME("CSG::generateFaceLoops()");
+ carve::TimingBlock block(FUNC_NAME);
+ size_t generated_edges = 0;
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > face_loops;
+
+ for (carve::mesh::MeshSet<3>::face_iter i = poly->faceBegin(); i != poly->faceEnd(); ++i) {
+ carve::mesh::MeshSet<3>::face_t *face = (*i);
+
+#if defined(CARVE_DEBUG)
+ double in_area = 0.0, out_area = 0.0;
+
+ {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ assembleBaseLoop(face, data, base_loop);
+
+ {
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve(base_loop.size());
+ for (size_t n = 0; n < base_loop.size(); ++n) {
+ projected.push_back(face->project(base_loop[n]->v));
+ }
+
+ in_area = carve::geom2d::signedArea(projected);
+ std::cerr << "### in_area=" << in_area << std::endl;
+ }
+ }
+#endif
+
+ generateOneFaceLoop(face, data, vertex_intersections, hooks, face_loops);
+
+#if defined(CARVE_DEBUG)
+ {
+ V2Set face_edges;
+
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
+ assembleBaseLoop(face, data, base_loop);
+
+ for (size_t j = 0, je = base_loop.size() - 1; j < je; ++j) {
+ face_edges.insert(std::make_pair(base_loop[j+1], base_loop[j]));
+ }
+ face_edges.insert(std::make_pair(base_loop[0], base_loop.back()));
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator fli = face_loops.begin(); fli != face_loops.end(); ++ fli) {
+
+ {
+ std::vector<carve::geom2d::P2> projected;
+ projected.reserve((*fli).size());
+ for (size_t n = 0; n < (*fli).size(); ++n) {
+ projected.push_back(face->project((*fli)[n]->v));
+ }
+
+ double area = carve::geom2d::signedArea(projected);
+ std::cerr << "### loop_area[" << std::distance((std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator)face_loops.begin(), fli) << "]=" << area << std::endl;
+ out_area += area;
+ }
+
+ const std::vector<carve::mesh::MeshSet<3>::vertex_t *> &fl = *fli;
+ for (size_t j = 0, je = fl.size() - 1; j < je; ++j) {
+ face_edges.insert(std::make_pair(fl[j], fl[j+1]));
+ }
+ face_edges.insert(std::make_pair(fl.back(), fl[0]));
+ }
+ for (V2Set::const_iterator j = face_edges.begin(); j != face_edges.end(); ++j) {
+ if (face_edges.find(std::make_pair((*j).second, (*j).first)) == face_edges.end()) {
+ std::cerr << "### error: unmatched edge [" << (*j).first << "-" << (*j).second << "]" << std::endl;
+ }
+ }
+ std::cerr << "### out_area=" << out_area << std::endl;
+ if (out_area != in_area) {
+ std::cerr << "### error: area does not match. delta = " << (out_area - in_area) << std::endl;
+ // CARVE_ASSERT(fabs(out_area - in_area) < 1e-5);
+ }
+ }
+#endif
+
+ // now record all the resulting face loops.
+#if defined(CARVE_DEBUG)
+ std::cerr << "### ======" << std::endl;
+#endif
+ for (std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> >::const_iterator
+ f = face_loops.begin(), fe = face_loops.end();
+ f != fe;
+ ++f) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "### loop:";
+ for (size_t i = 0; i < (*f).size(); ++i) {
+ std::cerr << " " << (*f)[i];
+ }
+ std::cerr << std::endl;
+#endif
+
+ face_loops_out.append(new FaceLoop(face, *f));
+ generated_edges += (*f).size();
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << "### ======" << std::endl;
+#endif
+ }
+ return generated_edges;
+}
diff --git a/extern/carve/lib/intersect_group.cpp b/extern/carve/lib/intersect_group.cpp
new file mode 100644
index 00000000000..a1528569c01
--- /dev/null
+++ b/extern/carve/lib/intersect_group.cpp
@@ -0,0 +1,232 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/timing.hpp>
+
+#include "csg_detail.hpp"
+#include "intersect_common.hpp"
+
+void carve::csg::CSG::makeEdgeMap(const carve::csg::FaceLoopList &loops,
+ size_t edge_count,
+ detail::LoopEdges &edge_map) {
+#if defined(UNORDERED_COLLECTIONS_SUPPORT_RESIZE)
+ edge_map.resize(edge_count);
+#endif
+
+ for (carve::csg::FaceLoop *i = loops.head; i; i = i->next) {
+ edge_map.addFaceLoop(i);
+ i->group = NULL;
+ }
+}
+
+#include <carve/polyline.hpp>
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+void writePLY(const std::string &out_file, const carve::mesh::MeshSet<3> *poly, bool ascii);
+void writePLY(const std::string &out_file, const carve::line::PolylineSet *lines, bool ascii);
+#endif
+
+void carve::csg::CSG::findSharedEdges(const detail::LoopEdges &edge_map_a,
+ const detail::LoopEdges &edge_map_b,
+ V2Set &shared_edges) {
+ for (detail::LoopEdges::const_iterator
+ i = edge_map_a.begin(), e = edge_map_a.end();
+ i != e;
+ ++i) {
+ detail::LoopEdges::const_iterator j = edge_map_b.find((*i).first);
+ if (j != edge_map_b.end()) {
+ shared_edges.insert((*i).first);
+ }
+ }
+
+#if defined(CARVE_DEBUG)
+ detail::VVSMap edge_graph;
+
+ for (V2Set::const_iterator i = shared_edges.begin(); i != shared_edges.end(); ++i) {
+ edge_graph[(*i).first].insert((*i).second);
+ edge_graph[(*i).second].insert((*i).first);
+ }
+
+ std::cerr << "*** testing consistency of edge graph" << std::endl;
+ for (detail::VVSMap::const_iterator i = edge_graph.begin(); i != edge_graph.end(); ++i) {
+ if ((*i).second.size() > 2) {
+ std::cerr << "branch at: " << (*i).first << std::endl;
+ }
+ if ((*i).second.size() == 1) {
+ std::cerr << "endpoint at: " << (*i).first << std::endl;
+ std::cerr << "coordinate: " << (*i).first->v << std::endl;
+ }
+ }
+
+ {
+ carve::line::PolylineSet intersection_graph;
+ intersection_graph.vertices.resize(edge_graph.size());
+ std::map<const carve::mesh::MeshSet<3>::vertex_t *, size_t> vmap;
+
+ size_t j = 0;
+ for (detail::VVSMap::const_iterator i = edge_graph.begin(); i != edge_graph.end(); ++i) {
+ intersection_graph.vertices[j].v = (*i).first->v;
+ vmap[(*i).first] = j++;
+ }
+
+ while (edge_graph.size()) {
+ detail::VVSMap::iterator prior_i = edge_graph.begin();
+ carve::mesh::MeshSet<3>::vertex_t *prior = (*prior_i).first;
+ std::vector<size_t> connected;
+ connected.push_back(vmap[prior]);
+ while (prior_i != edge_graph.end() && (*prior_i).second.size()) {
+ carve::mesh::MeshSet<3>::vertex_t *next = *(*prior_i).second.begin();
+ detail::VVSMap::iterator next_i = edge_graph.find(next);
+ CARVE_ASSERT(next_i != edge_graph.end());
+ connected.push_back(vmap[next]);
+ (*prior_i).second.erase(next);
+ (*next_i).second.erase(prior);
+ if (!(*prior_i).second.size()) { edge_graph.erase(prior_i); prior_i = edge_graph.end(); }
+ if (!(*next_i).second.size()) { edge_graph.erase(next_i); next_i = edge_graph.end(); }
+ prior_i = next_i;
+ prior = next;
+ }
+ bool closed = connected.front() == connected.back();
+ for (size_t k = 0; k < connected.size(); ++k) {
+ std::cerr << " " << connected[k];
+ }
+ std::cerr << std::endl;
+ intersection_graph.addPolyline(closed, connected.begin(), connected.end());
+ }
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ std::string out("/tmp/intersection.ply");
+ ::writePLY(out, &intersection_graph, true);
+#endif
+ }
+
+ std::cerr << "*** edge graph consistency test done" << std::endl;
+#endif
+}
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+static carve::mesh::MeshSet<3> *groupToPolyhedron(const carve::csg::FaceLoopGroup &grp) {
+ const carve::csg::FaceLoopList &fl = grp.face_loops;
+ std::vector<carve::mesh::MeshSet<3>::face_t *> faces;
+ faces.reserve(fl.size());
+ for (carve::csg::FaceLoop *f = fl.head; f; f = f->next) {
+ faces.push_back(f->orig_face->create(f->vertices.begin(), f->vertices.end(), false));
+ }
+ carve::mesh::MeshSet<3> *poly = new carve::mesh::MeshSet<3>(faces);
+
+ poly->canonicalize();
+ return poly;
+}
+#endif
+
+
+
+void carve::csg::CSG::groupFaceLoops(carve::mesh::MeshSet<3> *src,
+ carve::csg::FaceLoopList &face_loops,
+ const carve::csg::detail::LoopEdges &loop_edges,
+ const carve::csg::V2Set &no_cross,
+ carve::csg::FLGroupList &out_loops) {
+ // Find all the groups of face loops that are connected by edges
+ // that are not part of no_cross.
+ // this could potentially be done with a disjoint set data-structure.
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ static int call_num = 0;
+ call_num++;
+#endif
+
+ static carve::TimingName GROUP_FACE_LOOPS("groupFaceLoops()");
+
+ carve::TimingBlock block(GROUP_FACE_LOOPS);
+
+ int tag_num = 0;
+ while (face_loops.size()) {
+ out_loops.push_back(FaceLoopGroup(src));
+ carve::csg::FaceLoopGroup &group = (out_loops.back());
+ carve::csg::FaceLoopList &curr = (group.face_loops);
+ carve::csg::V2Set &perim = (group.perimeter);
+
+ carve::csg::FaceLoop *expand = face_loops.head;
+
+ expand->group = &group;
+ face_loops.remove(expand);
+ curr.append(expand);
+
+ while (expand) {
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> &loop = (expand->vertices);
+ carve::mesh::MeshSet<3>::vertex_t *v1, *v2;
+
+ v1 = loop.back();
+ for (size_t i = 0; i < loop.size(); ++i) {
+ v2 = loop[i];
+
+ carve::csg::V2Set::const_iterator nc = no_cross.find(std::make_pair(v1, v2));
+ if (nc == no_cross.end()) {
+ carve::csg::detail::LoopEdges::const_iterator j;
+
+ j = loop_edges.find(std::make_pair(v1, v2));
+ if (j != loop_edges.end()) {
+ for (std::list<carve::csg::FaceLoop *>::const_iterator
+ k = (*j).second.begin(), ke = (*j).second.end();
+ k != ke; ++k) {
+ if ((*k)->group != NULL ||
+ (*k)->orig_face->mesh != expand->orig_face->mesh) continue;
+ face_loops.remove((*k));
+ curr.append((*k));
+ (*k)->group = &group;
+ }
+ }
+
+ j = loop_edges.find(std::make_pair(v2, v1));
+ if (j != loop_edges.end()) {
+ for (std::list<carve::csg::FaceLoop *>::const_iterator
+ k = (*j).second.begin(), ke = (*j).second.end();
+ k != ke; ++k) {
+ if ((*k)->group != NULL ||
+ (*k)->orig_face->mesh != expand->orig_face->mesh) continue;
+ face_loops.remove((*k));
+ curr.append((*k));
+ (*k)->group = &group;
+ }
+ }
+ } else {
+ perim.insert(std::make_pair(v1, v2));
+ }
+ v1 = v2;
+ }
+ expand = expand->next;
+ }
+ tag_num++;
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ {
+ carve::mesh::MeshSet<3> *poly = groupToPolyhedron(group);
+ char buf[128];
+ sprintf(buf, "/tmp/group-%d-%p.ply", call_num, &curr);
+ std::string out(buf);
+ ::writePLY(out, poly, false);
+ delete poly;
+ }
+#endif
+ }
+}
diff --git a/extern/carve/lib/intersect_half_classify_group.cpp b/extern/carve/lib/intersect_half_classify_group.cpp
new file mode 100644
index 00000000000..97915c784a0
--- /dev/null
+++ b/extern/carve/lib/intersect_half_classify_group.cpp
@@ -0,0 +1,199 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/debug_hooks.hpp>
+
+#include <list>
+#include <set>
+#include <iostream>
+
+#include <algorithm>
+
+#include "intersect_common.hpp"
+#include "intersect_classify_common.hpp"
+#include "intersect_classify_common_impl.hpp"
+
+namespace carve {
+ namespace csg {
+
+ namespace {
+ struct GroupPoly : public CSG::Collector {
+ carve::mesh::MeshSet<3> *want_groups_from;
+ std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> > &out;
+
+ GroupPoly(carve::mesh::MeshSet<3> *poly,
+ std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> > &_out) : CSG::Collector(), want_groups_from(poly), out(_out) {
+ }
+
+ virtual ~GroupPoly() {
+ }
+
+ virtual void collect(FaceLoopGroup *grp, CSG::Hooks & /* hooks */) {
+ if (grp->face_loops.head->orig_face->mesh->meshset != want_groups_from) return;
+
+ std::list<ClassificationInfo> &cinfo = (grp->classification);
+ if (cinfo.size() == 0) {
+ std::cerr << "WARNING! group " << grp << " has no classification info!" << std::endl;
+ return;
+ }
+ // XXX: check all the cinfo elements for consistency.
+ FaceClass fc = cinfo.front().classification;
+
+ std::vector<carve::mesh::MeshSet<3>::face_t *> faces;
+ faces.reserve(grp->face_loops.size());
+ for (FaceLoop *loop = grp->face_loops.head; loop != NULL; loop = loop->next) {
+ faces.push_back(loop->orig_face->create(loop->vertices.begin(), loop->vertices.end(), false));
+ }
+
+ out.push_back(std::make_pair(fc, new carve::mesh::MeshSet<3>(faces)));
+ }
+
+ virtual carve::mesh::MeshSet<3> *done(CSG::Hooks & /* hooks */) {
+ return NULL;
+ }
+ };
+
+ class FaceMaker {
+ public:
+
+ bool pointOn(VertexClassification &vclass, FaceLoop *f, size_t index) const {
+ return vclass[f->vertices[index]].cls[0] == POINT_ON;
+ }
+
+ void explain(FaceLoop *f, size_t index, PointClass pc) const {
+#if defined(CARVE_DEBUG)
+ std::cerr << "face loop " << f << " from poly b is easy because vertex " << index << " (" << f->vertices[index]->v << ") is " << ENUM(pc) << std::endl;
+#endif
+ }
+ };
+
+ class HalfClassifyFaceGroups {
+ HalfClassifyFaceGroups &operator=(const HalfClassifyFaceGroups &);
+
+ public:
+ std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> > &b_out;
+ CSG::Hooks &hooks;
+
+ HalfClassifyFaceGroups(std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> > &c, CSG::Hooks &h) : b_out(c), hooks(h) {
+ }
+
+ void classifySimple(FLGroupList &a_loops_grouped,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & /* vclass */,
+ carve::mesh::MeshSet<3> *poly_a,
+ carve::mesh::MeshSet<3> *poly_b) const {
+ GroupPoly group_poly(poly_b, b_out);
+ performClassifySimpleOnFaceGroups(a_loops_grouped, b_loops_grouped, poly_a, poly_b, group_poly, hooks);
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of simple on groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ void classifyEasy(FLGroupList & /* a_loops_grouped */,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & vclass,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree) const {
+ GroupPoly group_poly(poly_b, b_out);
+ performClassifyEasyFaceGroups(b_loops_grouped, poly_a, poly_a_rtree, vclass, FaceMaker(), group_poly, hooks);
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of easy groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ void classifyHard(FLGroupList & /* a_loops_grouped */,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & /* vclass */,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree) const {
+ GroupPoly group_poly(poly_b, b_out);
+ performClassifyHardFaceGroups(b_loops_grouped, poly_a, poly_a_rtree, FaceMaker(), group_poly, hooks);
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of hard groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+
+ }
+
+ void faceLoopWork(FLGroupList & /* a_loops_grouped */,
+ FLGroupList &b_loops_grouped,
+ VertexClassification & /* vclass */,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree) const {
+ GroupPoly group_poly(poly_b, b_out);
+ performFaceLoopWork(poly_a, poly_a_rtree, b_loops_grouped, *this, group_poly, hooks);
+ }
+
+ void postRemovalCheck(FLGroupList & /* a_loops_grouped */,
+ FLGroupList &b_loops_grouped) const {
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removal of on groups: " << b_loops_grouped.size() << " b groups" << std::endl;
+#endif
+ }
+
+ bool faceLoopSanityChecker(FaceLoopGroup &i) const {
+ return false;
+ return i.face_loops.size() != 1;
+ }
+
+ void finish(FLGroupList &a_loops_grouped,FLGroupList &b_loops_grouped) const {
+#if defined(CARVE_DEBUG)
+ if (a_loops_grouped.size() || b_loops_grouped.size())
+ std::cerr << "UNCLASSIFIED! a=" << a_loops_grouped.size() << ", b=" << b_loops_grouped.size() << std::endl;
+#endif
+ }
+ };
+ }
+
+ void CSG::halfClassifyFaceGroups(const V2Set & /* shared_edges */,
+ VertexClassification &vclass,
+ carve::mesh::MeshSet<3> *poly_a,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_a_rtree,
+ FLGroupList &a_loops_grouped,
+ const detail::LoopEdges & /* a_edge_map */,
+ carve::mesh::MeshSet<3> *poly_b,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *poly_b_rtree,
+ FLGroupList &b_loops_grouped,
+ const detail::LoopEdges & /* b_edge_map */,
+ std::list<std::pair<FaceClass, carve::mesh::MeshSet<3> *> > &b_out) {
+ HalfClassifyFaceGroups classifier(b_out, hooks);
+ GroupPoly group_poly(poly_b, b_out);
+ performClassifyFaceGroups(
+ a_loops_grouped,
+ b_loops_grouped,
+ vclass,
+ poly_a,
+ poly_a_rtree,
+ poly_b,
+ poly_b_rtree,
+ classifier,
+ group_poly,
+ hooks);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/intersection.cpp b/extern/carve/lib/intersection.cpp
new file mode 100644
index 00000000000..2aa97131f7f
--- /dev/null
+++ b/extern/carve/lib/intersection.cpp
@@ -0,0 +1,92 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <algorithm>
+
+#include <carve/carve.hpp>
+#include <carve/poly.hpp>
+#include <carve/timing.hpp>
+#include <carve/intersection.hpp>
+
+
+
+void carve::csg::Intersections::collect(const IObj &obj,
+ std::vector<carve::mesh::MeshSet<3>::vertex_t *> *collect_v,
+ std::vector<carve::mesh::MeshSet<3>::edge_t *> *collect_e,
+ std::vector<carve::mesh::MeshSet<3>::face_t *> *collect_f) const {
+ carve::csg::Intersections::const_iterator i = find(obj);
+ if (i != end()) {
+ Intersections::mapped_type::const_iterator a, b;
+ for (a = (*i).second.begin(), b = (*i).second.end(); a != b; ++a) {
+ switch ((*a).first.obtype) {
+ case carve::csg::IObj::OBTYPE_VERTEX:
+ if (collect_v) collect_v->push_back((*a).first.vertex);
+ break;
+ case carve::csg::IObj::OBTYPE_EDGE:
+ if (collect_e) collect_e->push_back((*a).first.edge);
+ break;
+ case carve::csg::IObj::OBTYPE_FACE:
+ if (collect_f) collect_f->push_back((*a).first.face);
+ break;
+ default:
+ throw carve::exception("should not happen " __FILE__ ":" XSTR(__LINE__));
+ }
+ }
+ }
+}
+
+
+
+bool carve::csg::Intersections::intersectsFace(carve::mesh::MeshSet<3>::vertex_t *v,
+ carve::mesh::MeshSet<3>::face_t *f) const {
+ const_iterator i = find(v);
+ if (i != end()) {
+ mapped_type::const_iterator a, b;
+
+ for (a = (*i).second.begin(), b = (*i).second.end(); a != b; ++a) {
+ switch ((*a).first.obtype) {
+ case IObj::OBTYPE_VERTEX: {
+ const carve::mesh::MeshSet<3>::edge_t *edge = f->edge;
+ do {
+ if (edge->vert == (*a).first.vertex) return true;
+ edge = edge->next;
+ } while (edge != f->edge);
+ break;
+ }
+ case carve::csg::IObj::OBTYPE_EDGE: {
+ const carve::mesh::MeshSet<3>::edge_t *edge = f->edge;
+ do {
+ if (edge == (*a).first.edge) return true;
+ edge = edge->next;
+ } while (edge != f->edge);
+ break;
+ }
+ case carve::csg::IObj::OBTYPE_FACE: {
+ if ((*a).first.face == f) return true;
+ break;
+ }
+ default:
+ throw carve::exception("should not happen " __FILE__ ":" XSTR(__LINE__));
+ }
+ }
+ }
+ return false;
+}
diff --git a/extern/carve/lib/math.cpp b/extern/carve/lib/math.cpp
new file mode 100644
index 00000000000..811312c313e
--- /dev/null
+++ b/extern/carve/lib/math.cpp
@@ -0,0 +1,347 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/math.hpp>
+#include <carve/matrix.hpp>
+
+#include <iostream>
+#include <limits>
+
+#include <stdio.h>
+
+#define M_2PI_3 2.0943951023931953
+#define M_SQRT_3_4 0.8660254037844386
+#define EPS std::numeric_limits<double>::epsilon()
+
+namespace carve {
+ namespace math {
+
+ struct Root {
+ double root;
+ int multiplicity;
+
+ Root(double r) : root(r), multiplicity(1) {}
+ Root(double r, int m) : root(r), multiplicity(m) {}
+ };
+
+ void cplx_sqrt(double re, double im,
+ double &re_1, double &im_1,
+ double &re_2, double &im_2) {
+ if (re == 0.0 && im == 0.0) {
+ re_1 = re_2 = re;
+ im_1 = im_2 = im;
+ } else {
+ double d = sqrt(re * re + im * im);
+ re_1 = sqrt((d + re) / 2.0);
+ re_2 = re_1;
+ im_1 = fabs(sqrt((d - re) / 2.0));
+ im_2 = -im_1;
+ }
+ }
+
+ void cplx_cbrt(double re, double im,
+ double &re_1, double &im_1,
+ double &re_2, double &im_2,
+ double &re_3, double &im_3) {
+ if (re == 0.0 && im == 0.0) {
+ re_1 = re_2 = re_3 = re;
+ im_1 = im_2 = im_3 = im;
+ } else {
+ double r = cbrt(sqrt(re * re + im * im));
+ double t = atan2(im, re) / 3.0;
+ re_1 = r * cos(t);
+ im_1 = r * sin(t);
+ re_2 = r * cos(t + M_TWOPI / 3.0);
+ im_2 = r * sin(t + M_TWOPI / 3.0);
+ re_3 = r * cos(t + M_TWOPI * 2.0 / 3.0);
+ im_3 = r * sin(t + M_TWOPI * 2.0 / 3.0);
+ }
+ }
+
+ void add_root(std::vector<Root> &roots, double root) {
+ for (size_t i = 0; i < roots.size(); ++i) {
+ if (roots[i].root == root) {
+ roots[i].multiplicity++;
+ return;
+ }
+ }
+ roots.push_back(Root(root));
+ }
+
+ void linear_roots(double c1, double c0, std::vector<Root> &roots) {
+ roots.push_back(Root(c0 / c1));
+ }
+
+ void quadratic_roots(double c2, double c1, double c0, std::vector<Root> &roots) {
+ if (fabs(c2) < EPS) {
+ linear_roots(c1, c0, roots);
+ return;
+ }
+
+ double p = 0.5 * c1 / c2;
+ double dis = p * p - c0 / c2;
+
+ if (dis > 0.0) {
+ dis = sqrt(dis);
+ if (-p - dis != -p + dis) {
+ roots.push_back(Root(-p - dis));
+ roots.push_back(Root(-p + dis));
+ } else {
+ roots.push_back(Root(-p, 2));
+ }
+ }
+ }
+
+ void cubic_roots(double c3, double c2, double c1, double c0, std::vector<Root> &roots) {
+ int n_sol = 0;
+ double _r[3];
+
+ if (fabs(c3) < EPS) {
+ quadratic_roots(c2, c1, c0, roots);
+ return;
+ }
+
+ if (fabs(c0) < EPS) {
+ quadratic_roots(c3, c2, c1, roots);
+ add_root(roots, 0.0);
+ return;
+ }
+
+ double xN = -c2 / (3.0 * c3);
+ double yN = c0 + xN * (c1 + xN * (c2 + c3 * xN));
+
+ double delta_sq = (c2 * c2 - 3.0 * c3 * c1) / (9.0 * c3 * c3);
+ double h_sq = 4.0 / 9.0 * (c2 * c2 - 3.0 * c3 * c1) * (delta_sq * delta_sq);
+ double dis = yN * yN - h_sq;
+
+ if (dis > EPS) {
+ // One real root, two complex roots.
