Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/internal/ceres/sparse_normal_cholesky_solver.cc')
-rw-r--r--extern/ceres/internal/ceres/sparse_normal_cholesky_solver.cc486
1 files changed, 486 insertions, 0 deletions
diff --git a/extern/ceres/internal/ceres/sparse_normal_cholesky_solver.cc b/extern/ceres/internal/ceres/sparse_normal_cholesky_solver.cc
new file mode 100644
index 00000000000..ed00879b47a
--- /dev/null
+++ b/extern/ceres/internal/ceres/sparse_normal_cholesky_solver.cc
@@ -0,0 +1,486 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/sparse_normal_cholesky_solver.h"
+
+#include <algorithm>
+#include <cstring>
+#include <ctime>
+
+#include "ceres/compressed_row_sparse_matrix.h"
+#include "ceres/cxsparse.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/internal/scoped_ptr.h"
+#include "ceres/linear_solver.h"
+#include "ceres/suitesparse.h"
+#include "ceres/triplet_sparse_matrix.h"
+#include "ceres/types.h"
+#include "ceres/wall_time.h"
+#include "Eigen/SparseCore"
+
+#ifdef CERES_USE_EIGEN_SPARSE
+#include "Eigen/SparseCholesky"
+#endif
+
+namespace ceres {
+namespace internal {
+namespace {
+
+#ifdef CERES_USE_EIGEN_SPARSE
+// A templated factorized and solve function, which allows us to use
+// the same code independent of whether a AMD or a Natural ordering is
+// used.
+template <typename SimplicialCholeskySolver, typename SparseMatrixType>
+LinearSolver::Summary SimplicialLDLTSolve(
+ const SparseMatrixType& lhs,
+ const bool do_symbolic_analysis,
+ SimplicialCholeskySolver* solver,
+ double* rhs_and_solution,
+ EventLogger* event_logger) {
+ LinearSolver::Summary summary;
+ summary.num_iterations = 1;
+ summary.termination_type = LINEAR_SOLVER_SUCCESS;
+ summary.message = "Success.";
+
+ if (do_symbolic_analysis) {
+ solver->analyzePattern(lhs);
+ event_logger->AddEvent("Analyze");
+ if (solver->info() != Eigen::Success) {
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ summary.message =
+ "Eigen failure. Unable to find symbolic factorization.";
+ return summary;
+ }
+ }
+
+ solver->factorize(lhs);
+ event_logger->AddEvent("Factorize");
+ if (solver->info() != Eigen::Success) {
+ summary.termination_type = LINEAR_SOLVER_FAILURE;
+ summary.message = "Eigen failure. Unable to find numeric factorization.";
+ return summary;
+ }
+
+ const Vector rhs = VectorRef(rhs_and_solution, lhs.cols());
+
+ VectorRef(rhs_and_solution, lhs.cols()) = solver->solve(rhs);
+ event_logger->AddEvent("Solve");
+ if (solver->info() != Eigen::Success) {
+ summary.termination_type = LINEAR_SOLVER_FAILURE;
+ summary.message = "Eigen failure. Unable to do triangular solve.";
+ return summary;
+ }
+
+ return summary;
+}
+
+#endif // CERES_USE_EIGEN_SPARSE
+
+#ifndef CERES_NO_CXSPARSE
+LinearSolver::Summary ComputeNormalEquationsAndSolveUsingCXSparse(
+ CompressedRowSparseMatrix* A,
+ double * rhs_and_solution,
+ EventLogger* event_logger) {
+ LinearSolver::Summary summary;
+ summary.num_iterations = 1;
+ summary.termination_type = LINEAR_SOLVER_SUCCESS;
+ summary.message = "Success.";
+
+ CXSparse cxsparse;
+
+ // Wrap the augmented Jacobian in a compressed sparse column matrix.
+ cs_di a_transpose = cxsparse.CreateSparseMatrixTransposeView(A);
+
+ // Compute the normal equations. J'J delta = J'f and solve them
+ // using a sparse Cholesky factorization. Notice that when compared
+ // to SuiteSparse we have to explicitly compute the transpose of Jt,
+ // and then the normal equations before they can be
+ // factorized. CHOLMOD/SuiteSparse on the other hand can just work
+ // off of Jt to compute the Cholesky factorization of the normal
+ // equations.
