Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/internal/ceres/mutex.h')
-rw-r--r--extern/ceres/internal/ceres/mutex.h329
1 files changed, 0 insertions, 329 deletions
diff --git a/extern/ceres/internal/ceres/mutex.h b/extern/ceres/internal/ceres/mutex.h
deleted file mode 100644
index 2ce97772755..00000000000
--- a/extern/ceres/internal/ceres/mutex.h
+++ /dev/null
@@ -1,329 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2015 Google Inc. All rights reserved.
-// http://ceres-solver.org/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: Craig Silverstein.
-//
-// A simple mutex wrapper, supporting locks and read-write locks.
-// You should assume the locks are *not* re-entrant.
-//
-// This class is meant to be internal-only and should be wrapped by an
-// internal namespace. Before you use this module, please give the
-// name of your internal namespace for this module. Or, if you want
-// to expose it, you'll want to move it to the Google namespace. We
-// cannot put this class in global namespace because there can be some
-// problems when we have multiple versions of Mutex in each shared object.
-//
-// NOTE: by default, we have #ifdef'ed out the TryLock() method.
-// This is for two reasons:
-// 1) TryLock() under Windows is a bit annoying (it requires a
-// #define to be defined very early).
-// 2) TryLock() is broken for NO_THREADS mode, at least in NDEBUG
-// mode.
-// If you need TryLock(), and either these two caveats are not a
-// problem for you, or you're willing to work around them, then
-// feel free to #define GMUTEX_TRYLOCK, or to remove the #ifdefs
-// in the code below.
-//
-// CYGWIN NOTE: Cygwin support for rwlock seems to be buggy:
-// http://www.cygwin.com/ml/cygwin/2008-12/msg00017.html
-// Because of that, we might as well use windows locks for
-// cygwin. They seem to be more reliable than the cygwin pthreads layer.
-//
-// TRICKY IMPLEMENTATION NOTE:
-// This class is designed to be safe to use during
-// dynamic-initialization -- that is, by global constructors that are
-// run before main() starts. The issue in this case is that
-// dynamic-initialization happens in an unpredictable order, and it
-// could be that someone else's dynamic initializer could call a
-// function that tries to acquire this mutex -- but that all happens
-// before this mutex's constructor has run. (This can happen even if
-// the mutex and the function that uses the mutex are in the same .cc
-// file.) Basically, because Mutex does non-trivial work in its
-// constructor, it's not, in the naive implementation, safe to use
-// before dynamic initialization has run on it.
-//
-// The solution used here is to pair the actual mutex primitive with a
-// bool that is set to true when the mutex is dynamically initialized.
-// (Before that it's false.) Then we modify all mutex routines to
-// look at the bool, and not try to lock/unlock until the bool makes
-// it to true (which happens after the Mutex constructor has run.)
-//
-// This works because before main() starts -- particularly, during
-// dynamic initialization -- there are no threads, so a) it's ok that
-// the mutex operations are a no-op, since we don't need locking then
-// anyway; and b) we can be quite confident our bool won't change
-// state between a call to Lock() and a call to Unlock() (that would
-// require a global constructor in one translation unit to call Lock()
-// and another global constructor in another translation unit to call
-// Unlock() later, which is pretty perverse).
-//
-// That said, it's tricky, and can conceivably fail; it's safest to
-// avoid trying to acquire a mutex in a global constructor, if you
-// can. One way it can fail is that a really smart compiler might
-// initialize the bool to true at static-initialization time (too
-// early) rather than at dynamic-initialization time. To discourage
-// that, we set is_safe_ to true in code (not the constructor
-// colon-initializer) and set it to true via a function that always
-// evaluates to true, but that the compiler can't know always
-// evaluates to true. This should be good enough.
-
-#ifndef CERES_INTERNAL_MUTEX_H_
-#define CERES_INTERNAL_MUTEX_H_
-
-#include "ceres/internal/port.h"
-
-#if defined(CERES_NO_THREADS)
- typedef int MutexType; // to keep a lock-count
-#elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__)
-# define CERES_WIN32_LEAN_AND_MEAN // We only need minimal includes
-# ifdef CERES_GMUTEX_TRYLOCK
- // We need Windows NT or later for TryEnterCriticalSection(). If you
- // don't need that functionality, you can remove these _WIN32_WINNT
- // lines, and change TryLock() to assert(0) or something.
-# ifndef _WIN32_WINNT
-# define _WIN32_WINNT 0x0400
-# endif
-# endif
-// Unfortunately, windows.h defines a bunch of macros with common
-// names. Two in particular need avoiding: ERROR and min/max.