+
+ double dis_sqrt = sqrt(dis);
+ double r_p = yN - dis_sqrt;
+ double r_q = yN + dis_sqrt;
+ double p = cbrt(fabs(r_p)/(2.0 * c3));
+ double q = cbrt(fabs(r_q)/(2.0 * c3));
+
+ if (r_p > 0.0) p = -p;
+ if (r_q > 0.0) q = -q;
+
+ _r[0] = xN + p + q;
+ n_sol = 1;
+
+ double re = xN - p * .5 - q * .5;
+ double im = p * M_SQRT_3_4 - q * M_SQRT_3_4;
+
+ // root 2: xN + p * exp(M_2PI_3.i) + q * exp(-M_2PI_3.i);
+ // root 3: complex conjugate of root 2
+
+ if (im < EPS) {
+ _r[1] = _r[2] = re;
+ n_sol += 2;
+ }
+ } else if (dis < -EPS) {
+ // Three distinct real roots.
+ double theta = acos(-yN / sqrt(h_sq)) / 3.0;
+ double delta = sqrt(c2 * c2 - 3.0 * c3 * c1) / (3.0 * c3);
+
+ _r[0] = xN + (2.0 * delta) * cos(theta);
+ _r[1] = xN + (2.0 * delta) * cos(M_2PI_3 - theta);
+ _r[2] = xN + (2.0 * delta) * cos(M_2PI_3 + theta);
+ n_sol = 3;
+ } else {
+ // Three real roots (two or three equal).
+ double r = yN / (2.0 * c3);
+ double delta = cbrt(r);
+
+ _r[0] = xN + delta;
+ _r[1] = xN + delta;
+ _r[2] = xN - 2.0 * delta;
+ n_sol = 3;
+ }
+
+ for (int i=0; i < n_sol; i++) {
+ add_root(roots, _r[i]);
+ }
+ }
+
+ static void U(const Matrix3 &m,
+ double l,
+ double u[6],
+ double &u_max,
+ int &u_argmax) {
+ u[0] = (m._22 - l) * (m._33 - l) - m._23 * m._23;
+ u[1] = m._13 * m._23 - m._12 * (m._33 - l);
+ u[2] = m._12 * m._23 - m._13 * (m._22 - l);
+ u[3] = (m._11 - l) * (m._33 - l) - m._13 * m._13;
+ u[4] = m._12 * m._13 - m._23 * (m._11 - l);
+ u[5] = (m._11 - l) * (m._22 - l) - m._12 * m._12;
+
+ u_max = -1.0;
+ u_argmax = -1;
+
+ for (int i = 0; i < 6; ++i) {
+ if (u_max < fabs(u[i])) { u_max = fabs(u[i]); u_argmax = i; }
+ }
+ }
+
+ static void eig1(const Matrix3 &m, double l, carve::geom::vector<3> &e) {
+ double u[6];
+ double u_max;
+ int u_argmax;
+
+ U(m, l, u, u_max, u_argmax);
+
+ switch(u_argmax) {
+ case 0:
+ e.x = u[0]; e.y = u[1]; e.z = u[2]; break;
+ case 1: case 3:
+ e.x = u[1]; e.y = u[3]; e.z = u[4]; break;
+ case 2: case 4: case 5:
+ e.x = u[2]; e.y = u[4]; e.z = u[5]; break;
+ }
+ e.normalize();
+ }
+
+ static void eig2(const Matrix3 &m, double l, carve::geom::vector<3> &e1, carve::geom::vector<3> &e2) {
+ double u[6];
+ double u_max;
+ int u_argmax;
+
+ U(m, l, u, u_max, u_argmax);
+
+ switch(u_argmax) {
+ case 0: case 1:
+ e1.x = -m._12; e1.y = m._11; e1.z = 0.0;
+ e2.x = -m._13 * m._11; e2.y = -m._13 * m._12; e2.z = m._11 * m._11 + m._12 * m._12;
+ break;
+ case 2:
+ e1.x = m._12; e1.y = 0.0; e1.z = -m._11;
+ e2.x = -m._12 * m._11; e2.y = m._11 * m._11 + m._13 * m._13; e2.z = -m._12 * m._13;
+ break;
+ case 3: case 4:
+ e1.x = 0.0; e1.y = -m._23; e1.z = -m._22;
+ e2.x = m._22 * m._22 + m._23 * m._23; e2.y = -m._12 * m._22; e2.z = -m._12 * m._23;
+ break;
+ case 5:
+ e1.x = 0.0; e1.y = -m._33; e1.z = m._23;
+ e2.x = m._23 * m._23 + m._33 * m._33; e2.y = -m._13 * m._23; e2.z = -m._13 * m._33;
+ }
+ e1.normalize();
+ e2.normalize();
+ }
+
+ static void eig3(const Matrix3 &m,
+ double l,
+ carve::geom::vector<3> &e1,
+ carve::geom::vector<3> &e2,
+ carve::geom::vector<3> &e3) {
+ e1.x = 1.0; e1.y = 0.0; e1.z = 0.0;
+ e2.x = 0.0; e2.y = 1.0; e2.z = 0.0;
+ e3.x = 0.0; e3.y = 0.0; e3.z = 1.0;
+ }
+
+ void eigSolveSymmetric(const Matrix3 &m,
+ double &l1, carve::geom::vector<3> &e1,
+ double &l2, carve::geom::vector<3> &e2,
+ double &l3, carve::geom::vector<3> &e3) {
+ double c0 =
+ m._11 * m._22 * m._33 +
+ 2.0 * m._12 * m._13 * m._23 -
+ m._11 * m._23 * m._23 -
+ m._22 * m._13 * m._13 -
+ m._33 * m._12 * m._12;
+ double c1 =
+ m._11 * m._22 -
+ m._12 * m._12 +
+ m._11 * m._33 -
+ m._13 * m._13 +
+ m._22 * m._33 -
+ m._23 * m._23;
+ double c2 =
+ m._11 +
+ m._22 +
+ m._33;
+
+ double a = (3.0 * c1 - c2 * c2) / 3.0;
+ double b = (-2.0 * c2 * c2 * c2 + 9.0 * c1 * c2 - 27.0 * c0) / 27.0;
+
+ double Q = b * b / 4.0 + a * a * a / 27.0;
+
+ if (fabs(Q) < 1e-16) {
+ l1 = m._11; e1.x = 1.0; e1.y = 0.0; e1.z = 0.0;
+ l2 = m._22; e2.x = 0.0; e2.y = 1.0; e2.z = 0.0;
+ l3 = m._33; e3.x = 0.0; e3.y = 0.0; e3.z = 1.0;
+ } else if (Q > 0) {
+ l1 = l2 = c2 / 3.0 + cbrt(b / 2.0);
+ l3 = c2 / 3.0 - 2.0 * cbrt(b / 2.0);
+
+ eig2(m, l1, e1, e2);
+ eig1(m, l3, e3);
+ } else if (Q < 0) {
+ double t = atan2(sqrt(-Q), -b / 2.0);
+ double cos_t3 = cos(t / 3.0);
+ double sin_t3 = sin(t / 3.0);
+ double r = cbrt(sqrt(b * b / 4.0 - Q));
+
+ l1 = c2 / 3.0 + 2 * r * cos_t3;
+ l2 = c2 / 3.0 - r * (cos_t3 + M_SQRT_3 * sin_t3);
+ l3 = c2 / 3.0 - r * (cos_t3 - M_SQRT_3 * sin_t3);
+
+ eig1(m, l1, e1);
+ eig1(m, l2, e2);
+ eig1(m, l3, e3);
+ }
+ }
+
+ void eigSolve(const Matrix3 &m, double &l1, double &l2, double &l3) {
+ double c3, c2, c1, c0;
+ std::vector<Root> roots;
+
+ c3 = -1.0;
+ c2 = m._11 + m._22 + m._33;
+ c1 =
+ -(m._22 * m._33 + m._11 * m._22 + m._11 * m._33)
+ +(m._23 * m._32 + m._13 * m._31 + m._12 * m._21);
+ c0 =
+ +(m._11 * m._22 - m._12 * m._21) * m._33
+ -(m._11 * m._23 - m._13 * m._21) * m._32
+ +(m._12 * m._23 - m._13 * m._22) * m._31;
+
+ cubic_roots(c3, c2, c1, c0, roots);
+
+ for (size_t i = 0; i < roots.size(); i++) {
+ Matrix3 M(m);
+ M._11 -= roots[i].root;
+ M._22 -= roots[i].root;
+ M._33 -= roots[i].root;
+ // solve M.v = 0
+ }
+
+ std::cerr << "n_roots=" << roots.size() << std::endl;
+ for (size_t i = 0; i < roots.size(); i++) {
+ fprintf(stderr, " %.24f(%d)", roots[i].root, roots[i].multiplicity);
+ }
+ std::cerr << std::endl;
+ }
+
+ }
+}
+
diff --git a/extern/carve/lib/mesh.cpp b/extern/carve/lib/mesh.cpp
new file mode 100644
index 00000000000..55ab893c10a
--- /dev/null
+++ b/extern/carve/lib/mesh.cpp
@@ -0,0 +1,1203 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/mesh.hpp>
+#include <carve/mesh_impl.hpp>
+#include <carve/rtree.hpp>
+
+#include <carve/poly.hpp>
+
+namespace {
+ inline double CALC_X(const carve::geom::plane<3> &p, double y, double z) { return -(p.d + p.N.y * y + p.N.z * z) / p.N.x; }
+ inline double CALC_Y(const carve::geom::plane<3> &p, double x, double z) { return -(p.d + p.N.x * x + p.N.z * z) / p.N.y; }
+ inline double CALC_Z(const carve::geom::plane<3> &p, double x, double y) { return -(p.d + p.N.x * x + p.N.y * y) / p.N.z; }
+
+ carve::geom::vector<2> _project_1(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.z, v.y);
+ }
+
+ carve::geom::vector<2> _project_2(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.x, v.z);
+ }
+
+ carve::geom::vector<2> _project_3(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.y, v.x);
+ }
+
+ carve::geom::vector<2> _project_4(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.y, v.z);
+ }
+
+ carve::geom::vector<2> _project_5(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.z, v.x);
+ }
+
+ carve::geom::vector<2> _project_6(const carve::geom::vector<3> &v) {
+ return carve::geom::VECTOR(v.x, v.y);
+ }
+
+ carve::geom::vector<3> _unproject_1(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(CALC_X(plane, p.y, p.x), p.y, p.x);
+ }
+
+ carve::geom::vector<3> _unproject_2(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.x, CALC_Y(plane, p.x, p.y), p.y);
+ }
+
+ carve::geom::vector<3> _unproject_3(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.y, p.x, CALC_Z(plane, p.y, p.x));
+ }
+
+ carve::geom::vector<3> _unproject_4(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(CALC_X(plane, p.x, p.y), p.x, p.y);
+ }
+
+ carve::geom::vector<3> _unproject_5(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.y, CALC_Y(plane, p.y, p.x), p.x);
+ }
+
+ carve::geom::vector<3> _unproject_6(const carve::geom::vector<2> &p, const carve::geom3d::Plane &plane) {
+ return carve::geom::VECTOR(p.x, p.y, CALC_Z(plane, p.x, p.y));
+ }
+
+ static carve::geom::vector<2> (*project_tab[2][3])(const carve::geom::vector<3> &) = {
+ { &_project_1, &_project_2, &_project_3 },
+ { &_project_4, &_project_5, &_project_6 }
+ };
+
+ static carve::geom::vector<3> (*unproject_tab[2][3])(const carve::geom::vector<2> &, const carve::geom3d::Plane &) = {
+ { &_unproject_1, &_unproject_2, &_unproject_3 },
+ { &_unproject_4, &_unproject_5, &_unproject_6 }
+ };
+
+}
+
+namespace carve {
+ namespace mesh {
+
+
+
+ template<unsigned ndim>
+ typename Face<ndim>::project_t Face<ndim>::getProjector(bool positive_facing, int axis) const {
+ return NULL;
+ }
+
+
+
+ template<>
+ Face<3>::project_t Face<3>::getProjector(bool positive_facing, int axis) const {
+ return project_tab[positive_facing ? 1 : 0][axis];
+ }
+
+
+
+ template<unsigned ndim>
+ typename Face<ndim>::unproject_t Face<ndim>::getUnprojector(bool positive_facing, int axis) const {
+ return NULL;
+ }
+
+
+
+ template<>
+ Face<3>::unproject_t Face<3>::getUnprojector(bool positive_facing, int axis) const {
+ return unproject_tab[positive_facing ? 1 : 0][axis];
+ }
+
+
+
+ template<unsigned ndim>
+ bool Face<ndim>::containsPoint(const vector_t &p) const {
+ if (!carve::math::ZERO(carve::geom::distance(plane, p))) return false;
+ // return pointInPolySimple(vertices, projector(), (this->*project)(p));
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ return carve::geom2d::pointInPoly(verts, project(p)).iclass != carve::POINT_OUT;
+ }
+
+
+
+ template<unsigned ndim>
+ bool Face<ndim>::containsPointInProjection(const vector_t &p) const {
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ return carve::geom2d::pointInPoly(verts, project(p)).iclass != carve::POINT_OUT;
+ }
+
+
+
+ template<unsigned ndim>
+ bool Face<ndim>::simpleLineSegmentIntersection(
+ const carve::geom::linesegment<ndim> &line,
+ vector_t &intersection) const {
+ if (!line.OK()) return false;
+
+ carve::mesh::MeshSet<3>::vertex_t::vector_t p;
+ carve::IntersectionClass intersects =
+ carve::geom3d::lineSegmentPlaneIntersection(plane, line, p);
+ if (intersects == carve::INTERSECT_NONE || intersects == carve::INTERSECT_BAD) {
+ return false;
+ }
+
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ if (carve::geom2d::pointInPolySimple(verts, project(p))) {
+ intersection = p;
+ return true;
+ }
+ return false;
+ }
+
+
+
+ template<unsigned ndim>
+ IntersectionClass Face<ndim>::lineSegmentIntersection(const carve::geom::linesegment<ndim> &line,
+ vector_t &intersection) const {
+ if (!line.OK()) return INTERSECT_NONE;
+
+
+ vector_t p;
+ IntersectionClass intersects = carve::geom3d::lineSegmentPlaneIntersection(plane, line, p);
+ if (intersects == INTERSECT_NONE || intersects == INTERSECT_BAD) {
+ return intersects;
+ }
+
+ std::vector<carve::geom::vector<2> > verts;
+ getProjectedVertices(verts);
+ carve::geom2d::PolyInclusionInfo pi = carve::geom2d::pointInPoly(verts, project(p));
+ switch (pi.iclass) {
+ case POINT_VERTEX:
+ intersection = p;
+ return INTERSECT_VERTEX;
+
+ case POINT_EDGE:
+ intersection = p;
+ return INTERSECT_EDGE;
+
+ case POINT_IN:
+ intersection = p;
+ return INTERSECT_FACE;
+
+ case POINT_OUT:
+ return INTERSECT_NONE;
+
+ default:
+ break;
+ }
+ return INTERSECT_NONE;
+ }
+
+
+
+ template<unsigned ndim>
+ Face<ndim> *Face<ndim>::closeLoop(typename Face<ndim>::edge_t *start) {
+ edge_t *e = start;
+ std::vector<edge_t *> loop_edges;
+ do {
+ CARVE_ASSERT(e->rev == NULL);
+ loop_edges.push_back(e);
+ e = e->perimNext();
+ } while (e != start);
+
+ const size_t N = loop_edges.size();
+ for (size_t i = 0; i < N; ++i) {
+ loop_edges[i]->rev = new edge_t(loop_edges[i]->v2(), NULL);
+ }
+
+ for (size_t i = 0; i < N; ++i) {
+ edge_t *e1 = loop_edges[i]->rev;
+ edge_t *e2 = loop_edges[(i+1)%N]->rev;
+ e1->prev = e2;
+ e2->next = e1;
+ }
+
+ Face *f = new Face(start->rev);
+
+ CARVE_ASSERT(f->n_edges == N);
+
+ return f;
+ }
+
+
+
+ namespace detail {
+
+
+
+ bool FaceStitcher::EdgeOrderData::Cmp::operator()(const EdgeOrderData &a, const EdgeOrderData &b) const {
+ int v = carve::geom3d::compareAngles(edge_dir, base_dir, a.face_dir, b.face_dir);
+ double da = carve::geom3d::antiClockwiseAngle(base_dir, a.face_dir, edge_dir);
+ double db = carve::geom3d::antiClockwiseAngle(base_dir, b.face_dir, edge_dir);
+ int v0 = v;
+ v = 0;
+ if (da < db) v = -1;
+ if (db < da) v = +1;
+ if (v0 != v) {
+ std::cerr << "v0= " << v0 << " v= " << v << " da= " << da << " db= " << db << " " << edge_dir << " " << base_dir << " " << a.face_dir << b.face_dir << std::endl;
+ }
+ if (v < 0) return true;
+ if (v == 0) {
+ if (a.is_reversed && !b.is_reversed) return true;
+ if (a.is_reversed == b.is_reversed) {
+ return a.group_id < b.group_id;
+ }
+ }
+ return false;
+ }
+
+
+
+ void FaceStitcher::matchSimpleEdges() {
+ // join faces that share an edge, where no other faces are incident.
+ for (edge_map_t::iterator i = edges.begin(); i != edges.end(); ++i) {
+ const vpair_t &ev = (*i).first;
+ edge_map_t::iterator j = edges.find(vpair_t(ev.second, ev.first));
+ if (j == edges.end()) {
+ for (edgelist_t::iterator k = (*i).second.begin(); k != (*i).second.end(); ++k) {
+ is_open[ (*k)->face->id] = true;
+ }
+ } else if ((*i).second.size() != 1 || (*j).second.size() != 1) {
+ std::swap(complex_edges[(*i).first], (*i).second);
+ } else {
+ // simple edge.
+ edge_t *a = (*i).second.front();
+ edge_t *b = (*j).second.front();
+ if (a < b) {
+ // every simple edge pair is encountered twice. only merge once.
