Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/include/ceres/jet.h')
-rw-r--r--extern/ceres/include/ceres/jet.h693
1 files changed, 415 insertions, 278 deletions
diff --git a/extern/ceres/include/ceres/jet.h b/extern/ceres/include/ceres/jet.h
index a104707298c..7aafaa01d30 100644
--- a/extern/ceres/include/ceres/jet.h
+++ b/extern/ceres/include/ceres/jet.h
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2015 Google Inc. All rights reserved.
+// Copyright 2019 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
@@ -31,7 +31,7 @@
// A simple implementation of N-dimensional dual numbers, for automatically
// computing exact derivatives of functions.
//
-// While a complete treatment of the mechanics of automatic differentation is
+// While a complete treatment of the mechanics of automatic differentiation is
// beyond the scope of this header (see
// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
// basic idea is to extend normal arithmetic with an extra element, "e," often
@@ -49,7 +49,7 @@
// f(x) = x^2 ,
//
// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
-// Next, augument 10 with an infinitesimal to get:
+// Next, argument 10 with an infinitesimal to get:
//
// f(10 + e) = (10 + e)^2
// = 100 + 2 * 10 * e + e^2
@@ -102,8 +102,9 @@
// }
//
// // The "2" means there should be 2 dual number components.
-// Jet<double, 2> x(0); // Pick the 0th dual number for x.
-// Jet<double, 2> y(1); // Pick the 1st dual number for y.
+// // It computes the partial derivative at x=10, y=20.
+// Jet<double, 2> x(10, 0); // Pick the 0th dual number for x.
+// Jet<double, 2> y(20, 1); // Pick the 1st dual number for y.
// Jet<double, 2> z = f(x, y);
//
// LOG(INFO) << "df/dx = " << z.v[0]
@@ -124,7 +125,7 @@
//
// x = a + \sum_i v[i] t_i
//
-// A shorthand is to write an element as x = a + u, where u is the pertubation.
+// A shorthand is to write an element as x = a + u, where u is the perturbation.
// Then, the main point about the arithmetic of jets is that the product of
// perturbations is zero:
//
@@ -163,7 +164,6 @@
#include <string>
#include "Eigen/Core"
-#include "ceres/fpclassify.h"
#include "ceres/internal/port.h"
namespace ceres {
@@ -171,26 +171,25 @@ namespace ceres {
template <typename T, int N>
struct Jet {
enum { DIMENSION = N };
+ typedef T Scalar;
// Default-construct "a" because otherwise this can lead to false errors about
// uninitialized uses when other classes relying on default constructed T
// (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
// the C++ standard mandates that e.g. default constructed doubles are
// initialized to 0.0; see sections 8.5 of the C++03 standard.
- Jet() : a() {
- v.setZero();
- }
+ Jet() : a() { v.setConstant(Scalar()); }
// Constructor from scalar: a + 0.
explicit Jet(const T& value) {
a = value;
- v.setZero();
+ v.setConstant(Scalar());
}
// Constructor from scalar plus variable: a + t_i.
Jet(const T& value, int k) {
a = value;
- v.setZero();
+ v.setConstant(Scalar());
v[k] = T(1.0);
}
@@ -198,58 +197,66 @@ struct Jet {
// The use of Eigen::DenseBase allows Eigen expressions
// to be passed in without being fully evaluated until
// they are assigned to v
- template<typename Derived>
- EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v)
- : a(a), v(v) {
- }
+ template <typename Derived>
+ EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived>& v)
+ : a(a), v(v) {}
// Compound operators
- Jet<T, N>& operator+=(const Jet<T, N> &y) {
+ Jet<T, N>& operator+=(const Jet<T, N>& y) {
*this = *this + y;
return *this;
}
- Jet<T, N>& operator-=(const Jet<T, N> &y) {
+ Jet<T, N>& operator-=(const Jet<T, N>& y) {
*this = *this - y;
return *this;
}
- Jet<T, N>& operator*=(const Jet<T, N> &y) {
+ Jet<T, N>& operator*=(const Jet<T, N>& y) {
*this = *this * y;
return *this;
}
- Jet<T, N>& operator/=(const Jet<T, N> &y) {
+ Jet<T, N>& operator/=(const Jet<T, N>& y) {
*this = *this / y;
return *this;
}
+ // Compound with scalar operators.