+ cs_di* a = cxsparse.TransposeMatrix(&a_transpose);
+ cs_di* lhs = cxsparse.MatrixMatrixMultiply(&a_transpose, a);
+ cxsparse.Free(a);
+ event_logger->AddEvent("NormalEquations");
+
+ cs_dis* factor = cxsparse.AnalyzeCholesky(lhs);
+ event_logger->AddEvent("Analysis");
+
+ if (factor == NULL) {
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ summary.message = "CXSparse::AnalyzeCholesky failed.";
+ } else if (!cxsparse.SolveCholesky(lhs, factor, rhs_and_solution)) {
+ summary.termination_type = LINEAR_SOLVER_FAILURE;
+ summary.message = "CXSparse::SolveCholesky failed.";
+ }
+ event_logger->AddEvent("Solve");
+
+ cxsparse.Free(lhs);
+ cxsparse.Free(factor);
+ event_logger->AddEvent("TearDown");
+ return summary;
+}
+
+#endif // CERES_NO_CXSPARSE
+
+} // namespace
+
+SparseNormalCholeskySolver::SparseNormalCholeskySolver(
+ const LinearSolver::Options& options)
+ : factor_(NULL),
+ cxsparse_factor_(NULL),
+ options_(options) {
+}
+
+void SparseNormalCholeskySolver::FreeFactorization() {
+ if (factor_ != NULL) {
+ ss_.Free(factor_);
+ factor_ = NULL;
+ }
+
+ if (cxsparse_factor_ != NULL) {
+ cxsparse_.Free(cxsparse_factor_);
+ cxsparse_factor_ = NULL;
+ }
+}
+
+SparseNormalCholeskySolver::~SparseNormalCholeskySolver() {
+ FreeFactorization();
+}
+
+LinearSolver::Summary SparseNormalCholeskySolver::SolveImpl(
+ CompressedRowSparseMatrix* A,
+ const double* b,
+ const LinearSolver::PerSolveOptions& per_solve_options,
+ double * x) {
+
+ const int num_cols = A->num_cols();
+ VectorRef(x, num_cols).setZero();
+ A->LeftMultiply(b, x);
+
+ if (per_solve_options.D != NULL) {
+ // Temporarily append a diagonal block to the A matrix, but undo
+ // it before returning the matrix to the user.
+ scoped_ptr<CompressedRowSparseMatrix> regularizer;
+ if (A->col_blocks().size() > 0) {
+ regularizer.reset(CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
+ per_solve_options.D, A->col_blocks()));
+ } else {
+ regularizer.reset(new CompressedRowSparseMatrix(
+ per_solve_options.D, num_cols));
+ }
+ A->AppendRows(*regularizer);
+ }
+
+ LinearSolver::Summary summary;
+ switch (options_.sparse_linear_algebra_library_type) {
+ case SUITE_SPARSE:
+ summary = SolveImplUsingSuiteSparse(A, x);
+ break;
+ case CX_SPARSE:
+ summary = SolveImplUsingCXSparse(A, x);
+ break;
+ case EIGEN_SPARSE:
+ summary = SolveImplUsingEigen(A, x);
+ break;
+ default:
+ LOG(FATAL) << "Unknown sparse linear algebra library : "
+ << options_.sparse_linear_algebra_library_type;
+ }
+
+ if (per_solve_options.D != NULL) {
+ A->DeleteRows(num_cols);
+ }
+
+ return summary;
+}
+
+LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingEigen(
+ CompressedRowSparseMatrix* A,
+ double * rhs_and_solution) {
+#ifndef CERES_USE_EIGEN_SPARSE
+
+ LinearSolver::Summary summary;
+ summary.num_iterations = 0;
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ summary.message =
+ "SPARSE_NORMAL_CHOLESKY cannot be used with EIGEN_SPARSE "
+ "because Ceres was not built with support for "
+ "Eigen's SimplicialLDLT decomposition. "
+ "This requires enabling building with -DEIGENSPARSE=ON.";
+ return summary;
+
+#else
+
+ EventLogger event_logger("SparseNormalCholeskySolver::Eigen::Solve");
+ // Compute the normal equations. J'J delta = J'f and solve them
+ // using a sparse Cholesky factorization. Notice that when compared
+ // to SuiteSparse we have to explicitly compute the normal equations
+ // before they can be factorized. CHOLMOD/SuiteSparse on the other
+ // hand can just work off of Jt to compute the Cholesky
+ // factorization of the normal equations.