+ a->rev = b;
+ b->rev = a;
+ face_groups.merge_sets(a->face->id, b->face->id);
+ }
+ }
+ }
+ }
+
+
+
+ size_t FaceStitcher::faceGroupID(const Face<3> *face) {
+ return face_groups.find_set_head(face->id);
+ }
+
+
+
+ size_t FaceStitcher::faceGroupID(const Edge<3> *edge) {
+ return face_groups.find_set_head(edge->face->id);
+ }
+
+
+
+ void FaceStitcher::orderForwardAndReverseEdges(std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev,
+ std::vector<std::vector<EdgeOrderData> > &result) {
+ const size_t Nfwd = efwd.size();
+ const size_t Nrev = erev.size();
+ const size_t N = efwd[0].size();
+
+ result.resize(N);
+
+ for (size_t i = 0; i < N; ++i) {
+ Edge<3> *base = efwd[0][i];
+
+ result[i].reserve(Nfwd + Nrev);
+ for (size_t j = 0; j < Nfwd; ++j) {
+ result[i].push_back(EdgeOrderData(efwd[j][i], j, false));
+ CARVE_ASSERT(efwd[0][i]->v1() == efwd[j][i]->v1());
+ CARVE_ASSERT(efwd[0][i]->v2() == efwd[j][i]->v2());
+ }
+ for (size_t j = 0; j < Nrev; ++j) {
+ result[i].push_back(EdgeOrderData(erev[j][i], j, true));
+ CARVE_ASSERT(erev[0][i]->v1() == erev[j][i]->v1());
+ CARVE_ASSERT(erev[0][i]->v2() == erev[j][i]->v2());
+ }
+
+ std::sort(result[i].begin(),
+ result[i].end(),
+ EdgeOrderData::Cmp(base->v2()->v - base->v1()->v, result[i][0].face_dir));
+ }
+ }
+
+
+
+ void FaceStitcher::edgeIncidentGroups(const vpair_t &e,
+ const edge_map_t &all_edges,
+ std::pair<std::set<size_t>, std::set<size_t> > &groups) {
+ groups.first.clear();
+ groups.second.clear();
+ edge_map_t::const_iterator i;
+
+ i = all_edges.find(e);
+ if (i != all_edges.end()) {
+ for (edgelist_t::const_iterator j = (*i).second.begin(); j != (*i).second.end(); ++j) {
+ groups.first.insert(faceGroupID(*j));
+ }
+ }
+
+ i = all_edges.find(vpair_t(e.second, e.first));
+ if (i != all_edges.end()) {
+ for (edgelist_t::const_iterator j = (*i).second.begin(); j != (*i).second.end(); ++j) {
+ groups.second.insert(faceGroupID(*j));
+ }
+ }
+ }
+
+
+
+ void FaceStitcher::buildEdgeGraph(const edge_map_t &all_edges) {
+ for (edge_map_t::const_iterator i = all_edges.begin();
+ i != all_edges.end();
+ ++i) {
+ edge_graph[(*i).first.first].insert((*i).first.second);
+ }
+ }
+
+
+
+ void FaceStitcher::extractPath(std::vector<const vertex_t *> &path) {
+ path.clear();
+
+ edge_graph_t::iterator iter = edge_graph.begin();
+
+
+ const vertex_t *init = (*iter).first;
+ const vertex_t *next = *(*iter).second.begin();
+ const vertex_t *prev = NULL;
+ const vertex_t *vert = init;
+
+ while ((*iter).second.size() == 2) {
+ prev = *std::find_if((*iter).second.begin(),
+ (*iter).second.end(),
+ std::bind2nd(std::not_equal_to<const vertex_t *>(), next));
+ next = vert;
+ vert = prev;
+ iter = edge_graph.find(vert);
+ CARVE_ASSERT(iter != edge_graph.end());
+ if (vert == init) break;
+ }
+ init = vert;
+
+ std::vector<const edge_t *> efwd;
+ std::vector<const edge_t *> erev;
+
+ edge_map_t::iterator edgeiter;
+ edgeiter = complex_edges.find(vpair_t(vert, next));
+ std::copy((*edgeiter).second.begin(), (*edgeiter).second.end(), std::back_inserter(efwd));
+
+ edgeiter = complex_edges.find(vpair_t(next, vert));
+ std::copy((*edgeiter).second.begin(), (*edgeiter).second.end(), std::back_inserter(erev));
+
+ path.push_back(vert);
+
+ prev = vert;
+ vert = next;
+ path.push_back(vert);
+ iter = edge_graph.find(vert);
+ CARVE_ASSERT(iter != edge_graph.end());
+
+ while (vert != init && (*iter).second.size() == 2) {
+ next = *std::find_if((*iter).second.begin(),
+ (*iter).second.end(),
+ std::bind2nd(std::not_equal_to<const vertex_t *>(), prev));
+
+ edgeiter = complex_edges.find(vpair_t(vert, next));
+ if ((*edgeiter).second.size() != efwd.size()) goto done;
+
+ for (size_t i = 0; i < efwd.size(); ++i) {
+ Edge<3> *e_next = efwd[i]->perimNext();
+ if (e_next->v2() != next) goto done;
+ efwd[i] = e_next;
+ }
+
+ edgeiter = complex_edges.find(vpair_t(next, vert));
+ if ((*edgeiter).second.size() != erev.size()) goto done;
+
+ for (size_t i = 0; i < erev.size(); ++i) {
+ Edge<3> *e_prev = erev[i]->perimPrev();
+ if (e_prev->v1() != next) goto done;
+ erev[i] = e_prev;
+ }
+
+ prev = vert;
+ vert = next;
+ path.push_back(vert);
+ iter = edge_graph.find(vert);
+ CARVE_ASSERT(iter != edge_graph.end());
+ }
+ done:;
+ }
+
+
+
+ void FaceStitcher::removePath(const std::vector<const vertex_t *> &path) {
+ for (size_t i = 1; i < path.size() - 1; ++i) {
+ edge_graph.erase(path[i]);
+ }
+
+ edge_graph[path[0]].erase(path[1]);
+ if (edge_graph[path[0]].size() == 0) {
+ edge_graph.erase(path[0]);
+ }
+
+ edge_graph[path[path.size()-1]].erase(path[path.size()-2]);
+ if (edge_graph[path[path.size()-1]].size() == 0) {
+ edge_graph.erase(path[path.size()-1]);
+ }
+ }
+
+
+
+ void FaceStitcher::reorder(std::vector<EdgeOrderData> &ordering,
+ size_t grp) {
+ if (!ordering[0].is_reversed && ordering[0].group_id == grp) return;
+ for (size_t i = 1; i < ordering.size(); ++i) {
+ if (!ordering[i].is_reversed && ordering[i].group_id == grp) {
+ std::vector<EdgeOrderData> temp;
+ temp.reserve(ordering.size());
+ std::copy(ordering.begin() + i, ordering.end(), std::back_inserter(temp));
+ std::copy(ordering.begin(), ordering.begin() + i, std::back_inserter(temp));
+ std::copy(temp.begin(), temp.end(), ordering.begin());
+ return;
+ }
+ }
+ }
+
+
+
+ struct lt_second {
+ template<typename pair_t>
+ bool operator()(const pair_t &a, const pair_t &b) const {
+ return a.second < b.second;
+ }
+ };
+
+
+
+ void FaceStitcher::fuseEdges(std::vector<Edge<3> *> &fwd,
+ std::vector<Edge<3> *> &rev) {
+ for (size_t i = 0; i < fwd.size(); ++i) {
+ fwd[i]->rev = rev[i];
+ rev[i]->rev = fwd[i];
+ face_groups.merge_sets(fwd[i]->face->id, rev[i]->face->id);
+ }
+ }
+
+
+
+ void FaceStitcher::joinGroups(std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev,
+ size_t fwd_grp,
+ size_t rev_grp) {
+ fuseEdges(efwd[fwd_grp], erev[rev_grp]);
+ }
+
+
+
+ void FaceStitcher::matchOrderedEdges(const std::vector<std::vector<EdgeOrderData> >::iterator begin,
+ const std::vector<std::vector<EdgeOrderData> >::iterator end,
+ std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev) {
+ typedef std::unordered_map<std::pair<size_t, size_t>, size_t> pair_counts_t;
+ for (;;) {
+ pair_counts_t pair_counts;
+
+ for (std::vector<std::vector<EdgeOrderData> >::iterator i = begin; i != end; ++i) {
+ std::vector<EdgeOrderData> &e = *i;
+ for (size_t j = 0; j < e.size(); ++j) {
+ if (!e[j].is_reversed && e[(j+1)%e.size()].is_reversed) {
+ pair_counts[std::make_pair(e[j].group_id,
+ e[(j+1)%e.size()].group_id)]++;
+ }
+ }
+ }
+
+ if (!pair_counts.size()) break;
+
+ std::vector<std::pair<size_t, std::pair<size_t, size_t> > > counts;
+ counts.reserve(pair_counts.size());
+ for (pair_counts_t::iterator iter = pair_counts.begin(); iter != pair_counts.end(); ++iter) {
+ counts.push_back(std::make_pair((*iter).second, (*iter).first));
+ }
+ std::make_heap(counts.begin(), counts.end());
+
+ std::set<size_t> rem_fwd, rem_rev;
+
+ while (counts.size()) {
+ std::pair<size_t, size_t> join = counts.front().second;
+ std::pop_heap(counts.begin(), counts.end());
+ counts.pop_back();
+ if (rem_fwd.find(join.first) != rem_fwd.end()) continue;
+ if (rem_rev.find(join.second) != rem_rev.end()) continue;
+
+ size_t g1 = join.first;
+ size_t g2 = join.second;
+
+ joinGroups(efwd, erev, g1, g2);
+
+ for (std::vector<std::vector<EdgeOrderData> >::iterator i = begin; i != end; ++i) {
+ (*i).erase(std::remove_if((*i).begin(), (*i).end(), EdgeOrderData::TestGroups(g1, g2)), (*i).end());
+ }
+
+ rem_fwd.insert(g1);
+ rem_rev.insert(g2);
+ }
+ }
+ }
+
+
+
+ void FaceStitcher::resolveOpenEdges() {
+ // Remove open regions of mesh. Doing this may make additional
+ // edges simple (for example, removing a fin from the edge of
+ // a cube), and may also expose more open mesh regions. In the
+ // latter case, the process must be repeated to deal with the
+ // newly uncovered regions.
+ std::unordered_set<size_t> open_groups;
+
+ for (size_t i = 0; i < is_open.size(); ++i) {
+ if (is_open[i]) open_groups.insert(face_groups.find_set_head(i));
+ }
+
+ while (!open_groups.empty()) {
+ std::list<vpair_t> edge_0, edge_1;
+
+ for (edge_map_t::iterator i = complex_edges.begin(); i != complex_edges.end(); ++i) {
+ bool was_modified = false;
+ for(edgelist_t::iterator j = (*i).second.begin(); j != (*i).second.end(); ) {
+ if (open_groups.find(faceGroupID(*j)) != open_groups.end()) {
+ j = (*i).second.erase(j);
+ was_modified = true;
+ } else {
+ ++j;
+ }
+ }
+ if (was_modified) {
+ if ((*i).second.empty()) {
+ edge_0.push_back((*i).first);
+ } else if ((*i).second.size() == 1) {
+ edge_1.push_back((*i).first);
+ }
+ }
+ }
+
+ for (std::list<vpair_t>::iterator i = edge_1.begin(); i != edge_1.end(); ++i) {
+ vpair_t e1 = *i;
+ edge_map_t::iterator e1i = complex_edges.find(e1);
+ if (e1i == complex_edges.end()) continue;
+ vpair_t e2 = vpair_t(e1.second, e1.first);
+ edge_map_t::iterator e2i = complex_edges.find(e2);
+ CARVE_ASSERT(e2i != complex_edges.end()); // each complex edge should have a mate.
+
+ if ((*e2i).second.size() == 1) {
+ // merge newly simple edges, delete both from complex_edges.
+ edge_t *a = (*e1i).second.front();
+ edge_t *b = (*e2i).second.front();
+ a->rev = b;
+ b->rev = a;
+ face_groups.merge_sets(a->face->id, b->face->id);
+ complex_edges.erase(e1i);
+ complex_edges.erase(e2i);
+ }
+ }
+
+ open_groups.clear();
+
+ for (std::list<vpair_t>::iterator i = edge_0.begin(); i != edge_0.end(); ++i) {
+ vpair_t e1 = *i;
+ edge_map_t::iterator e1i = complex_edges.find(e1);
+ vpair_t e2 = vpair_t(e1.second, e1.first);
+ edge_map_t::iterator e2i = complex_edges.find(e2);
+ if (e2i == complex_edges.end()) {
+ // This could occur, for example, when two faces share
+ // an edge in the same direction, but are both not
+ // touching anything else. Both get removed by the open
+ // group removal code, leaving an edge map with zero
+ // edges. The edge in the opposite direction does not
+ // exist, because there's no face that adjoins either of
+ // the two open faces.
+ continue;
+ }
+
+ for (edgelist_t::iterator j = (*e2i).second.begin(); j != (*e2i).second.end(); ++j) {
+ open_groups.insert(faceGroupID(*j));
+ }
+ complex_edges.erase(e1i);
+ complex_edges.erase(e2i);
+ }
+ }
+ }
+
+
+
+ void FaceStitcher::extractConnectedEdges(std::vector<const vertex_t *>::iterator begin,
+ std::vector<const vertex_t *>::iterator end,
+ std::vector<std::vector<Edge<3> *> > &efwd,
+ std::vector<std::vector<Edge<3> *> > &erev) {
+ const size_t N = std::distance(begin, end) - 1;
+
+ std::vector<const vertex_t *>::iterator e1, e2;
+ e1 = e2 = begin; ++e2;
+ vpair_t start_f = vpair_t(*e1, *e2);
+ vpair_t start_r = vpair_t(*e2, *e1);
+
+ const size_t Nfwd = complex_edges[start_f].size();
+ const size_t Nrev = complex_edges[start_r].size();
+
+ size_t j;
+ edgelist_t::iterator ji;
+
+ efwd.clear(); efwd.resize(Nfwd);
+ erev.clear(); erev.resize(Nrev);
+
+ for (j = 0, ji = complex_edges[start_f].begin();
+ ji != complex_edges[start_f].end();
+ ++j, ++ji) {
+ efwd[j].reserve(N);
+ efwd[j].push_back(*ji);
+ }
+
+ for (j = 0, ji = complex_edges[start_r].begin();
+ ji != complex_edges[start_r].end();
+ ++j, ++ji) {
+ erev[j].reserve(N);
+ erev[j].push_back(*ji);
+ }
+
+ std::vector<Edge<3> *> temp_f, temp_r;
+ temp_f.resize(Nfwd);
+ temp_r.resize(Nrev);
+
+ for (j = 1; j < N; ++j) {
+ ++e1; ++e2;
+ vpair_t ef = vpair_t(*e1, *e2);
+ vpair_t er = vpair_t(*e2, *e1);
+
+ if (complex_edges[ef].size() != Nfwd || complex_edges[ef].size() != Nrev) break;
+
+ for (size_t k = 0; k < Nfwd; ++k) {
+ Edge<3> *e_next = efwd[k].back()->perimNext();
+ CARVE_ASSERT(e_next == NULL || e_next->rev == NULL);
+ if (e_next == NULL || e_next->v2() != *e2) goto done;
+ CARVE_ASSERT(e_next->v1() == *e1);
+ CARVE_ASSERT(std::find(complex_edges[ef].begin(), complex_edges[ef].end(), e_next) != complex_edges[ef].end());
+ temp_f[k] = e_next;
+ }
+
+ for (size_t k = 0; k < Nrev; ++k) {
+ Edge<3> *e_next = erev[k].back()->perimPrev();
+ if (e_next == NULL || e_next->v1() != *e2) goto done;
+ CARVE_ASSERT(e_next->v2() == *e1);
+ CARVE_ASSERT(std::find(complex_edges[er].begin(), complex_edges[er].end(), e_next) != complex_edges[er].end());
+ temp_r[k] = e_next;
+ }
+
+ for (size_t k = 0; k < Nfwd; ++k) {
+ efwd[k].push_back(temp_f[k]);
+ }
+
+ for (size_t k = 0; k < Nrev; ++k) {
+ erev[k].push_back(temp_r[k]);
+ }
+ }
+ done:;
+ }
+
+
+
+ void FaceStitcher::construct() {
+ matchSimpleEdges();
+ if (!complex_edges.size()) return;
+
+ resolveOpenEdges();
+ if (!complex_edges.size()) return;
+
+ buildEdgeGraph(complex_edges);
+
+ std::list<std::vector<const vertex_t *> > paths;
+
+ while (edge_graph.size()) {
+ paths.push_back(std::vector<const vertex_t *>());
+ extractPath(paths.back());
+ removePath(paths.back());
+ };
+
+
+ for (std::list<std::vector<const vertex_t *> >::iterator path = paths.begin(); path != paths.end(); ++path) {
+ for (size_t i = 0; i < (*path).size() - 1;) {
+ std::vector<std::vector<Edge<3> *> > efwd, erev;
+
+ extractConnectedEdges((*path).begin() + i, (*path).end(), efwd, erev);
+
+ std::vector<std::vector<EdgeOrderData> > orderings;
+ orderForwardAndReverseEdges(efwd, erev, orderings);
+
+ matchOrderedEdges(orderings.begin(), orderings.end(), efwd, erev);
+ i += efwd[0].size();
+ }
+ }
+ }
+ }
+ }
+
+
+
+ // construct a MeshSet from a Polyhedron, maintaining on the
+ // connectivity information in the Polyhedron.
+ mesh::MeshSet<3> *meshFromPolyhedron(const poly::Polyhedron *poly, int manifold_id) {
+ typedef mesh::Vertex<3> vertex_t;
+ typedef mesh::Vertex<3>::vector_t vector_t;
+ typedef mesh::Edge<3> edge_t;
+ typedef mesh::Face<3> face_t;
+ typedef mesh::Mesh<3> mesh_t;
+ typedef mesh::MeshSet<3> meshset_t;
+
+ std::vector<vertex_t> vertex_storage;
+ vertex_storage.reserve(poly->vertices.size());
+ for (size_t i = 0; i < poly->vertices.size(); ++i) {
+ vertex_storage.push_back(vertex_t(poly->vertices[i].v));
+ }
+
+ std::vector<std::vector<face_t *> > faces;
+ faces.resize(poly->manifold_is_closed.size());
+
+ std::unordered_map<std::pair<size_t, size_t>, std::list<edge_t *> > vertex_to_edge;
+
+ std::vector<vertex_t *> vert_ptrs;
+ for (size_t i = 0; i < poly->faces.size(); ++i) {
+ const poly::Polyhedron::face_t &src = poly->faces[i];
+ if (manifold_id != -1 && src.manifold_id != manifold_id) continue;
+ vert_ptrs.clear();
+ vert_ptrs.reserve(src.nVertices());
+ for (size_t j = 0; j < src.nVertices(); ++j) {
+ size_t vi = poly->vertexToIndex_fast(src.vertex(j));
+ vert_ptrs.push_back(&vertex_storage[vi]);
+ }
+ face_t *face = new face_t(vert_ptrs.begin(), vert_ptrs.end());
+ face->id = src.manifold_id;
+ faces[src.manifold_id].push_back(face);
+
+ edge_t *edge = face->edge;
+ do {
+ vertex_to_edge[std::make_pair(size_t(edge->v1() - &vertex_storage[0]),
+ size_t(edge->v2() - &vertex_storage[0]))].push_back(edge);
+ edge = edge->next;
+ } while (edge != face->edge);
+ }
+
+ // copy connectivity from Polyhedron.
+ for (size_t i = 0; i < poly->edges.size(); ++i) {
+ const poly::Polyhedron::edge_t &src = poly->edges[i];
+ size_t v1i = poly->vertexToIndex_fast(src.v1);
+ size_t v2i = poly->vertexToIndex_fast(src.v2);
+
+ std::list<edge_t *> &efwd = vertex_to_edge[std::make_pair(v1i, v2i)];
+ std::list<edge_t *> &erev = vertex_to_edge[std::make_pair(v2i, v1i)];
+
+ const std::vector<const poly::Polyhedron::face_t *> &facepairs = poly->connectivity.edge_to_face[i];
+ for (size_t j = 0; j < facepairs.size(); j += 2) {
+ const poly::Polyhedron::face_t *fa, *fb;
+ fa = facepairs[j];
+ fb = facepairs[j+1];
+ if (!fa || !fb) continue;
+ CARVE_ASSERT(fa->manifold_id == fb->manifold_id);
+ if (manifold_id != -1 && fa->manifold_id != manifold_id) continue;
+
+ std::list<edge_t *>::iterator efwdi, erevi;
+ for (efwdi = efwd.begin(); efwdi != efwd.end() && (*efwdi)->face->id != (size_t)fa->manifold_id; ++efwdi);
+ for (erevi = erev.begin(); erevi != erev.end() && (*erevi)->face->id != (size_t)fa->manifold_id; ++erevi);
+ CARVE_ASSERT(efwdi != efwd.end() && erevi != erev.end());
+
+ (*efwdi)->rev = (*erevi);
+ (*erevi)->rev = (*efwdi);
+ }
+ }
+
+ std::vector<mesh_t *> meshes;
+ meshes.reserve(faces.size());
+ for (size_t i = 0; i < faces.size(); ++i) {
+ if (faces[i].size()) {
+ meshes.push_back(new mesh_t(faces[i]));
+ }
+ }
+
+ return new meshset_t(vertex_storage, meshes);
+ }
+
+
+
+ static void copyMeshFaces(const mesh::Mesh<3> *mesh,
+ size_t manifold_id,
+ const mesh::Vertex<3> *Vbase,
+ poly::Polyhedron *poly,
+ std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > &edges,
+ std::unordered_map<const mesh::Face<3> *, size_t> &face_map) {
+ std::vector<const poly::Polyhedron::vertex_t *> vert_ptr;
+ for (size_t f = 0; f < mesh->faces.size(); ++f) {
+ mesh::Face<3> *src = mesh->faces[f];
+ vert_ptr.clear();
+ vert_ptr.reserve(src->nVertices());
+ mesh::Edge<3> *e = src->edge;
+ do {
+ vert_ptr.push_back(&poly->vertices[e->vert - Vbase]);
+ edges[std::make_pair(e->v1() - Vbase, e->v2() - Vbase)].push_back(e);
+ e = e->next;
+ } while (e != src->edge);
+
+ face_map[src] = poly->faces.size();;
+
+ poly->faces.push_back(poly::Polyhedron::face_t(vert_ptr));
+ poly->faces.back().manifold_id = manifold_id;
+ poly->faces.back().owner = poly;
+ }
+ }
+
+
+
+ // construct a Polyhedron from a MeshSet
+ poly::Polyhedron *polyhedronFromMesh(const mesh::MeshSet<3> *mesh, int manifold_id) {
+ typedef poly::Polyhedron poly_t;
+ typedef poly::Polyhedron::vertex_t vertex_t;
+ typedef poly::Polyhedron::edge_t edge_t;
+ typedef poly::Polyhedron::face_t face_t;
+
+ poly::Polyhedron *poly = new poly::Polyhedron();
+ const mesh::Vertex<3> *Vbase = &mesh->vertex_storage[0];
+
+ poly->vertices.reserve(mesh->vertex_storage.size());
+ for (size_t i = 0; i < mesh->vertex_storage.size(); ++i) {
+ poly->vertices.push_back(vertex_t(mesh->vertex_storage[i].v));
+ poly->vertices.back().owner = poly;
+ }
+
+ size_t n_faces = 0;
+ if (manifold_id == -1) {
+ poly->manifold_is_closed.resize(mesh->meshes.size());
+ poly->manifold_is_negative.resize(mesh->meshes.size());
+ for (size_t m = 0; m < mesh->meshes.size(); ++m) {
+ n_faces += mesh->meshes[m]->faces.size();
+ poly->manifold_is_closed[m] = mesh->meshes[m]->isClosed();
+ poly->manifold_is_negative[m] = mesh->meshes[m]->isNegative();
+ }
+ } else {
+ poly->manifold_is_closed.resize(1);
+ poly->manifold_is_negative.resize(1);
+ n_faces = mesh->meshes[manifold_id]->faces.size();
+ poly->manifold_is_closed[manifold_id] = mesh->meshes[manifold_id]->isClosed();
+ poly->manifold_is_negative[manifold_id] = mesh->meshes[manifold_id]->isNegative();
+ }
+
+ std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > edges;
+ std::unordered_map<const mesh::Face<3> *, size_t> face_map;
+ poly->faces.reserve(n_faces);
+
+ if (manifold_id == -1) {
+ for (size_t m = 0; m < mesh->meshes.size(); ++m) {
+ copyMeshFaces(mesh->meshes[m], m, Vbase, poly, edges, face_map);
+ }
+ } else {
+ copyMeshFaces(mesh->meshes[manifold_id], 0, Vbase, poly, edges, face_map);
+ }
+
+ size_t n_edges = 0;
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edges.begin(); i != edges.end(); ++i) {
+ if ((*i).first.first < (*i).first.second || edges.find(std::make_pair((*i).first.second, (*i).first.first)) == edges.end()) {
+ n_edges++;
+ }
+ }
+
+ poly->edges.reserve(n_edges);
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edges.begin(); i != edges.end(); ++i) {
+ if ((*i).first.first < (*i).first.second ||
+ edges.find(std::make_pair((*i).first.second, (*i).first.first)) == edges.end()) {
+ poly->edges.push_back(edge_t(&poly->vertices[(*i).first.first],
+ &poly->vertices[(*i).first.second],
+ poly));
+ }
+ }
+
+ poly->initVertexConnectivity();
+
+ // build edge entries for face.