+ Jet<T, N>& operator+=(const T& s) {
+ *this = *this + s;
+ return *this;
+ }
+
+ Jet<T, N>& operator-=(const T& s) {
+ *this = *this - s;
+ return *this;
+ }
+
+ Jet<T, N>& operator*=(const T& s) {
+ *this = *this * s;
+ return *this;
+ }
+
+ Jet<T, N>& operator/=(const T& s) {
+ *this = *this / s;
+ return *this;
+ }
+
// The scalar part.
T a;
// The infinitesimal part.
+ Eigen::Matrix<T, N, 1> v;
- // We allocate Jets on the stack and other places they
- // might not be aligned to 16-byte boundaries. If we have C++11, we
- // can specify their alignment anyway, and thus can safely enable
- // vectorization on those matrices; in C++99, we are out of luck. Figure out
- // what case we're in and do the right thing.
-#ifndef CERES_USE_CXX11
- // fall back to safe version:
- Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
-#else
- static constexpr bool kShouldAlignMatrix =
- 16 <= ::ceres::port_constants::kMaxAlignBytes;
- static constexpr int kAlignHint = kShouldAlignMatrix ?
- Eigen::AutoAlign : Eigen::DontAlign;
- static constexpr size_t kAlignment = kShouldAlignMatrix ? 16 : 1;
- alignas(kAlignment) Eigen::Matrix<T, N, 1, kAlignHint> v;
-#endif
+ // This struct needs to have an Eigen aligned operator new as it contains
+ // fixed-size Eigen types.
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
// Unary +
-template<typename T, int N> inline
-Jet<T, N> const& operator+(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> const& operator+(const Jet<T, N>& f) {
return f;
}
@@ -257,72 +264,68 @@ Jet<T, N> const& operator+(const Jet<T, N>& f) {
// see if it causes a performance increase.
// Unary -
-template<typename T, int N> inline
-Jet<T, N> operator-(const Jet<T, N>&f) {
+template <typename T, int N>
+inline Jet<T, N> operator-(const Jet<T, N>& f) {
return Jet<T, N>(-f.a, -f.v);
}
// Binary +
-template<typename T, int N> inline
-Jet<T, N> operator+(const Jet<T, N>& f,
- const Jet<T, N>& g) {
+template <typename T, int N>
+inline Jet<T, N> operator+(const Jet<T, N>& f, const Jet<T, N>& g) {
return Jet<T, N>(f.a + g.a, f.v + g.v);
}
// Binary + with a scalar: x + s
-template<typename T, int N> inline
-Jet<T, N> operator+(const Jet<T, N>& f, T s) {
+template <typename T, int N>
+inline Jet<T, N> operator+(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a + s, f.v);
}
// Binary + with a scalar: s + x
-template<typename T, int N> inline
-Jet<T, N> operator+(T s, const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> operator+(T s, const Jet<T, N>& f) {
return Jet<T, N>(f.a + s, f.v);
}
// Binary -
-template<typename T, int N> inline
-Jet<T, N> operator-(const Jet<T, N>& f,
- const Jet<T, N>& g) {
+template <typename T, int N>
+inline Jet<T, N> operator-(const Jet<T, N>& f, const Jet<T, N>& g) {
return Jet<T, N>(f.a - g.a, f.v - g.v);
}
// Binary - with a scalar: x - s
-template<typename T, int N> inline
-Jet<T, N> operator-(const Jet<T, N>& f, T s) {
+template <typename T, int N>
+inline Jet<T, N> operator-(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a - s, f.v);
}
// Binary - with a scalar: s - x
-template<typename T, int N> inline
-Jet<T, N> operator-(T s, const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> operator-(T s, const Jet<T, N>& f) {
return Jet<T, N>(s - f.a, -f.v);
}
// Binary *
-template<typename T, int N> inline
-Jet<T, N> operator*(const Jet<T, N>& f,
- const Jet<T, N>& g) {
+template <typename T, int N>
+inline Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) {
return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
}
// Binary * with a scalar: x * s
-template<typename T, int N> inline
-Jet<T, N> operator*(const Jet<T, N>& f, T s) {
+template <typename T, int N>
+inline Jet<T, N> operator*(const Jet<T, N>& f, T s) {
return Jet<T, N>(f.a * s, f.v * s);
}
// Binary * with a scalar: s * x
-template<typename T, int N> inline
-Jet<T, N> operator*(T s, const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> operator*(T s, const Jet<T, N>& f) {
return Jet<T, N>(f.a * s, f.v * s);
}
// Binary /
-template<typename T, int N> inline
-Jet<T, N> operator/(const Jet<T, N>& f,
- const Jet<T, N>& g) {
+template <typename T, int N>
+inline Jet<T, N> operator/(const Jet<T, N>& f, const Jet<T, N>& g) {
// This uses:
//
// a + u (a + u)(b - v) (a + u)(b - v)
@@ -332,43 +335,43 @@ Jet<T, N> operator/(const Jet<T, N>& f,
// which holds because v*v = 0.