+
+ if (options_.dynamic_sparsity) {
+ // In the case where the problem has dynamic sparsity, it is not
+ // worth using the ComputeOuterProduct routine, as the setup cost
+ // is not amortized over multiple calls to Solve.
+ Eigen::MappedSparseMatrix<double, Eigen::RowMajor> a(
+ A->num_rows(),
+ A->num_cols(),
+ A->num_nonzeros(),
+ A->mutable_rows(),
+ A->mutable_cols(),
+ A->mutable_values());
+
+ Eigen::SparseMatrix<double> lhs = a.transpose() * a;
+ Eigen::SimplicialLDLT<Eigen::SparseMatrix<double> > solver;
+ return SimplicialLDLTSolve(lhs,
+ true,
+ &solver,
+ rhs_and_solution,
+ &event_logger);
+ }
+
+ if (outer_product_.get() == NULL) {
+ outer_product_.reset(
+ CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
+ *A, &pattern_));
+ }
+
+ CompressedRowSparseMatrix::ComputeOuterProduct(
+ *A, pattern_, outer_product_.get());
+
+ // Map to an upper triangular column major matrix.
+ //
+ // outer_product_ is a compressed row sparse matrix and in lower
+ // triangular form, when mapped to a compressed column sparse
+ // matrix, it becomes an upper triangular matrix.
+ Eigen::MappedSparseMatrix<double, Eigen::ColMajor> lhs(
+ outer_product_->num_rows(),
+ outer_product_->num_rows(),
+ outer_product_->num_nonzeros(),
+ outer_product_->mutable_rows(),
+ outer_product_->mutable_cols(),
+ outer_product_->mutable_values());
+
+ bool do_symbolic_analysis = false;
+
+ // If using post ordering or an old version of Eigen, we cannot
+ // depend on a preordered jacobian, so we work with a SimplicialLDLT
+ // decomposition with AMD ordering.
+ if (options_.use_postordering ||
+ !EIGEN_VERSION_AT_LEAST(3, 2, 2)) {
+ if (amd_ldlt_.get() == NULL) {
+ amd_ldlt_.reset(new SimplicialLDLTWithAMDOrdering);
+ do_symbolic_analysis = true;
+ }
+
+ return SimplicialLDLTSolve(lhs,
+ do_symbolic_analysis,
+ amd_ldlt_.get(),
+ rhs_and_solution,
+ &event_logger);
+ }
+
+#if EIGEN_VERSION_AT_LEAST(3,2,2)
+ // The common case
+ if (natural_ldlt_.get() == NULL) {
+ natural_ldlt_.reset(new SimplicialLDLTWithNaturalOrdering);
+ do_symbolic_analysis = true;
+ }
+
+ return SimplicialLDLTSolve(lhs,
+ do_symbolic_analysis,
+ natural_ldlt_.get(),
+ rhs_and_solution,
+ &event_logger);
+#endif
+
+#endif // EIGEN_USE_EIGEN_SPARSE
+}
+
+LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingCXSparse(
+ CompressedRowSparseMatrix* A,
+ double * rhs_and_solution) {
+#ifdef CERES_NO_CXSPARSE
+
+ LinearSolver::Summary summary;
+ summary.num_iterations = 0;
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ summary.message =
+ "SPARSE_NORMAL_CHOLESKY cannot be used with CX_SPARSE "
+ "because Ceres was not built with support for CXSparse. "
+ "This requires enabling building with -DCXSPARSE=ON.";
+
+ return summary;
+
+#else
+
+ EventLogger event_logger("SparseNormalCholeskySolver::CXSparse::Solve");
+ if (options_.dynamic_sparsity) {
+ return ComputeNormalEquationsAndSolveUsingCXSparse(A,
+ rhs_and_solution,
+ &event_logger);
+ }
+
+ LinearSolver::Summary summary;
+ summary.num_iterations = 1;
+ summary.termination_type = LINEAR_SOLVER_SUCCESS;
+ summary.message = "Success.";
+
+ // Compute the normal equations. J'J delta = J'f and solve them
+ // using a sparse Cholesky factorization. Notice that when compared
+ // to SuiteSparse we have to explicitly compute the normal equations
+ // before they can be factorized. CHOLMOD/SuiteSparse on the other
+ // hand can just work off of Jt to compute the Cholesky
+ // factorization of the normal equations.