+ for (size_t f = 0; f < poly->faces.size(); ++f) {
+ face_t &face = poly->faces[f];
+ size_t N = face.nVertices();
+ for (size_t v = 0; v < N; ++v) {
+ size_t v1i = poly->vertexToIndex_fast(face.vertex(v));
+ size_t v2i = poly->vertexToIndex_fast(face.vertex((v+1)%N));
+ std::vector<const edge_t *> found_edge;
+ std::set_intersection(poly->connectivity.vertex_to_edge[v1i].begin(), poly->connectivity.vertex_to_edge[v1i].end(),
+ poly->connectivity.vertex_to_edge[v2i].begin(), poly->connectivity.vertex_to_edge[v2i].end(),
+ std::back_inserter(found_edge));
+ CARVE_ASSERT(found_edge.size() == 1);
+ face.edge(v) = found_edge[0];
+ }
+ }
+
+ poly->connectivity.edge_to_face.resize(poly->edges.size());
+
+ for (size_t i = 0; i < poly->edges.size(); ++i) {
+ size_t v1i = poly->vertexToIndex_fast(poly->edges[i].v1);
+ size_t v2i = poly->vertexToIndex_fast(poly->edges[i].v2);
+ std::list<mesh::Edge<3> *> &efwd = edges[std::make_pair(v1i, v2i)];
+ std::list<mesh::Edge<3> *> &erev = edges[std::make_pair(v1i, v2i)];
+
+ for (std::list<mesh::Edge<3> *>::iterator j = efwd.begin(); j != efwd.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ poly->connectivity.edge_to_face[i].push_back(&poly->faces[face_map[edge->face]]);
+ if (edge->rev == NULL) {
+ poly->connectivity.edge_to_face[i].push_back(NULL);
+ } else {
+ poly->connectivity.edge_to_face[i].push_back(&poly->faces[face_map[edge->rev->face]]);
+ }
+ }
+ }
+ for (std::list<mesh::Edge<3> *>::iterator j = erev.begin(); j != erev.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ if (edge->rev == NULL) {
+ poly->connectivity.edge_to_face[i].push_back(NULL);
+ poly->connectivity.edge_to_face[i].push_back(&poly->faces[face_map[edge->face]]);
+ }
+ }
+ }
+
+ }
+
+ poly->initSpatialIndex();
+
+ // XXX: at this point, manifold_is_negative is not set up. This
+ // info should be computed/stored in Mesh instances.
+
+ return poly;
+ }
+
+
+
+}
+
+
+
+// explicit instantiation for 2D case.
+// XXX: do not compile because of a missing definition for fitPlane in the 2d case.
+
+// template class carve::mesh::Vertex<2>;
+// template class carve::mesh::Edge<2>;
+// template class carve::mesh::Face<2>;
+// template class carve::mesh::Mesh<2>;
+// template class carve::mesh::MeshSet<2>;
+
+// explicit instantiation for 3D case.
+template class carve::mesh::Vertex<3>;
+template class carve::mesh::Edge<3>;
+template class carve::mesh::Face<3>;
+template class carve::mesh::Mesh<3>;
+template class carve::mesh::MeshSet<3>;
+
+
+
+carve::PointClass carve::mesh::classifyPoint(
+ const carve::mesh::MeshSet<3> *meshset,
+ const carve::geom::RTreeNode<3, carve::mesh::Face<3> *> *face_rtree,
+ const carve::geom::vector<3> &v,
+ bool even_odd,
+ const carve::mesh::Mesh<3> *mesh,
+ const carve::mesh::Face<3> **hit_face) {
+
+ if (hit_face) *hit_face = NULL;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{containsVertex " << v << "}" << std::endl;
+#endif
+
+ if (!face_rtree->bbox.containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(aabb short circuit)}" << std::endl;
+#endif
+ // XXX: if the top level manifolds are negative, this should be POINT_IN.
+ // for the moment, this only works for a single manifold.
+ if (meshset->meshes.size() == 1 && meshset->meshes[0]->isNegative()) {
+ return POINT_IN;
+ }
+ return POINT_OUT;
+ }
+
+ std::vector<carve::mesh::Face<3> *> near_faces;
+ face_rtree->search(v, std::back_inserter(near_faces));
+
+ for (size_t i = 0; i < near_faces.size(); i++) {
+ if (mesh != NULL && mesh != near_faces[i]->mesh) continue;
+
+ // XXX: Do allow the tested vertex to be ON an open
+ // manifold. This was here originally because of the
+ // possibility of an open manifold contained within a closed
+ // manifold.
+
+ // if (!near_faces[i]->mesh->isClosed()) continue;
+
+ if (near_faces[i]->containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:ON(hits face " << near_faces[i] << ")}" << std::endl;
+#endif
+ if (hit_face) *hit_face = near_faces[i];
+ return POINT_ON;
+ }
+ }
+
+ double ray_len = face_rtree->bbox.extent.length() * 2;
+
+
+ std::vector<std::pair<const carve::mesh::Face<3> *, carve::geom::vector<3> > > manifold_intersections;
+
+ for (;;) {
+ double a1 = random() / double(RAND_MAX) * M_TWOPI;
+ double a2 = random() / double(RAND_MAX) * M_TWOPI;
+
+ carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2));
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{testing ray: " << ray_dir << "}" << std::endl;
+#endif
+
+ carve::geom::vector<3> v2 = v + ray_dir * ray_len;
+
+ bool failed = false;
+ carve::geom::linesegment<3> line(v, v2);
+ carve::geom::vector<3> intersection;
+
+ near_faces.clear();
+ manifold_intersections.clear();
+ face_rtree->search(line, std::back_inserter(near_faces));
+
+ for (unsigned i = 0; !failed && i < near_faces.size(); i++) {
+ if (mesh != NULL && mesh != near_faces[i]->mesh) continue;
+
+ if (!near_faces[i]->mesh->isClosed()) continue;
+
+ switch (near_faces[i]->lineSegmentIntersection(line, intersection)) {
+ case INTERSECT_FACE: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersects face: " << near_faces[i]
+ << " dp: " << dot(ray_dir, near_faces[i]->plane.N) << "}" << std::endl;
+#endif
+
+ if (!even_odd && fabs(dot(ray_dir, near_faces[i]->plane.N)) < EPSILON) {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(small dot product)}" << std::endl;
+#endif
+
+ failed = true;
+ break;
+ }
+ manifold_intersections.push_back(std::make_pair(near_faces[i], intersection));
+ break;
+ }
+ case INTERSECT_NONE: {
+ break;
+ }
+ default: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(degenerate intersection)}" << std::endl;
+#endif
+ failed = true;
+ break;
+ }
+ }
+ }
+
+ if (!failed) {
+ if (even_odd) {
+ return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT;
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersections ok [count:"
+ << manifold_intersections.size()
+ << "], sorting}"
+ << std::endl;
+#endif
+
+ carve::geom3d::sortInDirectionOfRay(ray_dir,
+ manifold_intersections.begin(),
+ manifold_intersections.end(),
+ carve::geom3d::vec_adapt_pair_second());
+
+ std::map<const carve::mesh::Mesh<3> *, int> crossings;
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const carve::mesh::Face<3> *f = manifold_intersections[i].first;
+ if (dot(ray_dir, f->plane.N) < 0.0) {
+ crossings[f->mesh]++;
+ } else {
+ crossings[f->mesh]--;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ for (std::map<const carve::mesh::Mesh<3> *, int>::const_iterator i = crossings.begin(); i != crossings.end(); ++i) {
+ std::cerr << "{mesh " << (*i).first << " crossing count: " << (*i).second << "}" << std::endl;
+ }
+#endif
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const carve::mesh::Face<3> *f = manifold_intersections[i].first;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersection at "
+ << manifold_intersections[i].second
+ << " mesh: "
+ << f->mesh
+ << " count: "
+ << crossings[f->mesh]
+ << "}"
+ << std::endl;
+#endif
+
+ if (crossings[f->mesh] < 0) {
+ // inside this manifold.
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:IN}" << std::endl;
+#endif
+
+ return POINT_IN;
+ } else if (crossings[f->mesh] > 0) {
+ // outside this manifold, but it's an infinite manifold. (for instance, an inverted cube)
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(default)}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+}
+
+
+
diff --git a/extern/carve/lib/octree.cpp b/extern/carve/lib/octree.cpp
new file mode 100644
index 00000000000..900a9614f47
--- /dev/null
+++ b/extern/carve/lib/octree.cpp
@@ -0,0 +1,399 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/octree_decl.hpp>
+#include <carve/octree_impl.hpp>
+
+#include <carve/poly_decl.hpp>
+
+namespace carve {
+ namespace csg {
+
+ Octree::Node::Node(const carve::geom3d::Vector &newMin, const carve::geom3d::Vector &newMax) :
+ parent(NULL), is_leaf(true), min(newMin), max(newMax) {
+ for (int i = 0; i < 8; ++i) children[i] = NULL;
+ aabb = Octree::makeAABB(this);
+ }
+
+ Octree::Node::Node(Node *p, double x1, double y1, double z1, double x2, double y2, double z2) :
+ parent(p), is_leaf(true), min(carve::geom::VECTOR(x1, y1, z1)), max(carve::geom::VECTOR(x2, y2, z2)) {
+ for (int i = 0; i < 8; ++i) children[i] = NULL;
+ aabb = Octree::makeAABB(this);
+ }
+
+ Octree::Node::~Node() {
+ for (int i = 0; i < 8; ++i) {
+ if (children[i] != NULL) {
+ (*children[i]).~Node();
+ }
+ }
+ if (children[0] != NULL) {
+ char *ptr = (char*)children[0];
+ delete[] ptr;
+ }
+ }
+
+ bool Octree::Node::mightContain(const carve::poly::Face<3> &face) {
+ if (face.nVertices() == 3) {
+ return aabb.intersects(carve::geom::tri<3>(face.vertex(0)->v, face.vertex(1)->v, face.vertex(2)->v));
+ } else {
+ return aabb.intersects(face.aabb) && aabb.intersects(face.plane_eqn);
+ }
+ }
+
+ bool Octree::Node::mightContain(const carve::poly::Edge<3> &edge) {
+ return aabb.intersectsLineSegment(edge.v1->v, edge.v2->v);
+ }
+
+ bool Octree::Node::mightContain(const carve::poly::Vertex<3> &p) {
+ return aabb.containsPoint(p.v);
+ }
+
+ bool Octree::Node::hasChildren() {
+ return !is_leaf;
+ }
+
+ bool Octree::Node::split() {
+ if (is_leaf && hasGeometry()) {
+
+ carve::geom3d::Vector mid = 0.5 * (min + max);
+ char *ptr = new char[sizeof(Node)*8];
+ children[0] = new (ptr + sizeof(Node) * 0) Node(this, min.x, min.y, min.z, mid.x, mid.y, mid.z);
+ children[1] = new (ptr + sizeof(Node) * 1) Node(this, mid.x, min.y, min.z, max.x, mid.y, mid.z);
+ children[2] = new (ptr + sizeof(Node) * 2) Node(this, min.x, mid.y, min.z, mid.x, max.y, mid.z);
+ children[3] = new (ptr + sizeof(Node) * 3) Node(this, mid.x, mid.y, min.z, max.x, max.y, mid.z);
+ children[4] = new (ptr + sizeof(Node) * 4) Node(this, min.x, min.y, mid.z, mid.x, mid.y, max.z);
+ children[5] = new (ptr + sizeof(Node) * 5) Node(this, mid.x, min.y, mid.z, max.x, mid.y, max.z);
+ children[6] = new (ptr + sizeof(Node) * 6) Node(this, min.x, mid.y, mid.z, mid.x, max.y, max.z);
+ children[7] = new (ptr + sizeof(Node) * 7) Node(this, mid.x, mid.y, mid.z, max.x, max.y, max.z);
+
+ for (int i = 0; i < 8; ++i) {
+ putInside(faces, children[i], children[i]->faces);
+ putInside(edges, children[i], children[i]->edges);
+ putInside(vertices, children[i], children[i]->vertices);
+ }
+
+ faces.clear();
+ edges.clear();
+ vertices.clear();
+ is_leaf = false;
+ }
+ return is_leaf;
+ }
+
+ template <class T>
+ void Octree::Node::putInside(const T &input, Node *child, T &output) {
+ for (typename T::const_iterator it = input.begin(), e = input.end(); it != e; ++it) {
+ if (child->mightContain(**it)) {
+ output.push_back(*it);
+ }
+ }
+ }
+
+ bool Octree::Node::hasGeometry() {
+ return faces.size() > 0 || edges.size() > 0 || vertices.size() > 0;
+ }
+
+ Octree::Octree() {
+ root = NULL;
+ }
+
+ Octree::~Octree() {
+ if (root) delete root;
+ }
+
+ void Octree::setBounds(const carve::geom3d::Vector &min, const carve::geom3d::Vector &max) {
+ if (root) delete root;
+ root = new Node(min, max);
+ }
+
+ void Octree::setBounds(carve::geom3d::AABB aabb) {
+ if (root) delete root;
+ aabb.extent = 1.1 * aabb.extent;
+ root = new Node(aabb.min(), aabb.max());
+ }
+
+ void Octree::addEdges(const std::vector<carve::poly::Edge<3> > &e) {
+ root->edges.reserve(root->edges.size() + e.size());
+ for (size_t i = 0; i < e.size(); ++i) {
+ root->edges.push_back(&e[i]);
+ }
+ }
+
+ void Octree::addFaces(const std::vector<carve::poly::Face<3> > &f) {
+ root->faces.reserve(root->faces.size() + f.size());
+ for (size_t i = 0; i < f.size(); ++i) {
+ root->faces.push_back(&f[i]);
+ }
+ }
+
+ void Octree::addVertices(const std::vector<const carve::poly::Vertex<3> *> &p) {
+ root->vertices.insert(root->vertices.end(), p.begin(), p.end());
+ }
+
+ carve::geom3d::AABB Octree::makeAABB(const Node *node) {
+ carve::geom3d::Vector centre = 0.5 * (node->min + node->max);
+ carve::geom3d::Vector size = SLACK_FACTOR * 0.5 * (node->max - node->min);
+ return carve::geom3d::AABB(centre, size);
+ }
+
+ void Octree::doFindEdges(const carve::geom::aabb<3> &aabb,
+ Node *node,
+ std::vector<const carve::poly::Edge<3> *> &out,
+ unsigned depth) const {
+ if (node == NULL) {
+ return;
+ }
+
+ if (node->aabb.intersects(aabb)) {
+ if (node->hasChildren()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindEdges(aabb, node->children[i], out, depth + 1);
+ }
+ } else {
+ if (depth < MAX_SPLIT_DEPTH && node->edges.size() > EDGE_SPLIT_THRESHOLD) {
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindEdges(aabb, node->children[i], out, depth + 1);
+ }
+ return;
+ }
+ }
+ for (std::vector<const carve::poly::Edge<3>*>::const_iterator it = node->edges.begin(), e = node->edges.end(); it != e; ++it) {
+ if ((*it)->tag_once()) {
+ out.push_back(*it);
+ }
+ }
+ }
+ }
+ }
+
+ void Octree::doFindEdges(const carve::geom3d::LineSegment &l,
+ Node *node,
+ std::vector<const carve::poly::Edge<3> *> &out,
+ unsigned depth) const {
+ if (node == NULL) {
+ return;
+ }
+
+ if (node->aabb.intersectsLineSegment(l.v1, l.v2)) {
+ if (node->hasChildren()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindEdges(l, node->children[i], out, depth + 1);
+ }
+ } else {
+ if (depth < MAX_SPLIT_DEPTH && node->edges.size() > EDGE_SPLIT_THRESHOLD) {
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindEdges(l, node->children[i], out, depth + 1);
+ }
+ return;
+ }
+ }
+ for (std::vector<const carve::poly::Edge<3>*>::const_iterator it = node->edges.begin(), e = node->edges.end(); it != e; ++it) {
+ if ((*it)->tag_once()) {
+ out.push_back(*it);
+ }
+ }
+ }
+ }
+ }
+
+ void Octree::doFindEdges(const carve::geom3d::Vector &v,
+ Node *node,
+ std::vector<const carve::poly::Edge<3> *> &out,
+ unsigned depth) const {
+ if (node == NULL) {
+ return;
+ }
+
+ if (node->aabb.containsPoint(v)) {
+ if (node->hasChildren()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindEdges(v, node->children[i], out, depth + 1);
+ }
+ } else {
+ if (depth < MAX_SPLIT_DEPTH && node->edges.size() > EDGE_SPLIT_THRESHOLD) {
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindEdges(v, node->children[i], out, depth + 1);
+ }
+ return;
+ }
+ }
+ for (std::vector<const carve::poly::Edge<3>*>::const_iterator
+ it = node->edges.begin(), e = node->edges.end(); it != e; ++it) {
+ if ((*it)->tag_once()) {
+ out.push_back(*it);
+ }
+ }
+ }
+ }
+ }
+
+ void Octree::doFindFaces(const carve::geom::aabb<3> &aabb,
+ Node *node,
+ std::vector<const carve::poly::Face<3>*> &out,
+ unsigned depth) const {
+ if (node == NULL) {
+ return;
+ }
+
+ if (node->aabb.intersects(aabb)) {
+ if (node->hasChildren()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindFaces(aabb, node->children[i], out, depth + 1);
+ }
+ } else {
+ if (depth < MAX_SPLIT_DEPTH && node->faces.size() > FACE_SPLIT_THRESHOLD) {
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindFaces(aabb, node->children[i], out, depth + 1);
+ }
+ return;
+ }
+ }
+ for (std::vector<const carve::poly::Face<3>*>::const_iterator it = node->faces.begin(), e = node->faces.end(); it != e; ++it) {
+ if ((*it)->tag_once()) {
+ out.push_back(*it);
+ }
+ }
+ }
+ }
+ }
+
+ void Octree::doFindFaces(const carve::geom3d::LineSegment &l,
+ Node *node,
+ std::vector<const carve::poly::Face<3>*> &out,
+ unsigned depth) const {
+ if (node == NULL) {
+ return;
+ }
+
+ if (node->aabb.intersectsLineSegment(l.v1, l.v2)) {
+ if (node->hasChildren()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindFaces(l, node->children[i], out, depth + 1);
+ }
+ } else {
+ if (depth < MAX_SPLIT_DEPTH && node->faces.size() > FACE_SPLIT_THRESHOLD) {
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindFaces(l, node->children[i], out, depth + 1);
+ }
+ return;
+ }
+ }
+ for (std::vector<const carve::poly::Face<3>*>::const_iterator it = node->faces.begin(), e = node->faces.end(); it != e; ++it) {
+ if ((*it)->tag_once()) {
+ out.push_back(*it);
+ }
+ }
+ }
+ }
+ }
+
+ void Octree::doFindVerticesAllowDupes(const carve::geom3d::Vector &v, Node *node, std::vector<const carve::poly::Vertex<3> *> &out, unsigned depth) const {
+ if (node == NULL) {
+ return;
+ }
+
+ if (node->aabb.containsPoint(v)) {
+ if (node->hasChildren()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindVerticesAllowDupes(v, node->children[i], out, depth + 1);
+ }
+ } else {
+ if (depth < MAX_SPLIT_DEPTH && node->vertices.size() > POINT_SPLIT_THRESHOLD) {
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doFindVerticesAllowDupes(v, node->children[i], out, depth + 1);
+ }
+ return;
+ }
+ }
+ for (std::vector<const carve::poly::Vertex<3> *>::const_iterator it = node->vertices.begin(), e = node->vertices.end(); it != e; ++it) {
+ out.push_back(*it);
+ }
+ }
+ }
+ }
+
+ void Octree::findEdgesNear(const carve::geom::aabb<3> &aabb, std::vector<const carve::poly::Edge<3>*> &out) const {
+ tagable::tag_begin();
+ doFindEdges(aabb, root, out, 0);
+ }
+
+ void Octree::findEdgesNear(const carve::geom3d::LineSegment &l, std::vector<const carve::poly::Edge<3>*> &out) const {
+ tagable::tag_begin();
+ doFindEdges(l, root, out, 0);
+ }
+
+ void Octree::findEdgesNear(const carve::poly::Edge<3> &e, std::vector<const carve::poly::Edge<3>*> &out) const {
+ tagable::tag_begin();
+ doFindEdges(carve::geom3d::LineSegment(e.v1->v, e.v2->v), root, out, 0);
+ }
+
+ void Octree::findEdgesNear(const carve::geom3d::Vector &v, std::vector<const carve::poly::Edge<3>*> &out) const {
+ tagable::tag_begin();
+ doFindEdges(v, root, out, 0);
+ }
+
+ void Octree::findFacesNear(const carve::geom::aabb<3> &aabb, std::vector<const carve::poly::Face<3>*> &out) const {
+ tagable::tag_begin();
+ doFindFaces(aabb, root, out, 0);
+ }
+
+ void Octree::findFacesNear(const carve::geom3d::LineSegment &l, std::vector<const carve::poly::Face<3>*> &out) const {
+ tagable::tag_begin();
+ doFindFaces(l, root, out, 0);
+ }
+
+ void Octree::findFacesNear(const carve::poly::Edge<3> &e, std::vector<const carve::poly::Face<3>*> &out) const {
+ tagable::tag_begin();
+ doFindFaces(carve::geom3d::LineSegment(e.v1->v, e.v2->v), root, out, 0);
+ }
+
+ void Octree::findVerticesNearAllowDupes(const carve::geom3d::Vector &v, std::vector<const carve::poly::Vertex<3> *> &out) const {
+ tagable::tag_begin();
+ doFindVerticesAllowDupes(v, root, out, 0);
+ }
+
+ void Octree::doSplit(int maxSplit, Node *node) {
+ // Don't split down any further than 4 levels.