const T g_a_inverse = T(1.0) / g.a;
const T f_a_by_g_a = f.a * g_a_inverse;
- return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
+ return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
}
// Binary / with a scalar: s / x
-template<typename T, int N> inline
-Jet<T, N> operator/(T s, const Jet<T, N>& g) {
+template <typename T, int N>
+inline Jet<T, N> operator/(T s, const Jet<T, N>& g) {
const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
}
// Binary / with a scalar: x / s
-template<typename T, int N> inline
-Jet<T, N> operator/(const Jet<T, N>& f, T s) {
- const T s_inverse = 1.0 / s;
+template <typename T, int N>
+inline Jet<T, N> operator/(const Jet<T, N>& f, T s) {
+ const T s_inverse = T(1.0) / s;
return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
}
// Binary comparison operators for both scalars and jets.
-#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
-template<typename T, int N> inline \
-bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
- return f.a op g.a; \
-} \
-template<typename T, int N> inline \
-bool operator op(const T& s, const Jet<T, N>& g) { \
- return s op g.a; \
-} \
-template<typename T, int N> inline \
-bool operator op(const Jet<T, N>& f, const T& s) { \
- return f.a op s; \
-}
-CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
+#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
+ template <typename T, int N> \
+ inline bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
+ return f.a op g.a; \
+ } \
+ template <typename T, int N> \
+ inline bool operator op(const T& s, const Jet<T, N>& g) { \
+ return s op g.a; \
+ } \
+ template <typename T, int N> \
+ inline bool operator op(const Jet<T, N>& f, const T& s) { \
+ return f.a op s; \
+ }
+CERES_DEFINE_JET_COMPARISON_OPERATOR(<) // NOLINT
+CERES_DEFINE_JET_COMPARISON_OPERATOR(<=) // NOLINT
+CERES_DEFINE_JET_COMPARISON_OPERATOR(>) // NOLINT
+CERES_DEFINE_JET_COMPARISON_OPERATOR(>=) // NOLINT
+CERES_DEFINE_JET_COMPARISON_OPERATOR(==) // NOLINT
+CERES_DEFINE_JET_COMPARISON_OPERATOR(!=) // NOLINT
#undef CERES_DEFINE_JET_COMPARISON_OPERATOR
// Pull some functions from namespace std.
@@ -376,112 +379,128 @@ CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
// This is necessary because we want to use the same name (e.g. 'sqrt') for
// double-valued and Jet-valued functions, but we are not allowed to put
// Jet-valued functions inside namespace std.
-//
-// TODO(keir): Switch to "using".
-inline double abs (double x) { return std::abs(x); }
-inline double log (double x) { return std::log(x); }
-inline double exp (double x) { return std::exp(x); }
-inline double sqrt (double x) { return std::sqrt(x); }
-inline double cos (double x) { return std::cos(x); }
-inline double acos (double x) { return std::acos(x); }
-inline double sin (double x) { return std::sin(x); }
-inline double asin (double x) { return std::asin(x); }
-inline double tan (double x) { return std::tan(x); }
-inline double atan (double x) { return std::atan(x); }
-inline double sinh (double x) { return std::sinh(x); }
-inline double cosh (double x) { return std::cosh(x); }
-inline double tanh (double x) { return std::tanh(x); }
-inline double floor (double x) { return std::floor(x); }
-inline double ceil (double x) { return std::ceil(x); }
-inline double pow (double x, double y) { return std::pow(x, y); }
-inline double atan2(double y, double x) { return std::atan2(y, x); }
+using std::abs;
+using std::acos;
+using std::asin;
+using std::atan;
+using std::atan2;
+using std::cbrt;
+using std::ceil;
+using std::cos;
+using std::cosh;
+using std::exp;
+using std::exp2;
+using std::floor;
+using std::fmax;
+using std::fmin;
+using std::hypot;
+using std::isfinite;
+using std::isinf;
+using std::isnan;
+using std::isnormal;
+using std::log;
+using std::log2;
+using std::pow;
+using std::sin;
+using std::sinh;
+using std::sqrt;
+using std::tan;
+using std::tanh;
+
+// Legacy names from pre-C++11 days.
