Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/internal/ceres/corrector.cc')
-rw-r--r--extern/ceres/internal/ceres/corrector.cc158
1 files changed, 158 insertions, 0 deletions
diff --git a/extern/ceres/internal/ceres/corrector.cc b/extern/ceres/internal/ceres/corrector.cc
new file mode 100644
index 00000000000..720182868c1
--- /dev/null
+++ b/extern/ceres/internal/ceres/corrector.cc
@@ -0,0 +1,158 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/corrector.h"
+
+#include <cstddef>
+#include <cmath>
+#include "ceres/internal/eigen.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+Corrector::Corrector(const double sq_norm, const double rho[3]) {
+ CHECK_GE(sq_norm, 0.0);
+ sqrt_rho1_ = sqrt(rho[1]);
+
+ // If sq_norm = 0.0, the correction becomes trivial, the residual
+ // and the jacobian are scaled by the squareroot of the derivative
+ // of rho. Handling this case explicitly avoids the divide by zero
+ // error that would occur below.
+ //
+ // The case where rho'' < 0 also gets special handling. Technically
+ // it shouldn't, and the computation of the scaling should proceed
+ // as below, however we found in experiments that applying the
+ // curvature correction when rho'' < 0, which is the case when we
+ // are in the outlier region slows down the convergence of the
+ // algorithm significantly.
+ //
+ // Thus, we have divided the action of the robustifier into two
+ // parts. In the inliner region, we do the full second order
+ // correction which re-wights the gradient of the function by the
+ // square root of the derivative of rho, and the Gauss-Newton
+ // Hessian gets both the scaling and the rank-1 curvature
+ // correction. Normaly, alpha is upper bounded by one, but with this
+ // change, alpha is bounded above by zero.
+ //
+ // Empirically we have observed that the full Triggs correction and
+ // the clamped correction both start out as very good approximations
+ // to the loss function when we are in the convex part of the
+ // function, but as the function starts transitioning from convex to
+ // concave, the Triggs approximation diverges more and more and
+ // ultimately becomes linear. The clamped Triggs model however
+ // remains quadratic.
+ //
+ // The reason why the Triggs approximation becomes so poor is
+ // because the curvature correction that it applies to the gauss
+ // newton hessian goes from being a full rank correction to a rank
+ // deficient correction making the inversion of the Hessian fraught
+ // with all sorts of misery and suffering.
+ //
+ // The clamped correction retains its quadratic nature and inverting it
+ // is always well formed.
+ if ((sq_norm == 0.0) || (rho[2] <= 0.0)) {
+ residual_scaling_ = sqrt_rho1_;
+ alpha_sq_norm_ = 0.0;
+ return;
+ }
+
+ // We now require that the first derivative of the loss function be
+ // positive only if the second derivative is positive. This is
+ // because when the second derivative is non-positive, we do not use
+ // the second order correction suggested by BANS and instead use a
+ // simpler first order strategy which does not use a division by the
+ // gradient of the loss function.
+ CHECK_GT(rho[1], 0.0);
+
+ // Calculate the smaller of the two solutions to the equation
+ //
+ // 0.5 * alpha^2 - alpha - rho'' / rho' * z'z = 0.
+ //
+ // Start by calculating the discriminant D.
+ const double D = 1.0 + 2.0 * sq_norm * rho[2] / rho[1];
+
+ // Since both rho[1] and rho[2] are guaranteed to be positive at
+ // this point, we know that D > 1.0.
+
+ const double alpha = 1.0 - sqrt(D);
+
+ // Calculate the constants needed by the correction routines.
+ residual_scaling_ = sqrt_rho1_ / (1 - alpha);
+ alpha_sq_norm_ = alpha / sq_norm;
+}
+
+void Corrector::CorrectResiduals(const int num_rows, double* residuals) {
+ DCHECK(residuals != NULL);
+ // Equation 11 in BANS.
+ VectorRef(residuals, num_rows) *= residual_scaling_;
+}
+
+void Corrector::CorrectJacobian(const int num_rows,
+ const int num_cols,
+ double* residuals,
+ double* jacobian) {
+ DCHECK(residuals != NULL);
+ DCHECK(jacobian != NULL);
+
+ // The common case (rho[2] <= 0).
+ if (alpha_sq_norm_ == 0.0) {
+ VectorRef(jacobian, num_rows * num_cols) *= sqrt_rho1_;
+ return;
+ }
+
+ // Equation 11 in BANS.
+ //
+ // J = sqrt(rho) * (J - alpha^2 r * r' J)
+ //
+ // In days gone by this loop used to be a single Eigen expression of
+ // the form
+ //
+ // J = sqrt_rho1_ * (J - alpha_sq_norm_ * r* (r.transpose() * J));
+ //
+ // Which turns out to about 17x slower on bal problems. The reason
+ // is that Eigen is unable to figure out that this expression can be
+ // evaluated columnwise and ends up creating a temporary.
+ for (int c = 0; c < num_cols; ++c) {
+ double r_transpose_j = 0.0;
+ for (int r = 0; r < num_rows; ++r) {
+ r_transpose_j += jacobian[r * num_cols + c] * residuals[r];
+ }
+
+ for (int r = 0; r < num_rows; ++r) {
+ jacobian[r * num_cols + c] = sqrt_rho1_ *
+ (jacobian[r * num_cols + c] -
+ alpha_sq_norm_ * residuals[r] * r_transpose_j);
+ }
+ }
+}
+
+} // namespace internal
+} // namespace ceres