+ if (maxSplit <= 0 || (node->edges.size() < 5 && node->faces.size() < 5)) {
+ return;
+ }
+
+ if (!node->split()) {
+ for (int i = 0; i < 8; ++i) {
+ doSplit(maxSplit - 1, node->children[i]);
+ }
+ }
+ }
+
+ void Octree::splitTree() {
+ // initially split 4 levels
+ doSplit(0, root);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/pointset.cpp b/extern/carve/lib/pointset.cpp
new file mode 100644
index 00000000000..7ecf0074c69
--- /dev/null
+++ b/extern/carve/lib/pointset.cpp
@@ -0,0 +1,59 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/geom.hpp>
+#include <carve/pointset.hpp>
+
+namespace carve {
+ namespace point {
+
+ PointSet::PointSet(const std::vector<carve::geom3d::Vector> &points) {
+ vertices.resize(points.size());
+ for (size_t i = 0; i < points.size(); ++i) {
+ vertices[i].v = points[i];
+ }
+ aabb.fit(points.begin(), points.end());
+ }
+
+ void PointSet::sortVertices(const carve::geom3d::Vector &axis) {
+ std::vector<std::pair<double, size_t> > temp;
+ temp.reserve(vertices.size());
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ temp.push_back(std::make_pair(dot(axis, vertices[i].v), i));
+ }
+ std::sort(temp.begin(), temp.end());
+
+ std::vector<Vertex> vnew;
+ vnew.reserve(vertices.size());
+
+ // std::vector<int> revmap;
+ // revmap.resize(vertices.size());
+
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ vnew.push_back(vertices[temp[i].second]);
+ // revmap[temp[i].second] = i;
+ }
+
+ vertices.swap(vnew);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/polyhedron.cpp b/extern/carve/lib/polyhedron.cpp
new file mode 100644
index 00000000000..93e667ffaf7
--- /dev/null
+++ b/extern/carve/lib/polyhedron.cpp
@@ -0,0 +1,1103 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#if defined(CARVE_DEBUG)
+#define DEBUG_CONTAINS_VERTEX
+#endif
+
+#include <carve/djset.hpp>
+
+#include <carve/geom.hpp>
+#include <carve/poly.hpp>
+
+#include <carve/octree_impl.hpp>
+
+#include <carve/timing.hpp>
+
+#include <algorithm>
+
+#include <carve/mesh.hpp>
+
+#include BOOST_INCLUDE(random.hpp)
+
+namespace {
+ bool emb_test(carve::poly::Polyhedron *poly,
+ std::map<int, std::set<int> > &embedding,
+ carve::geom3d::Vector v,
+ int m_id) {
+
+ std::map<int, carve::PointClass> result;
+#if defined(CARVE_DEBUG)
+ std::cerr << "test " << v << " (m_id:" << m_id << ")" << std::endl;
+#endif
+ poly->testVertexAgainstClosedManifolds(v, result, true);
+ std::set<int> inside;
+ for (std::map<int, carve::PointClass>::iterator j = result.begin();
+ j != result.end();
+ ++j) {
+ if ((*j).first == m_id) continue;
+ if ((*j).second == carve::POINT_IN) inside.insert((*j).first);
+ else if ((*j).second == carve::POINT_ON) {
+#if defined(CARVE_DEBUG)
+ std::cerr << " FAIL" << std::endl;
+#endif
+ return false;
+ }
+ }
+#if defined(CARVE_DEBUG)
+ std::cerr << " OK (inside.size()==" << inside.size() << ")" << std::endl;
+#endif
+ embedding[m_id] = inside;
+ return true;
+ }
+
+
+
+ struct order_faces {
+ bool operator()(const carve::poly::Polyhedron::face_t * const &a,
+ const carve::poly::Polyhedron::face_t * const &b) const {
+ return std::lexicographical_compare(a->vbegin(), a->vend(), b->vbegin(), b->vend());
+ }
+ };
+
+
+
+}
+
+
+
+namespace carve {
+ namespace poly {
+
+
+
+ bool Polyhedron::initSpatialIndex() {
+ static carve::TimingName FUNC_NAME("Polyhedron::initSpatialIndex()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ octree.setBounds(aabb);
+ octree.addFaces(faces);
+ octree.addEdges(edges);
+ octree.splitTree();
+
+ return true;
+ }
+
+
+
+ void Polyhedron::invertAll() {
+ for (size_t i = 0; i < faces.size(); ++i) {
+ faces[i].invert();
+ }
+
+ for (size_t i = 0; i < edges.size(); ++i) {
+ std::vector<const face_t *> &f = connectivity.edge_to_face[i];
+ for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
+ std::swap(f[j], f[j+1]);
+ }
+ }
+
+ for (size_t i = 0; i < manifold_is_negative.size(); ++i) {
+ manifold_is_negative[i] = !manifold_is_negative[i];
+ }
+ }
+
+
+
+ void Polyhedron::invert(const std::vector<bool> &selected_manifolds) {
+ bool altered = false;
+ for (size_t i = 0; i < faces.size(); ++i) {
+ if (faces[i].manifold_id >= 0 &&
+ (unsigned)faces[i].manifold_id < selected_manifolds.size() &&
+ selected_manifolds[faces[i].manifold_id]) {
+ altered = true;
+ faces[i].invert();
+ }
+ }
+
+ if (altered) {
+ for (size_t i = 0; i < edges.size(); ++i) {
+ std::vector<const face_t *> &f = connectivity.edge_to_face[i];
+ for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
+ int m_id = -1;
+ if (f[j]) m_id = f[j]->manifold_id;
+ if (f[j+1]) m_id = f[j+1]->manifold_id;
+ if (m_id >= 0 && (unsigned)m_id < selected_manifolds.size() && selected_manifolds[m_id]) {
+ std::swap(f[j], f[j+1]);
+ }
+ }
+ }
+
+ for (size_t i = 0; i < std::min(selected_manifolds.size(), manifold_is_negative.size()); ++i) {
+ manifold_is_negative[i] = !manifold_is_negative[i];
+ }
+ }
+ }
+
+
+
+ void Polyhedron::initVertexConnectivity() {
+ static carve::TimingName FUNC_NAME("static Polyhedron initVertexConnectivity()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ // allocate space for connectivity info.
+ connectivity.vertex_to_edge.resize(vertices.size());
+ connectivity.vertex_to_face.resize(vertices.size());
+
+ std::vector<size_t> vertex_face_count;
+
+ vertex_face_count.resize(vertices.size());
+
+ // work out how many faces/edges each vertex is connected to, in
+ // order to save on array reallocs.
+ for (unsigned i = 0; i < faces.size(); ++i) {
+ face_t &f = faces[i];
+ for (unsigned j = 0; j < f.nVertices(); j++) {
+ vertex_face_count[vertexToIndex_fast(f.vertex(j))]++;
+ }
+ }
+
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ connectivity.vertex_to_edge[i].reserve(vertex_face_count[i]);
+ connectivity.vertex_to_face[i].reserve(vertex_face_count[i]);
+ }
+
+ // record connectivity from vertex to edges.
+ for (size_t i = 0; i < edges.size(); ++i) {
+ size_t v1i = vertexToIndex_fast(edges[i].v1);
+ size_t v2i = vertexToIndex_fast(edges[i].v2);
+
+ connectivity.vertex_to_edge[v1i].push_back(&edges[i]);
+ connectivity.vertex_to_edge[v2i].push_back(&edges[i]);
+ }
+
+ // record connectivity from vertex to faces.
+ for (size_t i = 0; i < faces.size(); ++i) {
+ face_t &f = faces[i];
+ for (unsigned j = 0; j < f.nVertices(); j++) {
+ size_t vi = vertexToIndex_fast(f.vertex(j));
+ connectivity.vertex_to_face[vi].push_back(&f);
+ }
+ }
+ }
+
+
+
+ bool Polyhedron::initConnectivity() {
+ static carve::TimingName FUNC_NAME("Polyhedron::initConnectivity()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ // temporary measure: initialize connectivity by creating a
+ // half-edge mesh, and then converting back.
+
+ std::vector<mesh::Vertex<3> > vertex_storage;
+ vertex_storage.reserve(vertices.size());
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ vertex_storage.push_back(mesh::Vertex<3>(vertices[i].v));
+ }
+
+ std::vector<mesh::Face<3> *> mesh_faces;
+ std::unordered_map<const mesh::Face<3> *, size_t> face_map;
+ {
+ std::vector<mesh::Vertex<3> *> vert_ptrs;
+ for (size_t i = 0; i < faces.size(); ++i) {
+ const face_t &src = faces[i];
+ vert_ptrs.clear();
+ vert_ptrs.reserve(src.nVertices());
+ for (size_t j = 0; j < src.nVertices(); ++j) {
+ size_t vi = vertexToIndex_fast(src.vertex(j));
+ vert_ptrs.push_back(&vertex_storage[vi]);
+ }
+ mesh::Face<3> *face = new mesh::Face<3>(vert_ptrs.begin(), vert_ptrs.end());
+ mesh_faces.push_back(face);
+ face_map[face] = i;
+ }
+ }
+
+ std::vector<mesh::Mesh<3> *> meshes;
+ mesh::Mesh<3>::create(mesh_faces.begin(), mesh_faces.end(), meshes);
+ mesh::MeshSet<3> *meshset = new mesh::MeshSet<3>(vertex_storage, meshes);
+
+ manifold_is_closed.resize(meshset->meshes.size());
+ manifold_is_negative.resize(meshset->meshes.size());
+
+ std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> > edge_map;
+
+ if (meshset->vertex_storage.size()) {
+ mesh::Vertex<3> *Vbase = &meshset->vertex_storage[0];
+ for (size_t m = 0; m < meshset->meshes.size(); ++m) {
+ mesh::Mesh<3> *mesh = meshset->meshes[m];
+ manifold_is_closed[m] = mesh->isClosed();
+ for (size_t f = 0; f < mesh->faces.size(); ++f) {
+ mesh::Face<3> *src = mesh->faces[f];
+ mesh::Edge<3> *e = src->edge;
+ faces[face_map[src]].manifold_id = m;
+ do {
+ edge_map[std::make_pair(e->v1() - Vbase, e->v2() - Vbase)].push_back(e);
+ e = e->next;
+ } while (e != src->edge);
+ }
+ }
+ }
+
+ size_t n_edges = 0;
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
+ if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) {
+ n_edges++;
+ }
+ }
+
+ edges.clear();
+ edges.reserve(n_edges);
+ for (std::unordered_map<std::pair<size_t, size_t>, std::list<mesh::Edge<3> *> >::iterator i = edge_map.begin(); i != edge_map.end(); ++i) {
+ if ((*i).first.first < (*i).first.second || edge_map.find(std::make_pair((*i).first.second, (*i).first.first)) == edge_map.end()) {
+ edges.push_back(edge_t(&vertices[(*i).first.first], &vertices[(*i).first.second], this));
+ }
+ }
+
+ initVertexConnectivity();
+
+ for (size_t f = 0; f < faces.size(); ++f) {
+ face_t &face = faces[f];
+ size_t N = face.nVertices();
+ for (size_t v = 0; v < N; ++v) {
+ size_t v1i = vertexToIndex_fast(face.vertex(v));
+ size_t v2i = vertexToIndex_fast(face.vertex((v+1)%N));
+ std::vector<const edge_t *> found_edge;
+
+ CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end()));
+ CARVE_ASSERT(carve::is_sorted(connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end()));
+
+ std::set_intersection(connectivity.vertex_to_edge[v1i].begin(), connectivity.vertex_to_edge[v1i].end(),
+ connectivity.vertex_to_edge[v2i].begin(), connectivity.vertex_to_edge[v2i].end(),
+ std::back_inserter(found_edge));
+
+ CARVE_ASSERT(found_edge.size() == 1);
+
+ face.edge(v) = found_edge[0];
+ }
+ }
+
+ connectivity.edge_to_face.resize(edges.size());
+
+ for (size_t i = 0; i < edges.size(); ++i) {
+ size_t v1i = vertexToIndex_fast(edges[i].v1);
+ size_t v2i = vertexToIndex_fast(edges[i].v2);
+ std::list<mesh::Edge<3> *> &efwd = edge_map[std::make_pair(v1i, v2i)];
+ std::list<mesh::Edge<3> *> &erev = edge_map[std::make_pair(v1i, v2i)];
+
+ for (std::list<mesh::Edge<3> *>::iterator j = efwd.begin(); j != efwd.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]);
+ if (edge->rev == NULL) {
+ connectivity.edge_to_face[i].push_back(NULL);
+ } else {
+ connectivity.edge_to_face[i].push_back(&faces[face_map[edge->rev->face]]);
+ }
+ }
+ }
+ for (std::list<mesh::Edge<3> *>::iterator j = erev.begin(); j != erev.end(); ++j) {
+ mesh::Edge<3> *edge = *j;
+ if (face_map.find(edge->face) != face_map.end()) {
+ if (edge->rev == NULL) {
+ connectivity.edge_to_face[i].push_back(NULL);
+ connectivity.edge_to_face[i].push_back(&faces[face_map[edge->face]]);
+ }
+ }
+ }
+ }
+
+ delete meshset;
+
+ return true;
+ }
+
+
+
+ bool Polyhedron::calcManifoldEmbedding() {
+ // this could be significantly sped up using bounding box tests
+ // to work out what pairs of manifolds are embedding candidates.
+ // A per-manifold AABB could also be used to speed up
+ // testVertexAgainstClosedManifolds().
+
+ static carve::TimingName FUNC_NAME("Polyhedron::calcManifoldEmbedding()");
+ static carve::TimingName CME_V("Polyhedron::calcManifoldEmbedding() (vertices)");
+ static carve::TimingName CME_E("Polyhedron::calcManifoldEmbedding() (edges)");
+ static carve::TimingName CME_F("Polyhedron::calcManifoldEmbedding() (faces)");
+
+ carve::TimingBlock block(FUNC_NAME);
+
+ const unsigned MCOUNT = manifoldCount();
+ if (MCOUNT < 2) return true;
+
+ std::set<int> vertex_manifolds;
+ std::map<int, std::set<int> > embedding;
+
+ carve::Timing::start(CME_V);
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ vertex_manifolds.clear();
+ if (vertexManifolds(&vertices[i], set_inserter(vertex_manifolds)) != 1) continue;
+ int m_id = *vertex_manifolds.begin();
+ if (embedding.find(m_id) == embedding.end()) {
+ if (emb_test(this, embedding, vertices[i].v, m_id) && embedding.size() == MCOUNT) {
+ carve::Timing::stop();
+ goto done;
+ }
+ }
+ }
+ carve::Timing::stop();
+
+ carve::Timing::start(CME_E);
+ for (size_t i = 0; i < edges.size(); ++i) {
+ if (connectivity.edge_to_face[i].size() == 2) {
+ int m_id;
+ const face_t *f1 = connectivity.edge_to_face[i][0];
+ const face_t *f2 = connectivity.edge_to_face[i][1];
+ if (f1) m_id = f1->manifold_id;
+ if (f2) m_id = f2->manifold_id;
+ if (embedding.find(m_id) == embedding.end()) {
+ if (emb_test(this, embedding, (edges[i].v1->v + edges[i].v2->v) / 2, m_id) && embedding.size() == MCOUNT) {
+ carve::Timing::stop();
+ goto done;
+ }
+ }
+ }
+ }
+ carve::Timing::stop();
+
+ carve::Timing::start(CME_F);
+ for (size_t i = 0; i < faces.size(); ++i) {
+ int m_id = faces[i].manifold_id;
+ if (embedding.find(m_id) == embedding.end()) {
+ carve::geom2d::P2 pv;
+ if (!carve::geom2d::pickContainedPoint(faces[i].projectedVertices(), pv)) continue;
+ carve::geom3d::Vector v = carve::poly::face::unproject(faces[i], pv);
+ if (emb_test(this, embedding, v, m_id) && embedding.size() == MCOUNT) {
+ carve::Timing::stop();
+ goto done;
+ }
+ }
+ }
+ carve::Timing::stop();
+
+ CARVE_FAIL("could not find test points");
+
+ // std::cerr << "could not find test points!!!" << std::endl;
+ // return true;
+ done:;
+ for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << (*i).first << " : ";
+ std::copy((*i).second.begin(), (*i).second.end(), std::ostream_iterator<int>(std::cerr, ","));
+ std::cerr << std::endl;
+#endif
+ (*i).second.insert(-1);
+ }
+ std::set<int> parents, new_parents;
+ parents.insert(-1);
+
+ while (embedding.size()) {
+ new_parents.clear();
+ for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
+ if ((*i).second.size() == 1) {
+ if (parents.find(*(*i).second.begin()) != parents.end()) {
+ new_parents.insert((*i).first);
+#if defined(CARVE_DEBUG)
+ std::cerr << "parent(" << (*i).first << "): " << *(*i).second.begin() << std::endl;
+#endif
+ } else {
+#if defined(CARVE_DEBUG)
+ std::cerr << "no parent: " << (*i).first << " (looking for: " << *(*i).second.begin() << ")" << std::endl;
+#endif
+ }
+ }
+ }
+ for (std::set<int>::const_iterator i = new_parents.begin(); i != new_parents.end(); ++i) {
+ embedding.erase(*i);
+ }
+ for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
+ size_t n = 0;
+ for (std::set<int>::const_iterator j = parents.begin(); j != parents.end(); ++j) {
+ n += (*i).second.erase((*j));
+ }
+ CARVE_ASSERT(n != 0);
+ }
+ parents.swap(new_parents);
+ }
+
+ return true;
+ }
+
+
+
+ bool Polyhedron::init() {
+ static carve::TimingName FUNC_NAME("Polyhedron::init()");
+ carve::TimingBlock block(FUNC_NAME);
+
+ aabb.fit(vertices.begin(), vertices.end(), vec_adapt_vertex_ref());
+
+ connectivity.vertex_to_edge.clear();
+ connectivity.vertex_to_face.clear();
+ connectivity.edge_to_face.clear();
+
+ if (!initConnectivity()) return false;
+ if (!initSpatialIndex()) return false;
+
+ return true;
+ }
+
+
+
+ void Polyhedron::faceRecalc() {
+ for (size_t i = 0; i < faces.size(); ++i) {
+ if (!faces[i].recalc()) {
+ std::ostringstream out;
+ out << "face " << i << " recalc failed";
+ throw carve::exception(out.str());
+ }
+ }
+ }
+
+
+
+ Polyhedron::Polyhedron(const Polyhedron &poly) {
+ faces.reserve(poly.faces.size());
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ faces.push_back(src);
+ }
+ commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(const Polyhedron &poly, const std::vector<bool> &selected_manifolds) {
+ size_t n_faces = 0;
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id >= 0 &&
+ (unsigned)src.manifold_id < selected_manifolds.size() &&
+ selected_manifolds[src.manifold_id]) {
+ n_faces++;
+ }
+ }
+
+ faces.reserve(n_faces);
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id >= 0 &&
+ (unsigned)src.manifold_id < selected_manifolds.size() &&
+ selected_manifolds[src.manifold_id]) {
+ faces.push_back(src);
+ }
+ }
+
+ commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(const Polyhedron &poly, int m_id) {
+ size_t n_faces = 0;
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id == m_id) n_faces++;
+ }
+
+ faces.reserve(n_faces);
+
+ for (size_t i = 0; i < poly.faces.size(); ++i) {
+ const face_t &src = poly.faces[i];
+ if (src.manifold_id == m_id) faces.push_back(src);
+ }
+
+ commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(const std::vector<carve::geom3d::Vector> &_vertices,
+ int n_faces,
+ const std::vector<int> &face_indices) {
+ // The polyhedron is defined by a vector of vertices, which we
+ // want to copy, and a face index list, from which we need to
+ // generate a set of Faces.
+
+ vertices.clear();
+ vertices.resize(_vertices.size());
+ for (size_t i = 0; i < _vertices.size(); ++i) {
+ vertices[i].v = _vertices[i];
+ }
+
+ faces.reserve(n_faces);
+
+ std::vector<int>::const_iterator iter = face_indices.begin();
+ std::vector<const vertex_t *> v;
+ for (int i = 0; i < n_faces; ++i) {
+ int vertexCount = *iter++;
+
+ v.clear();
+
+ while (vertexCount--) {
+ CARVE_ASSERT(*iter >= 0);
+ CARVE_ASSERT((unsigned)*iter < vertices.size());
+ v.push_back(&vertices[*iter++]);
+ }
+ faces.push_back(face_t(v));
+ }
+
+ setFaceAndVertexOwner();
+
+ if (!init()) {
+ throw carve::exception("polyhedron creation failed");
+ }
+ }
+
+
+
+ Polyhedron::Polyhedron(std::vector<face_t> &_faces,
+ std::vector<vertex_t> &_vertices,
+ bool _recalc) {
+ faces.swap(_faces);
+ vertices.swap(_vertices);
+
+ setFaceAndVertexOwner();
+
+ if (_recalc) faceRecalc();
+
+ if (!init()) {
+ throw carve::exception("polyhedron creation failed");
+ }
+ }
+
+
+
+ Polyhedron::Polyhedron(std::vector<face_t> &_faces,
+ bool _recalc) {
+ faces.swap(_faces);
+ commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ Polyhedron::Polyhedron(std::list<face_t> &_faces,
+ bool _recalc) {
+ faces.reserve(_faces.size());
+ std::copy(_faces.begin(), _faces.end(), std::back_inserter(faces));
+ commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
+ }
+
+
+
+ void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
+ std::vector<vertex_t> &vertices,
+ std::unordered_map<const vertex_t *, const vertex_t *> &vmap) {
+ // Given a set of faces, copy all referenced vertices into a
+ // single vertex array and update the faces to point into that
+ // array. On exit, vmap contains a mapping from old pointer to
+ // new pointer.