+// clang-format off
+inline bool IsFinite(double x) { return std::isfinite(x); }
+inline bool IsInfinite(double x) { return std::isinf(x); }
+inline bool IsNaN(double x) { return std::isnan(x); }
+inline bool IsNormal(double x) { return std::isnormal(x); }
+// clang-format on
// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
// abs(x + h) ~= x + h or -(x + h)
-template <typename T, int N> inline
-Jet<T, N> abs(const Jet<T, N>& f) {
- return f.a < T(0.0) ? -f : f;
+template <typename T, int N>
+inline Jet<T, N> abs(const Jet<T, N>& f) {
+ return (f.a < T(0.0) ? -f : f);
}
// log(a + h) ~= log(a) + h / a
-template <typename T, int N> inline
-Jet<T, N> log(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> log(const Jet<T, N>& f) {
const T a_inverse = T(1.0) / f.a;
return Jet<T, N>(log(f.a), f.v * a_inverse);
}
// exp(a + h) ~= exp(a) + exp(a) h
-template <typename T, int N> inline
-Jet<T, N> exp(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> exp(const Jet<T, N>& f) {
const T tmp = exp(f.a);
return Jet<T, N>(tmp, tmp * f.v);
}
// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
-template <typename T, int N> inline
-Jet<T, N> sqrt(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> sqrt(const Jet<T, N>& f) {
const T tmp = sqrt(f.a);
const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
return Jet<T, N>(tmp, f.v * two_a_inverse);
}
// cos(a + h) ~= cos(a) - sin(a) h
-template <typename T, int N> inline
-Jet<T, N> cos(const Jet<T, N>& f) {
- return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
+template <typename T, int N>
+inline Jet<T, N> cos(const Jet<T, N>& f) {
+ return Jet<T, N>(cos(f.a), -sin(f.a) * f.v);
}
// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
-template <typename T, int N> inline
-Jet<T, N> acos(const Jet<T, N>& f) {
- const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
+template <typename T, int N>
+inline Jet<T, N> acos(const Jet<T, N>& f) {
+ const T tmp = -T(1.0) / sqrt(T(1.0) - f.a * f.a);
return Jet<T, N>(acos(f.a), tmp * f.v);
}
// sin(a + h) ~= sin(a) + cos(a) h
-template <typename T, int N> inline
-Jet<T, N> sin(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> sin(const Jet<T, N>& f) {
return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
}
// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
-template <typename T, int N> inline
-Jet<T, N> asin(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> asin(const Jet<T, N>& f) {
const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
return Jet<T, N>(asin(f.a), tmp * f.v);
}
// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
-template <typename T, int N> inline
-Jet<T, N> tan(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> tan(const Jet<T, N>& f) {
const T tan_a = tan(f.a);
const T tmp = T(1.0) + tan_a * tan_a;
return Jet<T, N>(tan_a, tmp * f.v);
}
// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
-template <typename T, int N> inline
-Jet<T, N> atan(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> atan(const Jet<T, N>& f) {
const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
return Jet<T, N>(atan(f.a), tmp * f.v);
}
// sinh(a + h) ~= sinh(a) + cosh(a) h
-template <typename T, int N> inline
-Jet<T, N> sinh(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> sinh(const Jet<T, N>& f) {
return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
}
// cosh(a + h) ~= cosh(a) + sinh(a) h
-template <typename T, int N> inline
-Jet<T, N> cosh(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> cosh(const Jet<T, N>& f) {
return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
}
// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
-template <typename T, int N> inline
-Jet<T, N> tanh(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> tanh(const Jet<T, N>& f) {
const T tanh_a = tanh(f.a);
const T tmp = T(1.0) - tanh_a * tanh_a;
return Jet<T, N>(tanh_a, tmp * f.v);
@@ -491,8 +510,8 @@ Jet<T, N> tanh(const Jet<T, N>& f) {
// result in a zero derivative which provides no information to the solver.
//
// floor(a + h) ~= floor(a) + 0
-template <typename T, int N> inline
-Jet<T, N> floor(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> floor(const Jet<T, N>& f) {
return Jet<T, N>(floor(f.a));
}
@@ -500,11 +519,60 @@ Jet<T, N> floor(const Jet<T, N>& f) {
// result in a zero derivative which provides no information to the solver.
