Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/internal/ceres/low_rank_inverse_hessian.cc')
-rw-r--r--extern/ceres/internal/ceres/low_rank_inverse_hessian.cc188
1 files changed, 188 insertions, 0 deletions
diff --git a/extern/ceres/internal/ceres/low_rank_inverse_hessian.cc b/extern/ceres/internal/ceres/low_rank_inverse_hessian.cc
new file mode 100644
index 00000000000..1c6c9925f1c
--- /dev/null
+++ b/extern/ceres/internal/ceres/low_rank_inverse_hessian.cc
@@ -0,0 +1,188 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include <list>
+
+#include "ceres/internal/eigen.h"
+#include "ceres/low_rank_inverse_hessian.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+using std::list;
+
+// The (L)BFGS algorithm explicitly requires that the secant equation:
+//
+// B_{k+1} * s_k = y_k
+//
+// Is satisfied at each iteration, where B_{k+1} is the approximated
+// Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
+// y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
+// positive definite, this is equivalent to the condition:
+//
+// s_k^T * y_k > 0 [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
+//
+// This condition would always be satisfied if the function was strictly
+// convex, alternatively, it is always satisfied provided that a Wolfe line
+// search is used (even if the function is not strictly convex). See [1]
+// (p138) for a proof.
+//
+// Although Ceres will always use a Wolfe line search when using (L)BFGS,
+// practical implementation considerations mean that the line search
+// may return a point that satisfies only the Armijo condition, and thus
+// could violate the Secant equation. As such, we will only use a step
+// to update the Hessian approximation if:
+//
+// s_k^T * y_k > tolerance
+//
+// It is important that tolerance is very small (and >=0), as otherwise we
+// might skip the update too often and fail to capture important curvature
+// information in the Hessian. For example going from 1e-10 -> 1e-14 improves
+// the NIST benchmark score from 43/54 to 53/54.
+//
+// [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999.
+//
+// TODO(alexs.mac): Consider using Damped BFGS update instead of
+// skipping update.
+const double kLBFGSSecantConditionHessianUpdateTolerance = 1e-14;
+
+LowRankInverseHessian::LowRankInverseHessian(
+ int num_parameters,
+ int max_num_corrections,
+ bool use_approximate_eigenvalue_scaling)
+ : num_parameters_(num_parameters),
+ max_num_corrections_(max_num_corrections),
+ use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
+ approximate_eigenvalue_scale_(1.0),
+ delta_x_history_(num_parameters, max_num_corrections),
+ delta_gradient_history_(num_parameters, max_num_corrections),
+ delta_x_dot_delta_gradient_(max_num_corrections) {
+}
+
+bool LowRankInverseHessian::Update(const Vector& delta_x,
+ const Vector& delta_gradient) {
+ const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
+ if (delta_x_dot_delta_gradient <=
+ kLBFGSSecantConditionHessianUpdateTolerance) {
+ VLOG(2) << "Skipping L-BFGS Update, delta_x_dot_delta_gradient too "
+ << "small: " << delta_x_dot_delta_gradient << ", tolerance: "
+ << kLBFGSSecantConditionHessianUpdateTolerance
+ << " (Secant condition).";
+ return false;
+ }
+
+
+ int next = indices_.size();
+ // Once the size of the list reaches max_num_corrections_, simulate
+ // a circular buffer by removing the first element of the list and
+ // making it the next position where the LBFGS history is stored.
+ if (next == max_num_corrections_) {
+ next = indices_.front();
+ indices_.pop_front();
+ }
+
+ indices_.push_back(next);
+ delta_x_history_.col(next) = delta_x;
+ delta_gradient_history_.col(next) = delta_gradient;
+ delta_x_dot_delta_gradient_(next) = delta_x_dot_delta_gradient;
+ approximate_eigenvalue_scale_ =
+ delta_x_dot_delta_gradient / delta_gradient.squaredNorm();
+ return true;
+}
+
+void LowRankInverseHessian::RightMultiply(const double* x_ptr,
+ double* y_ptr) const {
+ ConstVectorRef gradient(x_ptr, num_parameters_);
+ VectorRef search_direction(y_ptr, num_parameters_);
+
+ search_direction = gradient;
+
+ const int num_corrections = indices_.size();
+ Vector alpha(num_corrections);
+
+ for (list<int>::const_reverse_iterator it = indices_.rbegin();
+ it != indices_.rend();
+ ++it) {
+ const double alpha_i = delta_x_history_.col(*it).dot(search_direction) /
+ delta_x_dot_delta_gradient_(*it);
+ search_direction -= alpha_i * delta_gradient_history_.col(*it);
+ alpha(*it) = alpha_i;
+ }
+
+ if (use_approximate_eigenvalue_scaling_) {
+ // Rescale the initial inverse Hessian approximation (H_0) to be iteratively
+ // updated so that it is of similar 'size' to the true inverse Hessian along
+ // the most recent search direction. As shown in [1]:
+ //
+ // \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) /
+ // (delta_gradient_{k-1}' * delta_gradient_{k-1})
+ //
+ // Satisfies:
+ //
+ // (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1)
+ //
+ // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of
+ // the true Hessian (not the inverse) along the most recent search direction
+ // respectively. Thus \gamma is an approximate eigenvalue of the true
+ // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting
+ // point that has a similar scale to the true inverse Hessian. This
+ // technique is widely reported to often improve convergence, however this
+ // is not universally true, particularly if there are errors in the initial
+ // jacobians, or if there are significant differences in the sensitivity
+ // of the problem to the parameters (i.e. the range of the magnitudes of
+ // the components of the gradient is large).
+ //
+ // The original origin of this rescaling trick is somewhat unclear, the
+ // earliest reference appears to be Oren [1], however it is widely discussed
+ // without specific attributation in various texts including [2] (p143/178).
+ //
+ // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II:
+ // Implementation and experiments, Management Science,
+ // 20(5), 863-874, 1974.
+ // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
+ search_direction *= approximate_eigenvalue_scale_;
+
+ VLOG(4) << "Applying approximate_eigenvalue_scale: "
+ << approximate_eigenvalue_scale_ << " to initial inverse Hessian "
+ << "approximation.";
+ }
+
+ for (list<int>::const_iterator it = indices_.begin();
+ it != indices_.end();
+ ++it) {
+ const double beta = delta_gradient_history_.col(*it).dot(search_direction) /
+ delta_x_dot_delta_gradient_(*it);
+ search_direction += delta_x_history_.col(*it) * (alpha(*it) - beta);
+ }
+}
+
+} // namespace internal
+} // namespace ceres