+
+ vertices.clear();
+ vmap.clear();
+
+ for (size_t i = 0, il = faces.size(); i != il; ++i) {
+ face_t &f = faces[i];
+
+ for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
+ vmap[f.vertex(j)] = NULL;
+ }
+ }
+
+ vertices.reserve(vmap.size());
+
+ for (std::unordered_map<const vertex_t *, const vertex_t *>::iterator i = vmap.begin(),
+ e = vmap.end();
+ i != e;
+ ++i) {
+ vertices.push_back(*(*i).first);
+ (*i).second = &vertices.back();
+ }
+
+ for (size_t i = 0, il = faces.size(); i != il; ++i) {
+ face_t &f = faces[i];
+
+ for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
+ f.vertex(j) = vmap[f.vertex(j)];
+ }
+ }
+ }
+
+
+
+ void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
+ std::vector<vertex_t> &vertices) {
+ std::unordered_map<const vertex_t *, const vertex_t *> vmap;
+ collectFaceVertices(faces, vertices, vmap);
+ }
+
+
+
+ void Polyhedron::setFaceAndVertexOwner() {
+ for (size_t i = 0; i < vertices.size(); ++i) vertices[i].owner = this;
+ for (size_t i = 0; i < faces.size(); ++i) faces[i].owner = this;
+ }
+
+
+
+ void Polyhedron::commonFaceInit(bool _recalc) {
+ collectFaceVertices(faces, vertices);
+ setFaceAndVertexOwner();
+ if (_recalc) faceRecalc();
+
+ if (!init()) {
+ throw carve::exception("polyhedron creation failed");
+ }
+ }
+
+
+
+ Polyhedron::~Polyhedron() {
+ }
+
+
+
+ void Polyhedron::testVertexAgainstClosedManifolds(const carve::geom3d::Vector &v,
+ std::map<int, PointClass> &result,
+ bool ignore_orientation) const {
+
+ for (size_t i = 0; i < faces.size(); i++) {
+ if (!manifold_is_closed[faces[i].manifold_id]) continue; // skip open manifolds
+ if (faces[i].containsPoint(v)) {
+ result[faces[i].manifold_id] = POINT_ON;
+ }
+ }
+
+ double ray_len = aabb.extent.length() * 2;
+
+ std::vector<const face_t *> possible_faces;
+
+ std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
+
+ boost::mt19937 rng;
+ boost::uniform_on_sphere<double> distrib(3);
+ boost::variate_generator<boost::mt19937 &, boost::uniform_on_sphere<double> > gen(rng, distrib);
+
+ for (;;) {
+ carve::geom3d::Vector ray_dir;
+ ray_dir = gen();
+
+ carve::geom3d::Vector v2 = v + ray_dir * ray_len;
+
+ bool failed = false;
+ carve::geom3d::LineSegment line(v, v2);
+ carve::geom3d::Vector intersection;
+
+ possible_faces.clear();
+ manifold_intersections.clear();
+ octree.findFacesNear(line, possible_faces);
+
+ for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
+ if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue; // skip open manifolds
+ if (result.find(possible_faces[i]->manifold_id) != result.end()) continue; // already ON
+
+ switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
+ case INTERSECT_FACE: {
+ manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
+ break;
+ }
+ case INTERSECT_NONE: {
+ break;
+ }
+ default: {
+ failed = true;
+ break;
+ }
+ }
+ }
+
+ if (!failed) break;
+ }
+
+ std::vector<int> crossings(manifold_is_closed.size(), 0);
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const face_t *f = manifold_intersections[i].first;
+ crossings[f->manifold_id]++;
+ }
+
+ for (size_t i = 0; i < crossings.size(); ++i) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "crossing: " << i << " = " << crossings[i] << " is_negative = " << manifold_is_negative[i] << std::endl;
+#endif
+ if (!manifold_is_closed[i]) continue;
+ if (result.find(i) != result.end()) continue;
+ PointClass pc = (crossings[i] & 1) ? POINT_IN : POINT_OUT;
+ if (!ignore_orientation && manifold_is_negative[i]) pc = (PointClass)-pc;
+ result[i] = pc;
+ }
+ }
+
+
+
+ PointClass Polyhedron::containsVertex(const carve::geom3d::Vector &v,
+ const face_t **hit_face,
+ bool even_odd,
+ int manifold_id) const {
+ if (hit_face) *hit_face = NULL;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{containsVertex " << v << "}" << std::endl;
+#endif
+
+ if (!aabb.containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(aabb short circuit)}" << std::endl;
+#endif
+ // XXX: if the top level manifolds are negative, this should be POINT_IN.
+ // for the moment, this only works for a single manifold.
+ if (manifold_is_negative.size() == 1 && manifold_is_negative[0]) return POINT_IN;
+ return POINT_OUT;
+ }
+
+ for (size_t i = 0; i < faces.size(); i++) {
+ if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
+
+ // XXX: Do allow the tested vertex to be ON an open
+ // manifold. This was here originally because of the
+ // possibility of an open manifold contained within a closed
+ // manifold.
+
+ // if (!manifold_is_closed[faces[i].manifold_id]) continue;
+
+ if (faces[i].containsPoint(v)) {
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:ON(hits face " << &faces[i] << ")}" << std::endl;
+#endif
+ if (hit_face) *hit_face = &faces[i];
+ return POINT_ON;
+ }
+ }
+
+ double ray_len = aabb.extent.length() * 2;
+
+ std::vector<const face_t *> possible_faces;
+
+ std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
+
+ for (;;) {
+ double a1 = random() / double(RAND_MAX) * M_TWOPI;
+ double a2 = random() / double(RAND_MAX) * M_TWOPI;
+
+ carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2));
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{testing ray: " << ray_dir << "}" << std::endl;
+#endif
+
+ carve::geom3d::Vector v2 = v + ray_dir * ray_len;
+
+ bool failed = false;
+ carve::geom3d::LineSegment line(v, v2);
+ carve::geom3d::Vector intersection;
+
+ possible_faces.clear();
+ manifold_intersections.clear();
+ octree.findFacesNear(line, possible_faces);
+
+ for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
+ if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
+
+ if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue;
+
+ switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
+ case INTERSECT_FACE: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersects face: " << possible_faces[i]
+ << " dp: " << dot(ray_dir, possible_faces[i]->plane_eqn.N) << "}" << std::endl;
+#endif
+
+ if (!even_odd && fabs(dot(ray_dir, possible_faces[i]->plane_eqn.N)) < EPSILON) {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(small dot product)}" << std::endl;
+#endif
+
+ failed = true;
+ break;
+ }
+ manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
+ break;
+ }
+ case INTERSECT_NONE: {
+ break;
+ }
+ default: {
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{failing(degenerate intersection)}" << std::endl;
+#endif
+ failed = true;
+ break;
+ }
+ }
+ }
+
+ if (!failed) {
+ if (even_odd) {
+ return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT;
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersections ok [count:"
+ << manifold_intersections.size()
+ << "], sorting}"
+ << std::endl;
+#endif
+
+ carve::geom3d::sortInDirectionOfRay(ray_dir,
+ manifold_intersections.begin(),
+ manifold_intersections.end(),
+ carve::geom3d::vec_adapt_pair_second());
+
+ std::vector<int> crossings(manifold_is_closed.size(), 0);
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const face_t *f = manifold_intersections[i].first;
+ if (dot(ray_dir, f->plane_eqn.N) < 0.0) {
+ crossings[f->manifold_id]++;
+ } else {
+ crossings[f->manifold_id]--;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ for (size_t i = 0; i < crossings.size(); ++i) {
+ std::cerr << "{manifold " << i << " crossing count: " << crossings[i] << "}" << std::endl;
+ }
+#endif
+
+ for (size_t i = 0; i < manifold_intersections.size(); ++i) {
+ const face_t *f = manifold_intersections[i].first;
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{intersection at "
+ << manifold_intersections[i].second
+ << " id: "
+ << f->manifold_id
+ << " count: "
+ << crossings[f->manifold_id]
+ << "}"
+ << std::endl;
+#endif
+
+ if (crossings[f->manifold_id] < 0) {
+ // inside this manifold.
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:IN}" << std::endl;
+#endif
+
+ return POINT_IN;
+ } else if (crossings[f->manifold_id] > 0) {
+ // outside this manifold, but it's an infinite manifold. (for instance, an inverted cube)
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+
+#if defined(DEBUG_CONTAINS_VERTEX)
+ std::cerr << "{final:OUT(default)}" << std::endl;
+#endif
+
+ return POINT_OUT;
+ }
+ }
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const carve::geom::aabb<3> &aabb,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(aabb, outEdges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const carve::geom3d::LineSegment &line,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(line, outEdges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const carve::geom3d::Vector &v,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(v, outEdges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const face_t &face,
+ std::vector<const edge_t *> &edges) const {
+ edges.clear();
+ octree.findEdgesNear(face, edges);
+ }
+
+
+
+ void Polyhedron::findEdgesNear(const edge_t &edge,
+ std::vector<const edge_t *> &outEdges) const {
+ outEdges.clear();
+ octree.findEdgesNear(edge, outEdges);
+ }
+
+
+
+ void Polyhedron::findFacesNear(const carve::geom3d::LineSegment &line,
+ std::vector<const face_t *> &outFaces) const {
+ outFaces.clear();
+ octree.findFacesNear(line, outFaces);
+ }
+
+
+
+ void Polyhedron::findFacesNear(const carve::geom::aabb<3> &aabb,
+ std::vector<const face_t *> &outFaces) const {
+ outFaces.clear();
+ octree.findFacesNear(aabb, outFaces);
+ }
+
+
+
+ void Polyhedron::findFacesNear(const edge_t &edge,
+ std::vector<const face_t *> &outFaces) const {
+ outFaces.clear();
+ octree.findFacesNear(edge, outFaces);
+ }
+
+
+
+ void Polyhedron::transform(const carve::math::Matrix &xform) {
+ for (size_t i = 0; i < vertices.size(); i++) {
+ vertices[i].v = xform * vertices[i].v;
+ }
+ for (size_t i = 0; i < faces.size(); i++) {
+ faces[i].recalc();
+ }
+ init();
+ }
+
+
+
+ void Polyhedron::print(std::ostream &o) const {
+ o << "Polyhedron@" << this << " {" << std::endl;
+ for (std::vector<vertex_t >::const_iterator
+ i = vertices.begin(), e = vertices.end(); i != e; ++i) {
+ o << " V@" << &(*i) << " " << (*i).v << std::endl;
+ }
+ for (std::vector<edge_t >::const_iterator
+ i = edges.begin(), e = edges.end(); i != e; ++i) {
+ o << " E@" << &(*i) << " {" << std::endl;
+ o << " V@" << (*i).v1 << " - " << "V@" << (*i).v2 << std::endl;
+ const std::vector<const face_t *> &faces = connectivity.edge_to_face[edgeToIndex_fast(&(*i))];
+ for (size_t j = 0; j < (faces.size() & ~1U); j += 2) {
+ o << " fp: F@" << faces[j] << ", F@" << faces[j+1] << std::endl;
+ }
+ o << " }" << std::endl;
+ }
+ for (std::vector<face_t >::const_iterator
+ i = faces.begin(), e = faces.end(); i != e; ++i) {
+ o << " F@" << &(*i) << " {" << std::endl;
+ o << " vertices {" << std::endl;
+ for (face_t::const_vertex_iter_t j = (*i).vbegin(), je = (*i).vend(); j != je; ++j) {
+ o << " V@" << (*j) << std::endl;
+ }
+ o << " }" << std::endl;
+ o << " edges {" << std::endl;
+ for (face_t::const_edge_iter_t j = (*i).ebegin(), je = (*i).eend(); j != je; ++j) {
+ o << " E@" << (*j) << std::endl;
+ }
+ carve::geom::plane<3> p = (*i).plane_eqn;
+ o << " }" << std::endl;
+ o << " normal " << (*i).plane_eqn.N << std::endl;
+ o << " aabb " << (*i).aabb << std::endl;
+ o << " plane_eqn ";
+ carve::geom::operator<< <3>(o, p);
+ o << std::endl;
+ o << " }" << std::endl;
+ }
+
+ o << "}" << std::endl;
+ }
+
+
+
+ void Polyhedron::canonicalize() {
+ orderVertices();
+ for (size_t i = 0; i < faces.size(); i++) {
+ face_t &f = faces[i];
+ size_t j = std::distance(f.vbegin(),
+ std::min_element(f.vbegin(),
+ f.vend()));
+ if (j) {
+ {
+ std::vector<const vertex_t *> temp;
+ temp.reserve(f.nVertices());
+ std::copy(f.vbegin() + j, f.vend(), std::back_inserter(temp));
+ std::copy(f.vbegin(), f.vbegin() + j, std::back_inserter(temp));
+ std::copy(temp.begin(), temp.end(), f.vbegin());
+ }
+ {
+ std::vector<const edge_t *> temp;
+ temp.reserve(f.nEdges());
+ std::copy(f.ebegin() + j, f.eend(), std::back_inserter(temp));
+ std::copy(f.ebegin(), f.ebegin() + j, std::back_inserter(temp));
+ std::copy(temp.begin(), temp.end(), f.ebegin());
+ }
+ }
+ }
+
+ std::vector<face_t *> face_ptrs;
+ face_ptrs.reserve(faces.size());
+ for (size_t i = 0; i < faces.size(); ++i) face_ptrs.push_back(&faces[i]);
+ std::sort(face_ptrs.begin(), face_ptrs.end(), order_faces());
+ std::vector<face_t> sorted_faces;
+ sorted_faces.reserve(faces.size());
+ for (size_t i = 0; i < faces.size(); ++i) sorted_faces.push_back(*face_ptrs[i]);
+ std::swap(faces, sorted_faces);
+ }
+
+ }
+}
+
diff --git a/extern/carve/lib/polyline.cpp b/extern/carve/lib/polyline.cpp
new file mode 100644
index 00000000000..d9681c76a5c
--- /dev/null
+++ b/extern/carve/lib/polyline.cpp
@@ -0,0 +1,67 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/geom.hpp>
+#include <carve/vector.hpp>
+#include <carve/polyline.hpp>
+
+namespace carve {
+ namespace line {
+ carve::geom3d::AABB Polyline::aabb() const {
+ return carve::geom3d::AABB(vbegin(), vend(), vec_adapt_vertex_ptr());
+ }
+
+ PolylineSet::PolylineSet(const std::vector<carve::geom3d::Vector> &points) {
+ vertices.resize(points.size());
+ for (size_t i = 0; i < points.size(); ++i) vertices[i].v = points[i];
+ aabb.fit(points.begin(), points.end(), carve::geom3d::vec_adapt_ident());
+ }
+
+ void PolylineSet::sortVertices(const carve::geom3d::Vector &axis) {
+ std::vector<std::pair<double, size_t> > temp;
+ temp.reserve(vertices.size());
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ temp.push_back(std::make_pair(dot(axis, vertices[i].v), i));
+ }
+ std::sort(temp.begin(), temp.end());
+ std::vector<Vertex> vnew;
+ std::vector<int> revmap;
+ vnew.reserve(vertices.size());
+ revmap.resize(vertices.size());
+
+ for (size_t i = 0; i < vertices.size(); ++i) {
+ vnew.push_back(vertices[temp[i].second]);
+ revmap[temp[i].second] = i;
+ }
+
+ for (line_iter i = lines.begin(); i != lines.end(); ++i) {
+ Polyline &l = *(*i);
+ for (size_t j = 0; j < l.edges.size(); ++j) {
+ PolylineEdge &e = *l.edges[j];
+ if (e.v1) e.v1 = &vnew[revmap[vertexToIndex_fast(e.v1)]];
+ if (e.v2) e.v2 = &vnew[revmap[vertexToIndex_fast(e.v2)]];
+ }
+ }
+ vertices.swap(vnew);
+ }
+
+ }
+}
diff --git a/extern/carve/lib/tag.cpp b/extern/carve/lib/tag.cpp
new file mode 100644
index 00000000000..449eb555346
--- /dev/null
+++ b/extern/carve/lib/tag.cpp
@@ -0,0 +1,24 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/tag.hpp>
+
+int carve::tagable::s_count = 0;
diff --git a/extern/carve/lib/timing.cpp b/extern/carve/lib/timing.cpp
new file mode 100644
index 00000000000..a98796cd8a7
--- /dev/null
+++ b/extern/carve/lib/timing.cpp
@@ -0,0 +1,436 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if CARVE_USE_TIMINGS
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/timing.hpp>
+
+#include <cstring>
+#include <list>
+#include <stack>
+#include <vector>
+#include <map>
+#include <iostream>
+#include <string>
+#include <algorithm>
+
+#ifdef WIN32
+#include <windows.h>
+#else
+#include <time.h>
+#include <sys/time.h>
+#endif
+
+#ifndef CARVE_USE_GLOBAL_NEW_DELETE
+#define CARVE_USE_GLOBAL_NEW_DELETE 0
+#endif
+
+namespace carve {
+ static uint64_t memoryCurr = 0;
+ static uint64_t memoryTotal = 0;
+ unsigned blkCntCurr[32] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
+ unsigned blkCntTotal[32] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
+
+ void addBlk(unsigned size) {
+ unsigned i = 0;
+ while (i < 31 && (1U<<i) < size) ++i;
+ blkCntCurr[i]++;
+ blkCntTotal[i]++;
+ }
+ void remBlk(unsigned size) {
+ unsigned i = 0;
+ while (i < 31 && (1<<i) < size) ++i;
+ blkCntCurr[i]--;
+ }
+}
+
+// lets provide a global new and delete as well
+
+#if CARVE_USE_GLOBAL_NEW_DELETE
+
+#if defined(__APPLE__)
+
+#include <stdlib.h>
+#include <malloc/malloc.h>
+
+void* carve_alloc(size_t size) {
+ void *p = malloc(size);
+ if (p == 0) throw std::bad_alloc(); // ANSI/ISO compliant behavior
+
+ unsigned sz = malloc_size(p);
+ carve::memoryCurr += sz;
+ carve::memoryTotal += sz;
+ carve::addBlk(sz);
+ return p;
+}
+
+void carve_free(void *p) {
+ unsigned sz = malloc_size(p);
+ carve::memoryCurr -= sz;
+ carve::remBlk(sz);
+ free(p);
+}
+
+#else
+
+void* carve_alloc(size_t size) {
+ void *p = malloc(size + 4);
+ if (p == 0) throw std::bad_alloc(); // ANSI/ISO compliant behavior
+
+ int *sizePtr = (int*)p;
+ *sizePtr = size;
+ ++sizePtr;
+ carve::memoryCurr += size;
+ carve::memoryTotal += size;
+ carve::addBlk(size);
+ return sizePtr;
+}
+
+void carve_free(void *p) {
+ // our memory block is actually a size of an int behind this pointer.
+ int *sizePtr = (int*)p;
+
+ --sizePtr;
+
+ carve::memoryCurr -= *sizePtr;
+ int size = *sizePtr;
+ carve::remBlk(size);
+ free(sizePtr);
+}
+
+#endif
+
+
+void* operator new (size_t size) {
+ return carve_alloc(size);
+}
+
+void* operator new[](size_t size) {
+ return carve_alloc(size);
+}
+
+
+void operator delete (void *p) {
+ carve_free(p);
+}
+
+void operator delete[](void *p) {
+ carve_free(p);
+}
+
+#endif
+
+namespace carve {
+
+
+
+#ifdef WIN32
+
+ typedef __int64 precise_time_t;
+
+ precise_time_t g_frequency;
+
+ void initTime() {
+ ::QueryPerformanceFrequency((LARGE_INTEGER*)&g_frequency);
+ }
+
+ void getTime(precise_time_t &t) {
+ ::QueryPerformanceCounter((LARGE_INTEGER*)&t);
+ }
+
+ double diffTime(precise_time_t from, precise_time_t to) {
+ return (double)(to - from) / (double)g_frequency;
+ }
+
+#else
+
+ typedef double precise_time_t;
+
+ void initTime() {
+ }
+
+ void getTime(precise_time_t &t) {
+ struct timeval tv;
+ gettimeofday(&tv, NULL);
+ t = tv.tv_sec + tv.tv_usec / 1000000.0;
+ }
+
+ double diffTime(precise_time_t from, precise_time_t to) {
+ return to - from;
+ }
+
+#endif
+
+ struct Entry {
+ Entry(int _id) {
+ id = _id;
+ time = 0;
+ parent = NULL;
+ }
+ int id;
+ double time;
+ int64_t memoryDiff;
+ int64_t allocTotal;
+ int delta_blk_cnt_curr[32];
+ int delta_blk_cnt_total[32];
+ Entry *parent;
+ std::vector<Entry *> children;
+ };
+
+ struct Timer {
+ struct cmp {
+ bool operator()(const std::pair<int, double> &a, const std::pair<int, double> &b) const {
+ return b.second < a.second;
+ }
+ bool operator()(const Entry * const &a, const Entry * const &b) const {
+ return b->time < a->time;
+ }
+ };
+
+ Timer() {
+ initTime();
+ }
+
+ struct Snapshot {
+ precise_time_t time;
+ uint64_t memory_curr;
+ uint64_t memory_total;
+ unsigned blk_cnt_curr[32];
+ unsigned blk_cnt_total[32];
+ };
+
+ static void getSnapshot(Snapshot &snapshot) {
+ getTime(snapshot.time);
+ snapshot.memory_curr = carve::memoryCurr;
+ snapshot.memory_total = carve::memoryTotal;
+ std::memcpy(snapshot.blk_cnt_curr, carve::blkCntCurr, sizeof(carve::blkCntCurr));
+ std::memcpy(snapshot.blk_cnt_total, carve::blkCntTotal, sizeof(carve::blkCntTotal));
+ }
+
+ static void compareSnapshot(const Snapshot &from, const Snapshot &to, Entry *entry) {
+ entry->time = diffTime(from.time, to.time);
+ entry->memoryDiff = to.memory_curr - from.memory_curr;
+ entry->allocTotal = to.memory_total - from.memory_total;
+ for (int i = 0; i < 32; i++) {
+ entry->delta_blk_cnt_curr[i] = to.blk_cnt_curr[i] - from.blk_cnt_curr[i];
+ entry->delta_blk_cnt_total[i] = to.blk_cnt_total[i] - from.blk_cnt_total[i];
+ }
+ }
+
+ std::stack<std::pair<Entry*, Snapshot> > currentTimers;
+
+ void startTiming(int id) {
+ entries.push_back(Entry(id));
+ currentTimers.push(std::make_pair(&entries.back(), Snapshot()));
+ getSnapshot(currentTimers.top().second);
+ }
+
+ double endTiming() {
+ Snapshot end;
+ getSnapshot(end);
+
+ Entry *entry = currentTimers.top().first;
+ compareSnapshot(currentTimers.top().second, end, entry);
+
+ currentTimers.pop();
+ if (!currentTimers.empty()) {
+ entry->parent = currentTimers.top().first;
+ entry->parent->children.push_back(entry);
+ } else {
+ root_entries.push_back(entry);
+ }
+ //std::sort(entry->children.begin(), entry->children.end(), cmp());
+ return entry->time;
+ }
+
+ typedef std::list<Entry> EntryList;
+ EntryList entries;
+ std::vector<Entry *> root_entries;
+
+ std::map<int, std::string> names;
+
+ static std::string formatMemory(int64_t value) {
+
+ std::ostringstream result;
+
+ result << (value >= 0 ? "+" : "-");
+ if (value < 0) {
+ value = -value;
+ }
+
+ int power = 1;
+ while (value > pow(10.0, power)) {
+ power++;
+ }
+
+ for (power--; power >= 0; power--) {
+ int64_t base = pow(10.0, power);
+ int64_t amount = value / base;
+ result <<
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ (long)
+#endif
+ amount;
+ if (power > 0 && (power % 3) == 0) {
+ result << ",";
+ }
+ value -= amount * base;
+ }
+
+ result << " bytes";
+
+ return result.str();
+ }
+
+ void printEntries(std::ostream &o, const std::vector<Entry *> &entries, const std::string &indent, double parent_time) {
+ if (parent_time <= 0.0) {
+ parent_time = 0.0;
+ for (size_t i = 0; i < entries.size(); ++i) {
+ parent_time += entries[i]->time;
+ }
+ }
+ double t_tot = 0.0;
+ for (size_t i = 0; i < entries.size(); ++i) {
+ const Entry *entry = entries[i];
+
+ std::ostringstream r;
+ r << indent;
+ std::string str = names[entry->id];
+ if (str.empty()) {
+ r << "(" << entry->id << ")";
+ } else {
+ r << str;
+ }
+ r << " ";
+ std::string pad(r.str().size(), ' ');
+ r << " - exectime: " << entry->time << "s (" << (entry->time * 100.0 / parent_time) << "%)" << std::endl;
+ if (entry->allocTotal || entry->memoryDiff) {
+ r << pad << " - alloc: " << formatMemory(entry->allocTotal) << " delta: " << formatMemory(entry->memoryDiff) << std::endl;
+ r << pad << " - alloc blks:";
+ for (int i = 0; i < 32; i++) { if (entry->delta_blk_cnt_total[i]) r << ' ' << ((1 << (i - 1)) + 1) << '-' << (1 << i) << ':' << entry->delta_blk_cnt_total[i]; }
+ r << std::endl;
+ r << pad << " - delta blks:";
+ for (int i = 0; i < 32; i++) { if (entry->delta_blk_cnt_curr[i]) r << ' ' << ((1 << (i - 1)) + 1) << '-' << (1 << i) << ':' << entry->delta_blk_cnt_curr[i]; }
+ r << std::endl;
+ }
+ o << r.str();
+ t_tot += entry->time;
+ if (entry->children.size()) printEntries(o, entry->children, indent + " ", entry->time);
+ }
+ if (t_tot < parent_time) {
+ o << indent << "*** unaccounted: " << (parent_time - t_tot) << "s (" << (100.0 - t_tot * 100.0 / parent_time) << "%)" << std::endl;
+ }
+ }
+
+ void print() {
+ std::map<int, double> totals;
+ std::cerr << "Timings: " << std::endl;
+ // print out all the entries.