//
// ceil(a + h) ~= ceil(a) + 0
-template <typename T, int N> inline
-Jet<T, N> ceil(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> ceil(const Jet<T, N>& f) {
return Jet<T, N>(ceil(f.a));
}
+// Some new additions to C++11:
+
+// cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3))
+template <typename T, int N>
+inline Jet<T, N> cbrt(const Jet<T, N>& f) {
+ const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a));
+ return Jet<T, N>(cbrt(f.a), f.v * derivative);
+}
+
+// exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2)
+template <typename T, int N>
+inline Jet<T, N> exp2(const Jet<T, N>& f) {
+ const T tmp = exp2(f.a);
+ const T derivative = tmp * log(T(2));
+ return Jet<T, N>(tmp, f.v * derivative);
+}
+
+// log2(x + h) ~= log2(x) + h / (x * log(2))
+template <typename T, int N>
+inline Jet<T, N> log2(const Jet<T, N>& f) {
+ const T derivative = T(1.0) / (f.a * log(T(2)));
+ return Jet<T, N>(log2(f.a), f.v * derivative);
+}
+
+// Like sqrt(x^2 + y^2),
+// but acts to prevent underflow/overflow for small/large x/y.
+// Note that the function is non-smooth at x=y=0,
+// so the derivative is undefined there.
+template <typename T, int N>
+inline Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) {
+ // d/da sqrt(a) = 0.5 / sqrt(a)
+ // d/dx x^2 + y^2 = 2x
+ // So by the chain rule:
+ // d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2)
+ // d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2)
+ const T tmp = hypot(x.a, y.a);
+ return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v);
+}
+
+template <typename T, int N>
+inline Jet<T, N> fmax(const Jet<T, N>& x, const Jet<T, N>& y) {
+ return x < y ? y : x;
+}
+
+template <typename T, int N>
+inline Jet<T, N> fmin(const Jet<T, N>& x, const Jet<T, N>& y) {
+ return y < x ? y : x;
+}
+
// Bessel functions of the first kind with integer order equal to 0, 1, n.
//
// Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of
@@ -512,21 +580,21 @@ Jet<T, N> ceil(const Jet<T, N>& f) {
// function errors in client code (the specific warning is suppressed when
// Ceres itself is built).
inline double BesselJ0(double x) {
-#if defined(_MSC_VER) && defined(_j0)
+#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
return _j0(x);
#else
return j0(x);
#endif
}
inline double BesselJ1(double x) {
-#if defined(_MSC_VER) && defined(_j1)
+#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
return _j1(x);
#else
return j1(x);
#endif
}
inline double BesselJn(int n, double x) {
-#if defined(_MSC_VER) && defined(_jn)
+#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
return _jn(n, x);
#else
return jn(n, x);
@@ -541,32 +609,32 @@ inline double BesselJn(int n, double x) {
// See formula http://dlmf.nist.gov/10.6#E3
// j0(a + h) ~= j0(a) - j1(a) h
-template <typename T, int N> inline
-Jet<T, N> BesselJ0(const Jet<T, N>& f) {
- return Jet<T, N>(BesselJ0(f.a),
- -BesselJ1(f.a) * f.v);
+template <typename T, int N>
+inline Jet<T, N> BesselJ0(const Jet<T, N>& f) {
+ return Jet<T, N>(BesselJ0(f.a), -BesselJ1(f.a) * f.v);
}
// See formula http://dlmf.nist.gov/10.6#E1
// j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h
-template <typename T, int N> inline
-Jet<T, N> BesselJ1(const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> BesselJ1(const Jet<T, N>& f) {
return Jet<T, N>(BesselJ1(f.a),
T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v);
}
// See formula http://dlmf.nist.gov/10.6#E1
// j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h
-template <typename T, int N> inline
-Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
- return Jet<T, N>(BesselJn(n, f.a),
- T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v);
+template <typename T, int N>
+inline Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
+ return Jet<T, N>(
+ BesselJn(n, f.a),
+ T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v);
}
// Jet Classification. It is not clear what the appropriate semantics are for
-// these classifications. This picks that IsFinite and isnormal are "all"
-// operations, i.e. all elements of the jet must be finite for the jet itself
-// to be finite (or normal). For IsNaN and IsInfinite, the answer is less
+// these classifications. This picks that std::isfinite and std::isnormal are
+// "all" operations, i.e. all elements of the jet must be finite for the jet
+// itself to be finite (or normal). For IsNaN and IsInfinite, the answer is less
// clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
// part of a jet is nan or inf, then the entire jet is nan or inf. This leads
// to strange situations like a jet can be both IsInfinite and IsNaN, but in
@@ -574,81 +642,88 @@ Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
// derivatives are sane.
// The jet is finite if all parts of the jet are finite.
-template <typename T, int N> inline
-bool IsFinite(const Jet<T, N>& f) {
- if (!IsFinite(f.a)) {
- return false;
- }
+template <typename T, int N>
+inline bool isfinite(const Jet<T, N>& f) {
+ // Branchless implementation. This is more efficient for the false-case and
+ // works with the codegen system.