+ if (outer_product_.get() == NULL) {
+ outer_product_.reset(
+ CompressedRowSparseMatrix::CreateOuterProductMatrixAndProgram(
+ *A, &pattern_));
+ }
+
+ CompressedRowSparseMatrix::ComputeOuterProduct(
+ *A, pattern_, outer_product_.get());
+ cs_di lhs =
+ cxsparse_.CreateSparseMatrixTransposeView(outer_product_.get());
+
+ event_logger.AddEvent("Setup");
+
+ // Compute symbolic factorization if not available.
+ if (cxsparse_factor_ == NULL) {
+ if (options_.use_postordering) {
+ cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(&lhs,
+ A->col_blocks(),
+ A->col_blocks());
+ } else {
+ cxsparse_factor_ = cxsparse_.AnalyzeCholeskyWithNaturalOrdering(&lhs);
+ }
+ }
+ event_logger.AddEvent("Analysis");
+
+ if (cxsparse_factor_ == NULL) {
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ summary.message =
+ "CXSparse failure. Unable to find symbolic factorization.";
+ } else if (!cxsparse_.SolveCholesky(&lhs,
+ cxsparse_factor_,
+ rhs_and_solution)) {
+ summary.termination_type = LINEAR_SOLVER_FAILURE;
+ summary.message = "CXSparse::SolveCholesky failed.";
+ }
+ event_logger.AddEvent("Solve");
+
+ return summary;
+#endif
+}
+
+LinearSolver::Summary SparseNormalCholeskySolver::SolveImplUsingSuiteSparse(
+ CompressedRowSparseMatrix* A,
+ double * rhs_and_solution) {
+#ifdef CERES_NO_SUITESPARSE
+
+ LinearSolver::Summary summary;
+ summary.num_iterations = 0;
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ summary.message =
+ "SPARSE_NORMAL_CHOLESKY cannot be used with SUITE_SPARSE "
+ "because Ceres was not built with support for SuiteSparse. "
+ "This requires enabling building with -DSUITESPARSE=ON.";
+ return summary;
+
+#else
+
+ EventLogger event_logger("SparseNormalCholeskySolver::SuiteSparse::Solve");
+ LinearSolver::Summary summary;
+ summary.termination_type = LINEAR_SOLVER_SUCCESS;
+ summary.num_iterations = 1;
+ summary.message = "Success.";
+
+ const int num_cols = A->num_cols();
+ cholmod_sparse lhs = ss_.CreateSparseMatrixTransposeView(A);
+ event_logger.AddEvent("Setup");
+
+ if (options_.dynamic_sparsity) {
+ FreeFactorization();
+ }
+
+ if (factor_ == NULL) {
+ if (options_.use_postordering) {
+ factor_ = ss_.BlockAnalyzeCholesky(&lhs,
+ A->col_blocks(),
+ A->row_blocks(),
+ &summary.message);
+ } else {
+ if (options_.dynamic_sparsity) {
+ factor_ = ss_.AnalyzeCholesky(&lhs, &summary.message);
+ } else {
+ factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&lhs,
+ &summary.message);
+ }
+ }
+ }
+ event_logger.AddEvent("Analysis");
+
+ if (factor_ == NULL) {
+ summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
+ // No need to set message as it has already been set by the
+ // symbolic analysis routines above.
+ return summary;
+ }
+
+ summary.termination_type = ss_.Cholesky(&lhs, factor_, &summary.message);
+ if (summary.termination_type != LINEAR_SOLVER_SUCCESS) {
+ return summary;
+ }
+
+ cholmod_dense* rhs = ss_.CreateDenseVector(rhs_and_solution,
+ num_cols,
+ num_cols);
+ cholmod_dense* solution = ss_.Solve(factor_, rhs, &summary.message);
+ event_logger.AddEvent("Solve");
+
+ ss_.Free(rhs);
+ if (solution != NULL) {
+ memcpy(rhs_and_solution, solution->x, num_cols * sizeof(*rhs_and_solution));
+ ss_.Free(solution);
+ } else {
+ // No need to set message as it has already been set by the
+ // numeric factorization routine above.
+ summary.termination_type = LINEAR_SOLVER_FAILURE;
+ }
+
+ event_logger.AddEvent("Teardown");
+ return summary;
+#endif
+}
+
+} // namespace internal
+} // namespace ceres