+
+ //std::sort(root_entries.begin(), root_entries.end(), cmp());
+
+ printEntries(std::cerr, root_entries, " ", -1.0);
+
+ for (EntryList::const_iterator it = entries.begin(); it != entries.end(); ++it) {
+ totals[(*it).id] += (*it).time;
+ }
+
+ std::cerr << std::endl;
+ std::cerr << "Totals: " << std::endl;
+
+ std::vector<std::pair<int, double> > sorted_totals;
+ sorted_totals.reserve(totals.size());
+ for (std::map<int,double>::iterator it = totals.begin(); it != totals.end(); ++it) {
+ sorted_totals.push_back(*it);
+ }
+
+ std::sort(sorted_totals.begin(), sorted_totals.end(), cmp());
+
+ for (std::vector<std::pair<int,double> >::iterator it = sorted_totals.begin(); it != sorted_totals.end(); ++it) {
+ std::cerr << " ";
+ std::string str = names[it->first];
+ if (str.empty()) {
+ std::cerr << "(" << it->first << ")";
+ } else {
+ std::cerr << str;
+ }
+ std::cerr << " - " << it->second << "s " << std::endl;
+ }
+ }
+ void registerID(int id, const char *name) {
+ names[id] = name;
+ }
+ int registerID(const char *name) {
+ int id = names.size() + 1;
+ names[id] = name;
+ return id;
+ }
+
+ };
+
+ Timer timer;
+
+
+ TimingBlock::TimingBlock(int id) {
+#if CARVE_USE_TIMINGS
+ timer.startTiming(id);
+#endif
+ }
+
+ TimingBlock::TimingBlock(const TimingName &name) {
+#if CARVE_USE_TIMINGS
+ timer.startTiming(name.id);
+#endif
+ }
+
+
+ TimingBlock::~TimingBlock() {
+#if CARVE_USE_TIMINGS
+ timer.endTiming();
+#endif
+ }
+ void Timing::start(int id) {
+#if CARVE_USE_TIMINGS
+ timer.startTiming(id);
+#endif
+ }
+
+ double Timing::stop() {
+#if CARVE_USE_TIMINGS
+ return timer.endTiming();
+#endif
+ }
+
+ void Timing::printTimings() {
+ timer.print();
+ }
+
+ void Timing::registerID(int id, const char *name) {
+ timer.registerID(id, name);
+ }
+
+ TimingName::TimingName(const char *name) {
+ id = timer.registerID(name);
+ }
+
+}
+
+#endif
diff --git a/extern/carve/lib/triangulator.cpp b/extern/carve/lib/triangulator.cpp
new file mode 100644
index 00000000000..b36aecf98be
--- /dev/null
+++ b/extern/carve/lib/triangulator.cpp
@@ -0,0 +1,1211 @@
+// Begin License:
+// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
+// All rights reserved.
+//
+// This file is part of the Carve CSG Library (http://carve-csg.com/)
+//
+// This file may be used under the terms of the GNU General Public
+// License version 2.0 as published by the Free Software Foundation
+// and appearing in the file LICENSE.GPL2 included in the packaging of
+// this file.
+//
+// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE.
+// End:
+
+
+#if defined(HAVE_CONFIG_H)
+# include <carve_config.h>
+#endif
+
+#include <carve/csg.hpp>
+#include <carve/triangulator.hpp>
+
+#include <fstream>
+#include <sstream>
+
+#include <algorithm>
+
+
+namespace {
+ // private code related to hole patching.
+
+ class order_h_loops_2d {
+ order_h_loops_2d &operator=(const order_h_loops_2d &);
+
+ const std::vector<std::vector<carve::geom2d::P2> > &poly;
+ int axis;
+ public:
+
+ order_h_loops_2d(const std::vector<std::vector<carve::geom2d::P2> > &_poly, int _axis) :
+ poly(_poly), axis(_axis) {
+ }
+
+ bool operator()(const std::pair<size_t, size_t> &a,
+ const std::pair<size_t, size_t> &b) const {
+ return carve::triangulate::detail::axisOrdering(poly[a.first][a.second], poly[b.first][b.second], axis);
+ }
+ };
+
+ class heap_ordering_2d {
+ heap_ordering_2d &operator=(const heap_ordering_2d &);
+
+ const std::vector<std::vector<carve::geom2d::P2> > &poly;
+ const std::vector<std::pair<size_t, size_t> > &loop;
+ const carve::geom2d::P2 p;
+ int axis;
+
+ public:
+
+ heap_ordering_2d(const std::vector<std::vector<carve::geom2d::P2> > &_poly,
+ const std::vector<std::pair<size_t, size_t> > &_loop,
+ const carve::geom2d::P2 _p,
+ int _axis) : poly(_poly), loop(_loop), p(_p), axis(_axis) {
+ }
+
+ bool operator()(size_t a, size_t b) const {
+ double da = carve::geom::distance2(p, poly[loop[a].first][loop[a].second]);
+ double db = carve::geom::distance2(p, poly[loop[b].first][loop[b].second]);
+ if (da > db) return true;
+ if (da < db) return false;
+ return carve::triangulate::detail::axisOrdering(poly[loop[a].first][loop[a].second], poly[loop[b].first][loop[b].second], axis);
+ }
+ };
+
+ static inline void patchHoleIntoPolygon_2d(std::vector<std::pair<size_t, size_t> > &f_loop,
+ size_t f_loop_attach,
+ size_t h_loop,
+ size_t h_loop_attach,
+ size_t h_loop_size) {
+ f_loop.insert(f_loop.begin() + f_loop_attach + 1, h_loop_size + 2, std::make_pair(h_loop, 0));
+ size_t f = f_loop_attach + 1;
+
+ for (size_t h = h_loop_attach; h != h_loop_size; ++h) {
+ f_loop[f++].second = h;
+ }
+
+ for (size_t h = 0; h <= h_loop_attach; ++h) {
+ f_loop[f++].second = h;
+ }
+
+ f_loop[f] = f_loop[f_loop_attach];
+ }
+
+ static inline const carve::geom2d::P2 &pvert(const std::vector<std::vector<carve::geom2d::P2> > &poly, const std::pair<size_t, size_t> &idx) {
+ return poly[idx.first][idx.second];
+ }
+}
+
+
+namespace {
+ // private code related to triangulation.
+
+ using carve::triangulate::detail::vertex_info;
+
+ struct vertex_info_ordering {
+ bool operator()(const vertex_info *a, const vertex_info *b) const {
+ return a->score < b->score;
+ }
+ };
+
+ struct vertex_info_l2norm_inc_ordering {
+ const vertex_info *v;
+ vertex_info_l2norm_inc_ordering(const vertex_info *_v) : v(_v) {
+ }
+ bool operator()(const vertex_info *a, const vertex_info *b) const {
+ return carve::geom::distance2(v->p, a->p) > carve::geom::distance2(v->p, b->p);
+ }
+ };
+
+ class EarQueue {
+ std::vector<vertex_info *> queue;
+
+ void checkheap() {
+#ifdef __GNUC__
+ CARVE_ASSERT(std::__is_heap(queue.begin(), queue.end(), vertex_info_ordering()));
+#endif
+ }
+
+ public:
+ EarQueue() {
+ }
+
+ size_t size() const {
+ return queue.size();
+ }
+
+ void push(vertex_info *v) {
+#if defined(CARVE_DEBUG)
+ checkheap();
+#endif
+ queue.push_back(v);
+ std::push_heap(queue.begin(), queue.end(), vertex_info_ordering());
+ }
+
+ vertex_info *pop() {
+#if defined(CARVE_DEBUG)
+ checkheap();
+#endif
+ std::pop_heap(queue.begin(), queue.end(), vertex_info_ordering());
+ vertex_info *v = queue.back();
+ queue.pop_back();
+ return v;
+ }
+
+ void remove(vertex_info *v) {
+#if defined(CARVE_DEBUG)
+ checkheap();
+#endif
+ CARVE_ASSERT(std::find(queue.begin(), queue.end(), v) != queue.end());
+ double score = v->score;
+ if (v != queue[0]) {
+ v->score = queue[0]->score + 1;
+ std::make_heap(queue.begin(), queue.end(), vertex_info_ordering());
+ }
+ CARVE_ASSERT(v == queue[0]);
+ std::pop_heap(queue.begin(), queue.end(), vertex_info_ordering());
+ CARVE_ASSERT(queue.back() == v);
+ queue.pop_back();
+ v->score = score;
+ }
+
+ void changeScore(vertex_info *v, double score) {
+#if defined(CARVE_DEBUG)
+ checkheap();
+#endif
+ CARVE_ASSERT(std::find(queue.begin(), queue.end(), v) != queue.end());
+ if (v->score != score) {
+ v->score = score;
+ std::make_heap(queue.begin(), queue.end(), vertex_info_ordering());
+ }
+ }
+
+ // 39% of execution time
+ void updateVertex(vertex_info *v) {
+ double spre = v->score;
+ bool qpre = v->isCandidate();
+ v->recompute();
+ bool qpost = v->isCandidate();
+ double spost = v->score;
+
+ v->score = spre;
+
+ if (qpre) {
+ if (qpost) {
+ if (v->score != spre) {
+ changeScore(v, spost);
+ }
+ } else {
+ remove(v);
+ }
+ } else {
+ if (qpost) {
+ push(v);
+ }
+ }
+ }
+ };
+
+
+
+ int windingNumber(vertex_info *begin, const carve::geom2d::P2 &point) {
+ int wn = 0;
+
+ vertex_info *v = begin;
+ do {
+ if (v->p.y <= point.y) {
+ if (v->next->p.y > point.y && carve::geom2d::orient2d(v->p, v->next->p, point) > 0.0) {
+ ++wn;
+ }
+ } else {
+ if (v->next->p.y <= point.y && carve::geom2d::orient2d(v->p, v->next->p, point) < 0.0) {
+ --wn;
+ }
+ }
+ v = v->next;
+ } while (v != begin);
+
+ return wn;
+ }
+
+
+
+ bool internalToAngle(const vertex_info *a,
+ const vertex_info *b,
+ const vertex_info *c,
+ const carve::geom2d::P2 &p) {
+ return carve::geom2d::internalToAngle(a->p, b->p, c->p, p);
+ }
+
+
+
+ bool findDiagonal(vertex_info *begin, vertex_info *&v1, vertex_info *&v2) {
+ vertex_info *t;
+ std::vector<vertex_info *> heap;
+
+ v1 = begin;
+ do {
+ heap.clear();
+
+ for (v2 = v1->next->next; v2 != v1->prev; v2 = v2->next) {
+ if (!internalToAngle(v1->next, v1, v1->prev, v2->p) ||
+ !internalToAngle(v2->next, v2, v2->prev, v1->p)) continue;
+
+ heap.push_back(v2);
+ std::push_heap(heap.begin(), heap.end(), vertex_info_l2norm_inc_ordering(v1));
+ }
+
+ while (heap.size()) {
+ std::pop_heap(heap.begin(), heap.end(), vertex_info_l2norm_inc_ordering(v1));
+ v2 = heap.back(); heap.pop_back();
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "testing: " << v1 << " - " << v2 << std::endl;
+ std::cerr << " length = " << (v2->p - v1->p).length() << std::endl;
+ std::cerr << " pos: " << v1->p << " - " << v2->p << std::endl;
+#endif
+ // test whether v1-v2 is a valid diagonal.
+ double v_min_x = std::min(v1->p.x, v2->p.x);
+ double v_max_x = std::max(v1->p.x, v2->p.x);
+
+ bool intersected = false;
+
+ for (t = v1->next; !intersected && t != v1->prev; t = t->next) {
+ vertex_info *u = t->next;
+ if (t == v2 || u == v2) continue;
+
+ double l1 = carve::geom2d::orient2d(v1->p, v2->p, t->p);
+ double l2 = carve::geom2d::orient2d(v1->p, v2->p, u->p);
+
+ if ((l1 > 0.0 && l2 > 0.0) || (l1 < 0.0 && l2 < 0.0)) {
+ // both on the same side; no intersection
+ continue;
+ }
+
+ double dx13 = v1->p.x - t->p.x;
+ double dy13 = v1->p.y - t->p.y;
+ double dx43 = u->p.x - t->p.x;
+ double dy43 = u->p.y - t->p.y;
+ double dx21 = v2->p.x - v1->p.x;
+ double dy21 = v2->p.y - v1->p.y;
+ double ua_n = dx43 * dy13 - dy43 * dx13;
+ double ub_n = dx21 * dy13 - dy21 * dx13;
+ double u_d = dy43 * dx21 - dx43 * dy21;
+
+ if (carve::math::ZERO(u_d)) {
+ // parallel
+ if (carve::math::ZERO(ua_n)) {
+ // colinear
+ if (std::max(t->p.x, u->p.x) >= v_min_x && std::min(t->p.x, u->p.x) <= v_max_x) {
+ // colinear and intersecting
+ intersected = true;
+ }
+ }
+ } else {
+ // not parallel
+ double ua = ua_n / u_d;
+ double ub = ub_n / u_d;
+
+ if (0.0 <= ua && ua <= 1.0 && 0.0 <= ub && ub <= 1.0) {
+ intersected = true;
+ }
+ }
+#if defined(CARVE_DEBUG)
+ if (intersected) {
+ std::cerr << " failed on edge: " << t << " - " << u << std::endl;
+ std::cerr << " pos: " << t->p << " - " << u->p << std::endl;
+ }
+#endif
+ }
+
+ if (!intersected) {
+ // test whether midpoint winding == 1
+
+ carve::geom2d::P2 mid = (v1->p + v2->p) / 2;
+ if (windingNumber(begin, mid) == 1) {
+ // this diagonal is ok
+ return true;
+ }
+ }
+ }
+
+ // couldn't find a diagonal from v1 that was ok.
+ v1 = v1->next;
+ } while (v1 != begin);
+ return false;
+ }
+
+
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ void dumpPoly(const std::vector<carve::geom2d::P2> &points,
+ const std::vector<carve::triangulate::tri_idx> &result) {
+ static int step = 0;
+ std::ostringstream filename;
+ filename << "poly_" << step++ << ".svg";
+ std::cerr << "dumping to " << filename.str() << std::endl;
+ std::ofstream out(filename.str().c_str());
+
+ double minx = points[0].x, maxx = points[0].x;
+ double miny = points[0].y, maxy = points[0].y;
+
+ for (size_t i = 1; i < points.size(); ++i) {
+ minx = std::min(points[i].x, minx); maxx = std::max(points[i].x, maxx);
+ miny = std::min(points[i].y, miny); maxy = std::max(points[i].y, maxy);
+ }
+ double scale = 100 / std::max(maxx-minx, maxy-miny);
+
+ maxx *= scale; minx *= scale;
+ maxy *= scale; miny *= scale;
+
+ double width = maxx - minx + 10;
+ double height = maxy - miny + 10;
+
+ out << "\
+<?xml version=\"1.0\"?>\n\
+<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n\
+<svg xmlns=\"http://www.w3.org/2000/svg\" version=\"1.1\" width=\"" << width << "\" height=\"" << height << "\">\n";
+
+ out << "<polygon fill=\"rgb(0,0,0)\" stroke=\"blue\" stroke-width=\"0.1\" points=\"";
+ for (size_t i = 0; i < points.size(); ++i) {
+ if (i) out << ' ';
+ double x, y;
+ x = scale * (points[i].x) - minx + 5;
+ y = scale * (points[i].y) - miny + 5;
+ out << x << ',' << y;
+ }
+ out << "\" />" << std::endl;
+
+ for (size_t i = 0; i < result.size(); ++i) {
+ out << "<polygon fill=\"rgb(255,255,255)\" stroke=\"black\" stroke-width=\"0.1\" points=\"";
+ double x, y;
+ x = scale * (points[result[i].a].x) - minx + 5;
+ y = scale * (points[result[i].a].y) - miny + 5;
+ out << x << ',' << y << ' ';
+ x = scale * (points[result[i].b].x) - minx + 5;
+ y = scale * (points[result[i].b].y) - miny + 5;
+ out << x << ',' << y << ' ';
+ x = scale * (points[result[i].c].x) - minx + 5;
+ y = scale * (points[result[i].c].y) - miny + 5;
+ out << x << ',' << y;
+ out << "\" />" << std::endl;
+ }
+
+ out << "</svg>" << std::endl;
+ }
+#endif
+}
+
+
+
+double carve::triangulate::detail::vertex_info::triScore(const vertex_info *p, const vertex_info *v, const vertex_info *n) {
+
+ // different scoring functions.
+#if 0
+ bool convex = isLeft(p, v, n);
+ if (!convex) return -1e-5;
+
+ double a1 = carve::geom2d::atan2(p->p - v->p) - carve::geom2d::atan2(n->p - v->p);
+ double a2 = carve::geom2d::atan2(v->p - n->p) - carve::geom2d::atan2(p->p - n->p);
+ if (a1 < 0) a1 += M_PI * 2;
+ if (a2 < 0) a2 += M_PI * 2;
+
+ return std::min(a1, std::min(a2, M_PI - a1 - a2)) / (M_PI / 3);
+#endif
+
+#if 1
+ // range: 0 - 1
+ double a, b, c;
+
+ bool convex = isLeft(p, v, n);
+ if (!convex) return -1e-5;
+
+ a = (n->p - v->p).length();
+ b = (p->p - n->p).length();
+ c = (v->p - p->p).length();
+
+ if (a < 1e-10 || b < 1e-10 || c < 1e-10) return 0.0;
+
+ return std::max(std::min((a+b)/c, std::min((a+c)/b, (b+c)/a)) - 1.0, 0.0);
+#endif
+}
+
+
+
+double carve::triangulate::detail::vertex_info::calcScore() const {
+
+#if 0
+ // examine only this triangle.
+ double this_tri = triScore(prev, this, next);
+ return this_tri;
+#endif
+
+#if 1
+ // attempt to look ahead in the neighbourhood to attempt to clip ears that have good neighbours.
+ double this_tri = triScore(prev, this, next);
+ double next_tri = triScore(prev, next, next->next);
+ double prev_tri = triScore(prev->prev, prev, next);
+
+ return this_tri + std::max(next_tri, prev_tri) * .2;
+#endif
+
+#if 0
+ // attempt to penalise ears that will require producing a sliver triangle.