+ auto result = isfinite(f.a);
for (int i = 0; i < N; ++i) {
- if (!IsFinite(f.v[i])) {
- return false;
- }
+ result = result & isfinite(f.v[i]);
}
- return true;
+ return result;
}
-// The jet is infinite if any part of the jet is infinite.
-template <typename T, int N> inline
-bool IsInfinite(const Jet<T, N>& f) {
- if (IsInfinite(f.a)) {
- return true;
- }
- for (int i = 0; i < N; i++) {
- if (IsInfinite(f.v[i])) {
- return true;
- }
+// The jet is infinite if any part of the Jet is infinite.
+template <typename T, int N>
+inline bool isinf(const Jet<T, N>& f) {
+ auto result = isinf(f.a);
+ for (int i = 0; i < N; ++i) {
+ result = result | isinf(f.v[i]);
}
- return false;
+ return result;
}
// The jet is NaN if any part of the jet is NaN.
-template <typename T, int N> inline
-bool IsNaN(const Jet<T, N>& f) {
- if (IsNaN(f.a)) {
- return true;
- }
+template <typename T, int N>
+inline bool isnan(const Jet<T, N>& f) {
+ auto result = isnan(f.a);
for (int i = 0; i < N; ++i) {
- if (IsNaN(f.v[i])) {
- return true;
- }
+ result = result | isnan(f.v[i]);
}
- return false;
+ return result;
}
// The jet is normal if all parts of the jet are normal.
-template <typename T, int N> inline
-bool IsNormal(const Jet<T, N>& f) {
- if (!IsNormal(f.a)) {
- return false;
- }
+template <typename T, int N>
+inline bool isnormal(const Jet<T, N>& f) {
+ auto result = isnormal(f.a);
for (int i = 0; i < N; ++i) {
- if (!IsNormal(f.v[i])) {
- return false;
- }
+ result = result & isnormal(f.v[i]);
}
- return true;
+ return result;
+}
+
+// Legacy functions from the pre-C++11 days.
+template <typename T, int N>
+inline bool IsFinite(const Jet<T, N>& f) {
+ return isfinite(f);
+}
+
+template <typename T, int N>
+inline bool IsNaN(const Jet<T, N>& f) {
+ return isnan(f);
+}
+
+template <typename T, int N>
+inline bool IsNormal(const Jet<T, N>& f) {
+ return isnormal(f);
+}
+
+// The jet is infinite if any part of the jet is infinite.
+template <typename T, int N>
+inline bool IsInfinite(const Jet<T, N>& f) {
+ return isinf(f);
}
// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
//
// In words: the rate of change of theta is 1/r times the rate of
// change of (x, y) in the positive angular direction.
-template <typename T, int N> inline
-Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
+template <typename T, int N>
+inline Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
// Note order of arguments:
//
// f = a + da
// g = b + db
T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
- return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
+ return Jet<T, N>(atan2(g.a, f.a), tmp * (-g.a * f.v + f.a * g.v));
}
-
// pow -- base is a differentiable function, exponent is a constant.
// (a+da)^p ~= a^p + p*a^(p-1) da
-template <typename T, int N> inline
-Jet<T, N> pow(const Jet<T, N>& f, double g) {
+template <typename T, int N>
+inline Jet<T, N> pow(const Jet<T, N>& f, double g) {
T const tmp = g * pow(f.a, g - T(1.0));
return Jet<T, N>(pow(f.a, g), tmp * f.v);
}
@@ -664,26 +739,30 @@ Jet<T, N> pow(const Jet<T, N>& f, double g) {
// 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg
// != 0, the derivatives are not defined and we return NaN.
-template <typename T, int N> inline
-Jet<T, N> pow(double f, const Jet<T, N>& g) {
- if (f == 0 && g.a > 0) {
+template <typename T, int N>
+inline Jet<T, N> pow(T f, const Jet<T, N>& g) {
+ Jet<T, N> result;
+
+ if (f == T(0) && g.a > T(0)) {
// Handle case 2.
- return Jet<T, N>(T(0.0));
- }
- if (f < 0 && g.a == floor(g.a)) {
- // Handle case 3.
- Jet<T, N> ret(pow(f, g.a));
- for (int i = 0; i < N; i++) {
- if (g.v[i] != T(0.0)) {
- // Return a NaN when g.v != 0.