-// To avoid macro definition of ERROR.
-# define NOGDI
-// To avoid macro definition of min/max.
-# ifndef NOMINMAX
-# define NOMINMAX
-# endif
-# include <windows.h>
- typedef CRITICAL_SECTION MutexType;
-#elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK)
- // Needed for pthread_rwlock_*. If it causes problems, you could take it
- // out, but then you'd have to unset CERES_HAVE_RWLOCK (at least on linux --
- // it *does* cause problems for FreeBSD, or MacOSX, but isn't needed for
- // locking there.)
-# if defined(__linux__) && !defined(_XOPEN_SOURCE)
-# define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls
-# endif
-# include <pthread.h>
- typedef pthread_rwlock_t MutexType;
-#elif defined(CERES_HAVE_PTHREAD)
-# include <pthread.h>
- typedef pthread_mutex_t MutexType;
-#else
-# error Need to implement mutex.h for your architecture, or #define NO_THREADS
-#endif
-
-// We need to include these header files after defining _XOPEN_SOURCE
-// as they may define the _XOPEN_SOURCE macro.
-#include <assert.h>
-#include <stdlib.h> // for abort()
-
-namespace ceres {
-namespace internal {
-
-class Mutex {
- public:
- // Create a Mutex that is not held by anybody. This constructor is
- // typically used for Mutexes allocated on the heap or the stack.
- // See below for a recommendation for constructing global Mutex
- // objects.
- inline Mutex();
-
- // Destructor
- inline ~Mutex();
-
- inline void Lock(); // Block if needed until free then acquire exclusively
- inline void Unlock(); // Release a lock acquired via Lock()
-#ifdef CERES_GMUTEX_TRYLOCK
- inline bool TryLock(); // If free, Lock() and return true, else return false
-#endif
- // Note that on systems that don't support read-write locks, these may
- // be implemented as synonyms to Lock() and Unlock(). So you can use
- // these for efficiency, but don't use them anyplace where being able
- // to do shared reads is necessary to avoid deadlock.
- inline void ReaderLock(); // Block until free or shared then acquire a share
- inline void ReaderUnlock(); // Release a read share of this Mutex
- inline void WriterLock() { Lock(); } // Acquire an exclusive lock
- inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock()
-
- // TODO(hamaji): Do nothing, implement correctly.
- inline void AssertHeld() {}
-
- private:
- MutexType mutex_;
- // We want to make sure that the compiler sets is_safe_ to true only
- // when we tell it to, and never makes assumptions is_safe_ is
- // always true. volatile is the most reliable way to do that.
- volatile bool is_safe_;
-
- inline void SetIsSafe() { is_safe_ = true; }
-
- // Catch the error of writing Mutex when intending MutexLock.
- Mutex(Mutex* /*ignored*/) {}
- // Disallow "evil" constructors
- Mutex(const Mutex&);
- void operator=(const Mutex&);
-};
-
-// Now the implementation of Mutex for various systems
-#if defined(CERES_NO_THREADS)
-
-// When we don't have threads, we can be either reading or writing,
-// but not both. We can have lots of readers at once (in no-threads
-// mode, that's most likely to happen in recursive function calls),
-// but only one writer. We represent this by having mutex_ be -1 when
-// writing and a number > 0 when reading (and 0 when no lock is held).
-//
-// In debug mode, we assert these invariants, while in non-debug mode
-// we do nothing, for efficiency. That's why everything is in an
-// assert.
-
-Mutex::Mutex() : mutex_(0) { }
-Mutex::~Mutex() { assert(mutex_ == 0); }
-void Mutex::Lock() { assert(--mutex_ == -1); }
-void Mutex::Unlock() { assert(mutex_++ == -1); }
-#ifdef CERES_GMUTEX_TRYLOCK
-bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; }
-#endif
-void Mutex::ReaderLock() { assert(++mutex_ > 0); }
-void Mutex::ReaderUnlock() { assert(mutex_-- > 0); }
-
-#elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__)
-
-Mutex::Mutex() { InitializeCriticalSection(&mutex_); SetIsSafe(); }
-Mutex::~Mutex() { DeleteCriticalSection(&mutex_); }
-void Mutex::Lock() { if (is_safe_) EnterCriticalSection(&mutex_); }
-void Mutex::Unlock() { if (is_safe_) LeaveCriticalSection(&mutex_); }
-#ifdef GMUTEX_TRYLOCK
-bool Mutex::TryLock() { return is_safe_ ?