+ double score = triScore(prev, this, next);
+
+ double a1, a2;
+ a1 = carve::geom2d::atan2(prev->p - next->p);
+ a2 = carve::geom2d::atan2(next->next->p - next->p);
+ if (fabs(a1 - a2) < 1e-5) score -= .5;
+
+ a1 = carve::geom2d::atan2(next->p - prev->p);
+ a2 = carve::geom2d::atan2(prev->prev->p - prev->p);
+ if (fabs(a1 - a2) < 1e-5) score -= .5;
+
+ return score;
+#endif
+}
+
+
+
+bool carve::triangulate::detail::vertex_info::isClipable() const {
+ for (const vertex_info *v_test = next->next; v_test != prev; v_test = v_test->next) {
+ if (v_test->convex) {
+ continue;
+ }
+
+ if (v_test->p == prev->p ||
+ v_test->p == next->p) {
+ continue;
+ }
+
+ if (v_test->p == p) {
+ if (v_test->next->p == prev->p &&
+ v_test->prev->p == next->p) {
+ return false;
+ }
+ if (v_test->next->p == prev->p ||
+ v_test->prev->p == next->p) {
+ continue;
+ }
+ }
+
+ if (pointInTriangle(prev, this, next, v_test)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+
+size_t carve::triangulate::detail::removeDegeneracies(vertex_info *&begin, std::vector<carve::triangulate::tri_idx> &result) {
+ vertex_info *v = begin;
+ vertex_info *n;
+ size_t count = 0;
+ do {
+ bool remove = false;
+ if (v->p == v->next->p) {
+ remove = true;
+ } else if (v->p == v->next->next->p) {
+ if (v->next->p == v->next->next->next->p) {
+ // a 'z' in the loop: z (a) b a b c -> remove a-b-a -> z (a) a b c -> remove a-a-b (next loop) -> z a b c
+ // z --(a)-- b
+ // /
+ // /
+ // a -- b -- d
+ remove = true;
+ } else {
+ // a 'shard' in the loop: z (a) b a c d -> remove a-b-a -> z (a) a b c d -> remove a-a-b (next loop) -> z a b c d
+ // z --(a)-- b
+ // /
+ // /
+ // a -- c -- d
+ // n.b. can only do this if the shard is pointing out of the polygon. i.e. b is outside z-a-c
+ remove = !internalToAngle(v->next->next->next, v, v->prev, v->next->p);
+ }
+ }
+
+ if (remove) {
+ result.push_back(carve::triangulate::tri_idx(v->idx, v->next->idx, v->next->next->idx));
+ n = v->next;
+ if (n == begin) begin = n->next;
+ n->remove();
+ count++;
+ delete n;
+ continue;
+ }
+
+ v = v->next;
+ } while (v != begin);
+ return count;
+}
+
+
+
+bool carve::triangulate::detail::splitAndResume(vertex_info *begin, std::vector<carve::triangulate::tri_idx> &result) {
+ vertex_info *v1, *v2;
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ {
+ std::vector<carve::triangulate::tri_idx> dummy;
+ std::vector<carve::geom2d::P2> dummy_p;
+ vertex_info *v = begin;
+ do {
+ dummy_p.push_back(v->p);
+ v = v->next;
+ } while (v != begin);
+ std::cerr << "input to splitAndResume:" << std::endl;
+ dumpPoly(dummy_p, dummy);
+ }
+#endif
+
+
+ if (!findDiagonal(begin, v1, v2)) return false;
+
+ vertex_info *v1_copy = new vertex_info(*v1);
+ vertex_info *v2_copy = new vertex_info(*v2);
+
+ v1->next = v2;
+ v2->prev = v1;
+
+ v1_copy->next->prev = v1_copy;
+ v2_copy->prev->next = v2_copy;
+
+ v1_copy->prev = v2_copy;
+ v2_copy->next = v1_copy;
+
+ bool r1 = doTriangulate(v1, result);
+ bool r2 = doTriangulate(v1_copy, result);
+ return r1 && r2;
+}
+
+
+
+bool carve::triangulate::detail::doTriangulate(vertex_info *begin, std::vector<carve::triangulate::tri_idx> &result) {
+#if defined(CARVE_DEBUG)
+ std::cerr << "entering doTriangulate" << std::endl;
+#endif
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ {
+ std::vector<carve::triangulate::tri_idx> dummy;
+ std::vector<carve::geom2d::P2> dummy_p;
+ vertex_info *v = begin;
+ do {
+ dummy_p.push_back(v->p);
+ v = v->next;
+ } while (v != begin);
+ dumpPoly(dummy_p, dummy);
+ }
+#endif
+
+ EarQueue vq;
+
+ vertex_info *v = begin;
+ size_t remain = 0;
+ do {
+ if (v->isCandidate()) vq.push(v);
+ v = v->next;
+ remain++;
+ } while (v != begin);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "remain = " << remain << std::endl;
+#endif
+
+ while (vq.size()) {
+ vertex_info *v = vq.pop();
+ if (!v->isClipable()) {
+ v->failed = true;
+ continue;
+ }
+
+ continue_clipping:
+ vertex_info *n = v->next;
+ vertex_info *p = v->prev;
+
+ result.push_back(carve::triangulate::tri_idx(v->prev->idx, v->idx, v->next->idx));
+
+#if defined(CARVE_DEBUG)
+ {
+ std::vector<carve::geom2d::P2> temp;
+ temp.push_back(v->prev->p);
+ temp.push_back(v->p);
+ temp.push_back(v->next->p);
+ std::cerr << "clip " << v << " idx = " << v->idx << " score = " << v->score << " area = " << carve::geom2d::signedArea(temp) << " " << temp[0] << " " << temp[1] << " " << temp[2] << std::endl;
+ }
+#endif
+
+ v->remove();
+ remain--;
+ if (v == begin) begin = v->next;
+ delete v;
+
+ vq.updateVertex(n);
+ vq.updateVertex(p);
+
+ if (n->score < p->score) { std::swap(n, p); }
+
+ if (n->score > 0.25 && n->isCandidate() && n->isClipable()) {
+ vq.remove(n);
+ v = n;
+#if defined(CARVE_DEBUG)
+ std::cerr << " continue clipping (n), score = " << n->score << std::endl;
+#endif
+ goto continue_clipping;
+ }
+
+ if (p->score > 0.25 && p->isCandidate() && p->isClipable()) {
+ vq.remove(p);
+ v = p;
+#if defined(CARVE_DEBUG)
+ std::cerr << " continue clipping (p), score = " << n->score << std::endl;
+#endif
+ goto continue_clipping;
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "looking for new start point" << std::endl;
+ std::cerr << "remain = " << remain << std::endl;
+#endif
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "doTriangulate complete; remain=" << remain << std::endl;
+#endif
+
+ bool ret = true;
+
+ if (remain > 3) {
+ std::vector<carve::geom2d::P2> temp;
+ temp.reserve(remain);
+ vertex_info *v = begin;
+
+ do {
+ temp.push_back(v->p);
+ v = v->next;
+ } while (v != begin);
+
+ if (carve::geom2d::signedArea(temp) == 0) {
+ // XXX: this test will fail in cases where the boundary is
+ // twisted so that a negative area balances a positive area.
+#if defined(CARVE_DEBUG)
+ std::cerr << "skeleton remains. complete." << std::endl;
+#endif
+ goto done;
+ }
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "before removeDegeneracies: remain=" << remain << std::endl;
+#endif
+ remain -= removeDegeneracies(begin, result);
+#if defined(CARVE_DEBUG)
+ std::cerr << "after removeDegeneracies: remain=" << remain << std::endl;
+#endif
+ }
+
+ if (remain > 3) {
+ return splitAndResume(begin, result);
+ } else if (remain == 3) {
+ result.push_back(carve::triangulate::tri_idx(begin->idx, begin->next->idx, begin->next->next->idx));
+ ret = true;
+ } else {
+ ret = true;
+ }
+
+ done:
+ vertex_info *d = begin;
+ do {
+ vertex_info *n = d->next;
+ delete d;
+ d = n;
+ } while (d != begin);
+
+ return ret;
+}
+
+
+
+bool testCandidateAttachment(const std::vector<std::vector<carve::geom2d::P2> > &poly,
+ std::vector<std::pair<size_t, size_t> > &current_f_loop,
+ size_t curr,
+ carve::geom2d::P2 hole_min) {
+ const size_t SZ = current_f_loop.size();
+
+ if (!carve::geom2d::internalToAngle(pvert(poly, current_f_loop[(curr+1) % SZ]),
+ pvert(poly, current_f_loop[curr]),
+ pvert(poly, current_f_loop[(curr+SZ-1) % SZ]),
+ hole_min)) {
+ return false;
+ }
+
+ if (hole_min == pvert(poly, current_f_loop[curr])) {
+ return true;
+ }
+
+ carve::geom2d::LineSegment2 test(hole_min, pvert(poly, current_f_loop[curr]));
+
+ size_t v1 = current_f_loop.size() - 1;
+ size_t v2 = 0;
+ double v1_side = carve::geom2d::orient2d(test.v1, test.v2, pvert(poly, current_f_loop[v1]));
+ double v2_side = 0;
+
+ while (v2 != current_f_loop.size()) {
+ v2_side = carve::geom2d::orient2d(test.v1, test.v2, pvert(poly, current_f_loop[v2]));
+
+ if (v1_side != v2_side) {
+ // XXX: need to test vertices, not indices, because they may
+ // be duplicated.
+ if (pvert(poly, current_f_loop[v1]) != pvert(poly, current_f_loop[curr]) &&
+ pvert(poly, current_f_loop[v2]) != pvert(poly, current_f_loop[curr])) {
+ carve::geom2d::LineSegment2 test2(pvert(poly, current_f_loop[v1]), pvert(poly, current_f_loop[v2]));
+ if (carve::geom2d::lineSegmentIntersection_simple(test, test2)) {
+ // intersection; failed.
+ return false;
+ }
+ }
+ }
+
+ v1 = v2;
+ v1_side = v2_side;
+ ++v2;
+ }
+ return true;
+}
+
+
+
+void
+carve::triangulate::incorporateHolesIntoPolygon(
+ const std::vector<std::vector<carve::geom2d::P2> > &poly,
+ std::vector<std::pair<size_t, size_t> > &result,
+ size_t poly_loop,
+ const std::vector<size_t> &hole_loops) {
+ typedef std::vector<carve::geom2d::P2> loop_t;
+
+ size_t N = poly[poly_loop].size();
+
+ // work out how much space to reserve for the patched in holes.
+ for (size_t i = 0; i < hole_loops.size(); i++) {
+ N += 2 + poly[hole_loops[i]].size();
+ }
+
+ // this is the vector that we will build the result in.
+ result.clear();
+ result.reserve(N);
+
+ // this is a heap of result indices that defines the vertex test order.
+ std::vector<size_t> f_loop_heap;
+ f_loop_heap.reserve(N);
+
+ // add the poly loop to result.
+ for (size_t i = 0; i < poly[poly_loop].size(); ++i) {
+ result.push_back(std::make_pair((size_t)poly_loop, i));
+ }
+
+ if (hole_loops.size() == 0) {
+ return;
+ }
+
+ std::vector<std::pair<size_t, size_t> > h_loop_min_vertex;
+
+ h_loop_min_vertex.reserve(hole_loops.size());
+
+ // find the major axis for the holes - this is the axis that we
+ // will sort on for finding vertices on the polygon to join
+ // holes up to.
+ //
+ // it might also be nice to also look for whether it is better
+ // to sort ascending or descending.
+ //
+ // another trick that could be used is to modify the projection
+ // by 90 degree rotations or flipping about an axis. just as
+ // long as we keep the carve::geom3d::Vector pointers for the
+ // real data in sync, everything should be ok. then we wouldn't
+ // need to accomodate axes or sort order in the main loop.
+
+ // find the bounding box of all the holes.
+ carve::geom2d::P2 h_min, h_max;
+ h_min = h_max = poly[hole_loops[0]][0];
+ for (size_t i = 0; i < hole_loops.size(); ++i) {
+ const loop_t &hole = poly[hole_loops[i]];
+ for (size_t j = 0; j < hole.size(); ++j) {
+ assign_op(h_min, h_min, hole[j], carve::util::min_functor());
+ assign_op(h_max, h_max, hole[j], carve::util::max_functor());
+ }
+ }
+ // choose the axis for which the bbox is largest.
+ int axis = (h_max.x - h_min.x) > (h_max.y - h_min.y) ? 0 : 1;
+
+ // for each hole, find the minimum vertex in the chosen axis.
+ for (size_t i = 0; i < hole_loops.size(); ++i) {
+ const loop_t &hole = poly[hole_loops[i]];
+ size_t best, curr;
+ best = 0;
+ for (curr = 1; curr != hole.size(); ++curr) {
+ if (detail::axisOrdering(hole[curr], hole[best], axis)) {
+ best = curr;
+ }
+ }
+ h_loop_min_vertex.push_back(std::make_pair(hole_loops[i], best));
+ }
+
+ // sort the holes by the minimum vertex.
+ std::sort(h_loop_min_vertex.begin(), h_loop_min_vertex.end(), order_h_loops_2d(poly, axis));
+
+ // now, for each hole, find a vertex in the current polygon loop that it can be joined to.
+ for (unsigned i = 0; i < h_loop_min_vertex.size(); ++i) {
+ // the index of the vertex in the hole to connect.
+ size_t hole_i = h_loop_min_vertex[i].first;
+ size_t hole_i_connect = h_loop_min_vertex[i].second;
+
+ carve::geom2d::P2 hole_min = poly[hole_i][hole_i_connect];
+
+ f_loop_heap.clear();
+ // we order polygon loop vertices that may be able to be connected
+ // to the hole vertex by their distance to the hole vertex
+ heap_ordering_2d _heap_ordering(poly, result, hole_min, axis);
+
+ const size_t SZ = result.size();
+ for (size_t j = 0; j < SZ; ++j) {
+ // it is guaranteed that there exists a polygon vertex with
+ // coord < the min hole coord chosen, which can be joined to
+ // the min hole coord without crossing the polygon
+ // boundary. also, because we merge holes in ascending
+ // order, it is also true that this join can never cross
+ // another hole (and that doesn't need to be tested for).
+ if (pvert(poly, result[j]).v[axis] <= hole_min.v[axis]) {
+ f_loop_heap.push_back(j);
+ std::push_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
+ }
+ }
+
+ // we are going to test each potential (according to the
+ // previous test) polygon vertex as a candidate join. we order
+ // by closeness to the hole vertex, so that the join we make
+ // is as small as possible. to test, we need to check the
+ // joining line segment does not cross any other line segment
+ // in the current polygon loop (excluding those that have the
+ // vertex that we are attempting to join with as an endpoint).
+ size_t attachment_point = result.size();
+
+ while (f_loop_heap.size()) {
+ std::pop_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
+ size_t curr = f_loop_heap.back();
+ f_loop_heap.pop_back();
+ // test the candidate join from result[curr] to hole_min
+
+ if (!testCandidateAttachment(poly, result, curr, hole_min)) {
+ continue;
+ }
+
+ attachment_point = curr;
+ break;
+ }
+
+ if (attachment_point == result.size()) {
+ CARVE_FAIL("didn't manage to link up hole!");
+ }
+
+ patchHoleIntoPolygon_2d(result, attachment_point, hole_i, hole_i_connect, poly[hole_i].size());
+ }
+}
+
+
+
+std::vector<std::pair<size_t, size_t> >
+carve::triangulate::incorporateHolesIntoPolygon(const std::vector<std::vector<carve::geom2d::P2> > &poly) {
+#if 1
+ std::vector<std::pair<size_t, size_t> > result;
+ std::vector<size_t> hole_indices;
+ hole_indices.reserve(poly.size() - 1);
+ for (size_t i = 1; i < poly.size(); ++i) {
+ hole_indices.push_back(i);
+ }
+
+ incorporateHolesIntoPolygon(poly, result, 0, hole_indices);
+
+ return result;
+
+#else
+ typedef std::vector<carve::geom2d::P2> loop_t;
+ size_t N = poly[0].size();
+ //
+ // work out how much space to reserve for the patched in holes.
+ for (size_t i = 0; i < poly.size(); i++) {
+ N += 2 + poly[i].size();
+ }
+
+ // this is the vector that we will build the result in.
+ std::vector<std::pair<size_t, size_t> > current_f_loop;
+ current_f_loop.reserve(N);
+
+ // this is a heap of current_f_loop indices that defines the vertex test order.
+ std::vector<size_t> f_loop_heap;
+ f_loop_heap.reserve(N);
+
+ // add the poly loop to current_f_loop.
+ for (size_t i = 0; i < poly[0].size(); ++i) {
+ current_f_loop.push_back(std::make_pair((size_t)0, i));
+ }
+
+ if (poly.size() == 1) {
+ return current_f_loop;
+ }
+
+ std::vector<std::pair<size_t, size_t> > h_loop_min_vertex;
+
+ h_loop_min_vertex.reserve(poly.size() - 1);
+
+ // find the major axis for the holes - this is the axis that we
+ // will sort on for finding vertices on the polygon to join
+ // holes up to.
+ //
+ // it might also be nice to also look for whether it is better
+ // to sort ascending or descending.
+ //
+ // another trick that could be used is to modify the projection
+ // by 90 degree rotations or flipping about an axis. just as
+ // long as we keep the carve::geom3d::Vector pointers for the
+ // real data in sync, everything should be ok. then we wouldn't
+ // need to accomodate axes or sort order in the main loop.
+
+ // find the bounding box of all the holes.
+ double min_x, min_y, max_x, max_y;
+ min_x = max_x = poly[1][0].x;
+ min_y = max_y = poly[1][0].y;
+ for (size_t i = 1; i < poly.size(); ++i) {
+ const loop_t &hole = poly[i];
+ for (size_t j = 0; j < hole.size(); ++j) {
+ min_x = std::min(min_x, hole[j].x);
+ min_y = std::min(min_y, hole[j].y);
+ max_x = std::max(max_x, hole[j].x);
+ max_y = std::max(max_y, hole[j].y);
+ }
+ }
+
+ // choose the axis for which the bbox is largest.
+ int axis = (max_x - min_x) > (max_y - min_y) ? 0 : 1;
+
+ // for each hole, find the minimum vertex in the chosen axis.
+ for (size_t i = 1; i < poly.size(); ++i) {
+ const loop_t &hole = poly[i];
+ size_t best, curr;
+ best = 0;
+ for (curr = 1; curr != hole.size(); ++curr) {
+ if (detail::axisOrdering(hole[curr], hole[best], axis)) {
+ best = curr;
+ }
+ }
+ h_loop_min_vertex.push_back(std::make_pair(i, best));
+ }
+
+ // sort the holes by the minimum vertex.
+ std::sort(h_loop_min_vertex.begin(), h_loop_min_vertex.end(), order_h_loops_2d(poly, axis));
+
+ // now, for each hole, find a vertex in the current polygon loop that it can be joined to.
+ for (unsigned i = 0; i < h_loop_min_vertex.size(); ++i) {
+ // the index of the vertex in the hole to connect.
+ size_t hole_i = h_loop_min_vertex[i].first;
+ size_t hole_i_connect = h_loop_min_vertex[i].second;
+
+ carve::geom2d::P2 hole_min = poly[hole_i][hole_i_connect];
+
+ f_loop_heap.clear();
+ // we order polygon loop vertices that may be able to be connected
+ // to the hole vertex by their distance to the hole vertex
+ heap_ordering_2d _heap_ordering(poly, current_f_loop, hole_min, axis);
+
+ const size_t SZ = current_f_loop.size();
+ for (size_t j = 0; j < SZ; ++j) {
+ // it is guaranteed that there exists a polygon vertex with
+ // coord < the min hole coord chosen, which can be joined to
+ // the min hole coord without crossing the polygon
+ // boundary. also, because we merge holes in ascending
+ // order, it is also true that this join can never cross
+ // another hole (and that doesn't need to be tested for).
+ if (pvert(poly, current_f_loop[j]).v[axis] <= hole_min.v[axis]) {
+ f_loop_heap.push_back(j);
+ std::push_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
+ }
+ }
+
+ // we are going to test each potential (according to the
+ // previous test) polygon vertex as a candidate join. we order
+ // by closeness to the hole vertex, so that the join we make
+ // is as small as possible. to test, we need to check the
+ // joining line segment does not cross any other line segment
+ // in the current polygon loop (excluding those that have the
+ // vertex that we are attempting to join with as an endpoint).
+ size_t attachment_point = current_f_loop.size();
+
+ while (f_loop_heap.size()) {
+ std::pop_heap(f_loop_heap.begin(), f_loop_heap.end(), _heap_ordering);
+ size_t curr = f_loop_heap.back();
+ f_loop_heap.pop_back();
+ // test the candidate join from current_f_loop[curr] to hole_min
+
+ if (!testCandidateAttachment(poly, current_f_loop, curr, hole_min)) {
+ continue;
+ }
+
+ attachment_point = curr;
+ break;
+ }
+
+ if (attachment_point == current_f_loop.size()) {
+ CARVE_FAIL("didn't manage to link up hole!");
+ }
+
+ patchHoleIntoPolygon_2d(current_f_loop, attachment_point, hole_i, hole_i_connect, poly[hole_i].size());
+ }
+
+ return current_f_loop;
+#endif
+}
+
+
+
+std::vector<std::vector<std::pair<size_t, size_t> > >
+carve::triangulate::mergePolygonsAndHoles(const std::vector<std::vector<carve::geom2d::P2> > &poly) {
+ std::vector<size_t> poly_indices, hole_indices;
+
+ poly_indices.reserve(poly.size());
+ hole_indices.reserve(poly.size());
+
+ for (size_t i = 0; i < poly.size(); ++i) {
+ if (carve::geom2d::signedArea(poly[i]) < 0) {
+ poly_indices.push_back(i);
+ } else {
+ hole_indices.push_back(i);
+ }
+ }
+
+ std::vector<std::vector<std::pair<size_t, size_t> > > result;
+ result.resize(poly_indices.size());
+
+ if (hole_indices.size() == 0) {
+ for (size_t i = 0; i < poly.size(); ++i) {
+ result[i].resize(poly[i].size());
+ for (size_t j = 0; j < poly[i].size(); ++j) {
+ result[i].push_back(std::make_pair(i, j));
+ }
+ }
+ return result;
+ }
+
+ if (poly_indices.size() == 1) {
+ incorporateHolesIntoPolygon(poly, result[0], poly_indices[0], hole_indices);
+
+ return result;
+ }
+
+ throw carve::exception("not implemented");
+}
+
+
+
+void carve::triangulate::triangulate(const std::vector<carve::geom2d::P2> &poly,
+ std::vector<carve::triangulate::tri_idx> &result) {
+ std::vector<detail::vertex_info *> vinfo;
+ const size_t N = poly.size();
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "TRIANGULATION BEGINS" << std::endl;
+#endif
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ dumpPoly(poly, result);
+#endif
+
+ result.clear();
+ if (N < 3) {
+ return;
+ }
+
+ result.reserve(poly.size() - 2);
+
+ if (N == 3) {
+ result.push_back(tri_idx(0, 1, 2));
+ return;
+ }
+
+ vinfo.resize(N);
+
+ vinfo[0] = new detail::vertex_info(poly[0], 0);
+ for (size_t i = 1; i < N-1; ++i) {
+ vinfo[i] = new detail::vertex_info(poly[i], i);
+ vinfo[i]->prev = vinfo[i-1];
+ vinfo[i-1]->next = vinfo[i];
+ }
+ vinfo[N-1] = new detail::vertex_info(poly[N-1], N-1);
+ vinfo[N-1]->prev = vinfo[N-2];
+ vinfo[N-1]->next = vinfo[0];
+ vinfo[0]->prev = vinfo[N-1];
+ vinfo[N-2]->next = vinfo[N-1];
+
+ for (size_t i = 0; i < N; ++i) {
+ vinfo[i]->recompute();
+ }
+
+ detail::vertex_info *begin = vinfo[0];
+
+ removeDegeneracies(begin, result);
+ doTriangulate(begin, result);
+
+#if defined(CARVE_DEBUG)
+ std::cerr << "TRIANGULATION ENDS" << std::endl;
+#endif
+
+#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
+ dumpPoly(poly, result);
+#endif
+}
+
+
+
+void carve::triangulate::detail::tri_pair_t::flip(vert_edge_t &old_edge,
+ vert_edge_t &new_edge,
+ vert_edge_t perim[4]) {
+ unsigned ai, bi;
+ unsigned cross_ai, cross_bi;
+
+ findSharedEdge(ai, bi);
+ old_edge = ordered_vert_edge_t(a->v[ai], b->v[bi]);
+
+ cross_ai = P(ai);
+ cross_bi = P(bi);
+ new_edge = ordered_vert_edge_t(a->v[cross_ai], b->v[cross_bi]);
+
+ score = -score;
+
+ a->v[N(ai)] = b->v[cross_bi];
+ b->v[N(bi)] = a->v[cross_ai];
+
+ perim[0] = ordered_vert_edge_t(a->v[P(ai)], a->v[ai]);
+ perim[1] = ordered_vert_edge_t(a->v[N(ai)], a->v[ai]); // this edge was a b-edge
+
+ perim[2] = ordered_vert_edge_t(b->v[P(bi)], b->v[bi]);
+ perim[3] = ordered_vert_edge_t(b->v[N(bi)], b->v[bi]); // this edge was an a-edge
+}
+
+
+
+void carve::triangulate::detail::tri_pairs_t::insert(unsigned a, unsigned b, carve::triangulate::tri_idx *t) {
+ tri_pair_t *tp;
+ if (a < b) {
+ tp = storage[vert_edge_t(a,b)];
+ if (!tp) {
+ tp = storage[vert_edge_t(a,b)] = new tri_pair_t;
+ }
+ tp->a = t;
+ } else {
+ tp = storage[vert_edge_t(b,a)];
+ if (!tp) {
+ tp = storage[vert_edge_t(b,a)] = new tri_pair_t;
+ }
+ tp->b = t;
+ }
+}