- ret.v[i] = std::numeric_limits<T>::quiet_NaN();
+ result = Jet<T, N>(T(0.0));
+ } else {
+ if (f < 0 && g.a == floor(g.a)) { // Handle case 3.
+ result = Jet<T, N>(pow(f, g.a));
+ for (int i = 0; i < N; i++) {
+ if (g.v[i] != T(0.0)) {
+ // Return a NaN when g.v != 0.
+ result.v[i] = std::numeric_limits<T>::quiet_NaN();
+ }
}
+ } else {
+ // Handle case 1.
+ T const tmp = pow(f, g.a);
+ result = Jet<T, N>(tmp, log(f) * tmp * g.v);
}
- return ret;
}
- // Handle case 1.
- T const tmp = pow(f, g.a);
- return Jet<T, N>(tmp, log(f) * tmp * g.v);
+
+ return result;
}
// pow -- both base and exponent are differentiable functions. This has a
@@ -722,73 +801,48 @@ Jet<T, N> pow(double f, const Jet<T, N>& g) {
//
// 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite.
-template <typename T, int N> inline
-Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
- if (f.a == 0 && g.a >= 1) {
+template <typename T, int N>
+inline Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
+ Jet<T, N> result;
+
+ if (f.a == T(0) && g.a >= T(1)) {
// Handle cases 2 and 3.
- if (g.a > 1) {
- return Jet<T, N>(T(0.0));
+ if (g.a > T(1)) {
+ result = Jet<T, N>(T(0.0));
+ } else {
+ result = f;
}
- return f;
- }
- if (f.a < 0 && g.a == floor(g.a)) {
- // Handle cases 7 and 8.
- T const tmp = g.a * pow(f.a, g.a - T(1.0));
- Jet<T, N> ret(pow(f.a, g.a), tmp * f.v);
- for (int i = 0; i < N; i++) {
- if (g.v[i] != T(0.0)) {
- // Return a NaN when g.v != 0.
- ret.v[i] = std::numeric_limits<T>::quiet_NaN();
+
+ } else {
+ if (f.a < T(0) && g.a == floor(g.a)) {
+ // Handle cases 7 and 8.
+ T const tmp = g.a * pow(f.a, g.a - T(1.0));
+ result = Jet<T, N>(pow(f.a, g.a), tmp * f.v);
+ for (int i = 0; i < N; i++) {
+ if (g.v[i] != T(0.0)) {
+ // Return a NaN when g.v != 0.
+ result.v[i] = T(std::numeric_limits<double>::quiet_NaN());
+ }
}
+ } else {
+ // Handle the remaining cases. For cases 4,5,6,9 we allow the log()
+ // function to generate -HUGE_VAL or NaN, since those cases result in a
+ // nonfinite derivative.
+ T const tmp1 = pow(f.a, g.a);
+ T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
+ T const tmp3 = tmp1 * log(f.a);
+ result = Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
}
- return ret;
}
- // Handle the remaining cases. For cases 4,5,6,9 we allow the log() function
- // to generate -HUGE_VAL or NaN, since those cases result in a nonfinite
- // derivative.
- T const tmp1 = pow(f.a, g.a);
- T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
- T const tmp3 = tmp1 * log(f.a);
- return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
-}
-
-// Define the helper functions Eigen needs to embed Jet types.
-//
-// NOTE(keir): machine_epsilon() and precision() are missing, because they don't
-// work with nested template types (e.g. where the scalar is itself templated).
-// Among other things, this means that decompositions of Jet's does not work,
-// for example
-//
-// Matrix<Jet<T, N> ... > A, x, b;
-// ...
-// A.solve(b, &x)
-//
-// does not work and will fail with a strange compiler error.
-//
-// TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
-// switch to 3.0, also add the rest of the specialization functionality.
-template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT
-template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT
+
+ return result;
+}
// Note: This has to be in the ceres namespace for argument dependent lookup to
// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
// strange compile errors.