- TryEnterCriticalSection(&mutex_) != 0 : true; }
-#endif
-void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks
-void Mutex::ReaderUnlock() { Unlock(); }
-
-#elif defined(CERES_HAVE_PTHREAD) && defined(CERES_HAVE_RWLOCK)
-
-#define CERES_SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \
- if (is_safe_ && fncall(&mutex_) != 0) abort(); \
-} while (0)
-
-Mutex::Mutex() {
- SetIsSafe();
- if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort();
-}
-Mutex::~Mutex() { CERES_SAFE_PTHREAD(pthread_rwlock_destroy); }
-void Mutex::Lock() { CERES_SAFE_PTHREAD(pthread_rwlock_wrlock); }
-void Mutex::Unlock() { CERES_SAFE_PTHREAD(pthread_rwlock_unlock); }
-#ifdef CERES_GMUTEX_TRYLOCK
-bool Mutex::TryLock() { return is_safe_ ?
- pthread_rwlock_trywrlock(&mutex_) == 0 :
- true; }
-#endif
-void Mutex::ReaderLock() { CERES_SAFE_PTHREAD(pthread_rwlock_rdlock); }
-void Mutex::ReaderUnlock() { CERES_SAFE_PTHREAD(pthread_rwlock_unlock); }
-#undef CERES_SAFE_PTHREAD
-
-#elif defined(CERES_HAVE_PTHREAD)
-
-#define CERES_SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \
- if (is_safe_ && fncall(&mutex_) != 0) abort(); \
-} while (0)
-
-Mutex::Mutex() {
- SetIsSafe();
- if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort();
-}
-Mutex::~Mutex() { CERES_SAFE_PTHREAD(pthread_mutex_destroy); }
-void Mutex::Lock() { CERES_SAFE_PTHREAD(pthread_mutex_lock); }
-void Mutex::Unlock() { CERES_SAFE_PTHREAD(pthread_mutex_unlock); }
-#ifdef CERES_GMUTEX_TRYLOCK
-bool Mutex::TryLock() { return is_safe_ ?
- pthread_mutex_trylock(&mutex_) == 0 : true; }
-#endif
-void Mutex::ReaderLock() { Lock(); }
-void Mutex::ReaderUnlock() { Unlock(); }
-#undef CERES_SAFE_PTHREAD
-
-#endif
-
-// --------------------------------------------------------------------------
-// Some helper classes
-
-// Note: The weird "Ceres" prefix for the class is a workaround for having two
-// similar mutex.h files included in the same translation unit. This is a
-// problem because macros do not respect C++ namespaces, and as a result, this
-// does not work well (e.g. inside Chrome). The offending macros are
-// "MutexLock(x) COMPILE_ASSERT(false)". To work around this, "Ceres" is
-// prefixed to the class names; this permits defining the classes.
-
-// CeresMutexLock(mu) acquires mu when constructed and releases it
-// when destroyed.
-class CeresMutexLock {
- public:
- explicit CeresMutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); }
- ~CeresMutexLock() { mu_->Unlock(); }
- private:
- Mutex * const mu_;
- // Disallow "evil" constructors
- CeresMutexLock(const CeresMutexLock&);
- void operator=(const CeresMutexLock&);
-};
-
-// CeresReaderMutexLock and CeresWriterMutexLock do the same, for rwlocks
-class CeresReaderMutexLock {
- public:
- explicit CeresReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); }
- ~CeresReaderMutexLock() { mu_->ReaderUnlock(); }
- private:
- Mutex * const mu_;
- // Disallow "evil" constructors
- CeresReaderMutexLock(const CeresReaderMutexLock&);
- void operator=(const CeresReaderMutexLock&);
-};
-
-class CeresWriterMutexLock {
- public:
- explicit CeresWriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); }
- ~CeresWriterMutexLock() { mu_->WriterUnlock(); }
- private:
- Mutex * const mu_;
- // Disallow "evil" constructors
- CeresWriterMutexLock(const CeresWriterMutexLock&);
- void operator=(const CeresWriterMutexLock&);
-};
-
-// Catch bug where variable name is omitted, e.g. MutexLock (&mu);
-#define CeresMutexLock(x) \
- COMPILE_ASSERT(0, ceres_mutex_lock_decl_missing_var_name)
-#define CeresReaderMutexLock(x) \
- COMPILE_ASSERT(0, ceres_rmutex_lock_decl_missing_var_name)
-#define CeresWriterMutexLock(x) \
- COMPILE_ASSERT(0, ceres_wmutex_lock_decl_missing_var_name)
-
-} // namespace internal
-} // namespace ceres
-
-#endif // CERES_INTERNAL_MUTEX_H_