template <typename T, int N>
-inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
+inline std::ostream& operator<<(std::ostream& s, const Jet<T, N>& z) {
s << "[" << z.a << " ; ";
for (int i = 0; i < N; ++i) {
s << z.v[i];
@@ -799,15 +853,78 @@ inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
s << "]";
return s;
}
-
} // namespace ceres
+namespace std {
+template <typename T, int N>
+struct numeric_limits<ceres::Jet<T, N>> {
+ static constexpr bool is_specialized = true;
+ static constexpr bool is_signed = std::numeric_limits<T>::is_signed;
+ static constexpr bool is_integer = std::numeric_limits<T>::is_integer;
+ static constexpr bool is_exact = std::numeric_limits<T>::is_exact;
+ static constexpr bool has_infinity = std::numeric_limits<T>::has_infinity;
+ static constexpr bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN;
+ static constexpr bool has_signaling_NaN =
+ std::numeric_limits<T>::has_signaling_NaN;
+ static constexpr bool is_iec559 = std::numeric_limits<T>::is_iec559;
+ static constexpr bool is_bounded = std::numeric_limits<T>::is_bounded;
+ static constexpr bool is_modulo = std::numeric_limits<T>::is_modulo;
+
+ static constexpr std::float_denorm_style has_denorm =
+ std::numeric_limits<T>::has_denorm;
+ static constexpr std::float_round_style round_style =
+ std::numeric_limits<T>::round_style;
+
+ static constexpr int digits = std::numeric_limits<T>::digits;
+ static constexpr int digits10 = std::numeric_limits<T>::digits10;
+ static constexpr int max_digits10 = std::numeric_limits<T>::max_digits10;
+ static constexpr int radix = std::numeric_limits<T>::radix;
+ static constexpr int min_exponent = std::numeric_limits<T>::min_exponent;
+ static constexpr int min_exponent10 = std::numeric_limits<T>::max_exponent10;
+ static constexpr int max_exponent = std::numeric_limits<T>::max_exponent;
+ static constexpr int max_exponent10 = std::numeric_limits<T>::max_exponent10;
+ static constexpr bool traps = std::numeric_limits<T>::traps;
+ static constexpr bool tinyness_before =
+ std::numeric_limits<T>::tinyness_before;
+
+ static constexpr ceres::Jet<T, N> min() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::min());
+ }
+ static constexpr ceres::Jet<T, N> lowest() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::lowest());
+ }
+ static constexpr ceres::Jet<T, N> epsilon() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::epsilon());
+ }
+ static constexpr ceres::Jet<T, N> round_error() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::round_error());
+ }
+ static constexpr ceres::Jet<T, N> infinity() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::infinity());
+ }
+ static constexpr ceres::Jet<T, N> quiet_NaN() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::quiet_NaN());
+ }
+ static constexpr ceres::Jet<T, N> signaling_NaN() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::signaling_NaN());
+ }
+ static constexpr ceres::Jet<T, N> denorm_min() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::denorm_min());
+ }
+
+ static constexpr ceres::Jet<T, N> max() noexcept {
+ return ceres::Jet<T, N>(std::numeric_limits<T>::max());
+ }
+};
+
+} // namespace std
+
namespace Eigen {
// Creating a specialization of NumTraits enables placing Jet objects inside
// Eigen arrays, getting all the goodness of Eigen combined with autodiff.
-template<typename T, int N>
-struct NumTraits<ceres::Jet<T, N> > {
+template <typename T, int N>
+struct NumTraits<ceres::Jet<T, N>> {
typedef ceres::Jet<T, N> Real;
typedef ceres::Jet<T, N> NonInteger;
typedef ceres::Jet<T, N> Nested;
@@ -821,6 +938,8 @@ struct NumTraits<ceres::Jet<T, N> > {
return Real(std::numeric_limits<T>::epsilon());
}
+ static inline int digits10() { return NumTraits<T>::digits10(); }
+
enum {
IsComplex = 0,
IsInteger = 0,
@@ -833,7 +952,7 @@ struct NumTraits<ceres::Jet<T, N> > {
RequireInitialization = 1
};
- template<bool Vectorized>
+ template <bool Vectorized>
struct Div {
enum {
#if defined(EIGEN_VECTORIZE_AVX)
@@ -847,6 +966,24 @@ struct NumTraits<ceres::Jet<T, N> > {
Cost = 3
};
};
+
+ static inline Real highest() { return Real(std::numeric_limits<T>::max()); }
+ static inline Real lowest() { return Real(-std::numeric_limits<T>::max()); }
+};
+
+// Specifying the return type of binary operations between Jets and scalar types
+// allows you to perform matrix/array operations with Eigen matrices and arrays
+// such as addition, subtraction, multiplication, and division where one Eigen
+// matrix/array is of type Jet and the other is a scalar type. This improves
+// performance by using the optimized scalar-to-Jet binary operations but
+// is only available on Eigen versions >= 3.3
+template <typename BinaryOp, typename T, int N>
+struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> {
+ typedef ceres::Jet<T, N> ReturnType;
+};
+template <typename BinaryOp, typename T, int N>
+struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> {
+ typedef ceres::Jet<T, N> ReturnType;
};
} // namespace Eigen