Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/ceres/internal/ceres/visibility_based_preconditioner.cc')
-rw-r--r--extern/ceres/internal/ceres/visibility_based_preconditioner.cc585
1 files changed, 585 insertions, 0 deletions
diff --git a/extern/ceres/internal/ceres/visibility_based_preconditioner.cc b/extern/ceres/internal/ceres/visibility_based_preconditioner.cc
new file mode 100644
index 00000000000..3372e82d1e1
--- /dev/null
+++ b/extern/ceres/internal/ceres/visibility_based_preconditioner.cc
@@ -0,0 +1,585 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/visibility_based_preconditioner.h"
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <set>
+#include <utility>
+#include <vector>
+
+#include "Eigen/Dense"
+#include "ceres/block_random_access_sparse_matrix.h"
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/canonical_views_clustering.h"
+#include "ceres/graph.h"
+#include "ceres/graph_algorithms.h"
+#include "ceres/linear_solver.h"
+#include "ceres/schur_eliminator.h"
+#include "ceres/single_linkage_clustering.h"
+#include "ceres/visibility.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+using std::make_pair;
+using std::pair;
+using std::set;
+using std::swap;
+using std::vector;
+
+// TODO(sameeragarwal): Currently these are magic weights for the
+// preconditioner construction. Move these higher up into the Options
+// struct and provide some guidelines for choosing them.
+//
+// This will require some more work on the clustering algorithm and
+// possibly some more refactoring of the code.
+static constexpr double kCanonicalViewsSizePenaltyWeight = 3.0;
+static constexpr double kCanonicalViewsSimilarityPenaltyWeight = 0.0;
+static constexpr double kSingleLinkageMinSimilarity = 0.9;
+
+VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
+ const CompressedRowBlockStructure& bs,
+ const Preconditioner::Options& options)
+ : options_(options), num_blocks_(0), num_clusters_(0) {
+ CHECK_GT(options_.elimination_groups.size(), 1);
+ CHECK_GT(options_.elimination_groups[0], 0);
+ CHECK(options_.type == CLUSTER_JACOBI || options_.type == CLUSTER_TRIDIAGONAL)
+ << "Unknown preconditioner type: " << options_.type;
+ num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
+ CHECK_GT(num_blocks_, 0) << "Jacobian should have at least 1 f_block for "
+ << "visibility based preconditioning.";
+ CHECK(options_.context != NULL);
+
+ // Vector of camera block sizes
+ block_size_.resize(num_blocks_);
+ for (int i = 0; i < num_blocks_; ++i) {
+ block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
+ }
+
+ const time_t start_time = time(NULL);
+ switch (options_.type) {
+ case CLUSTER_JACOBI:
+ ComputeClusterJacobiSparsity(bs);
+ break;
+ case CLUSTER_TRIDIAGONAL:
+ ComputeClusterTridiagonalSparsity(bs);
+ break;
+ default:
+ LOG(FATAL) << "Unknown preconditioner type";
+ }
+ const time_t structure_time = time(NULL);
+ InitStorage(bs);
+ const time_t storage_time = time(NULL);
+ InitEliminator(bs);
+ const time_t eliminator_time = time(NULL);
+
+ LinearSolver::Options sparse_cholesky_options;
+ sparse_cholesky_options.sparse_linear_algebra_library_type =
+ options_.sparse_linear_algebra_library_type;
+
+ // The preconditioner's sparsity is not available in the
+ // preprocessor, so the columns of the Jacobian have not been
+ // reordered to minimize fill in when computing its sparse Cholesky
+ // factorization. So we must tell the SparseCholesky object to
+ // perform approximate minimum-degree reordering, which is done by
+ // setting use_postordering to true.
+ sparse_cholesky_options.use_postordering = true;
+ sparse_cholesky_ = SparseCholesky::Create(sparse_cholesky_options);
+
+ const time_t init_time = time(NULL);
+ VLOG(2) << "init time: " << init_time - start_time
+ << " structure time: " << structure_time - start_time
+ << " storage time:" << storage_time - structure_time
+ << " eliminator time: " << eliminator_time - storage_time;
+}
+
+VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {}
+
+// Determine the sparsity structure of the CLUSTER_JACOBI
+// preconditioner. It clusters cameras using their scene
+// visibility. The clusters form the diagonal blocks of the
+// preconditioner matrix.
+void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
+ const CompressedRowBlockStructure& bs) {
+ vector<set<int>> visibility;
+ ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
+ CHECK_EQ(num_blocks_, visibility.size());
+ ClusterCameras(visibility);
+ cluster_pairs_.clear();
+ for (int i = 0; i < num_clusters_; ++i) {
+ cluster_pairs_.insert(make_pair(i, i));
+ }
+}
+
+// Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
+// preconditioner. It clusters cameras using using the scene
+// visibility and then finds the strongly interacting pairs of
+// clusters by constructing another graph with the clusters as
+// vertices and approximating it with a degree-2 maximum spanning
+// forest. The set of edges in this forest are the cluster pairs.
+void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
+ const CompressedRowBlockStructure& bs) {
+ vector<set<int>> visibility;
+ ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
+ CHECK_EQ(num_blocks_, visibility.size());
+ ClusterCameras(visibility);
+
+ // Construct a weighted graph on the set of clusters, where the
+ // edges are the number of 3D points/e_blocks visible in both the
+ // clusters at the ends of the edge. Return an approximate degree-2
+ // maximum spanning forest of this graph.
+ vector<set<int>> cluster_visibility;
+ ComputeClusterVisibility(visibility, &cluster_visibility);
+ std::unique_ptr<WeightedGraph<int>> cluster_graph(
+ CreateClusterGraph(cluster_visibility));
+ CHECK(cluster_graph != nullptr);
+ std::unique_ptr<WeightedGraph<int>> forest(
+ Degree2MaximumSpanningForest(*cluster_graph));
+ CHECK(forest != nullptr);
+ ForestToClusterPairs(*forest, &cluster_pairs_);
+}
+
+// Allocate storage for the preconditioner matrix.
+void VisibilityBasedPreconditioner::InitStorage(
+ const CompressedRowBlockStructure& bs) {
+ ComputeBlockPairsInPreconditioner(bs);
+ m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
+}
+
+// Call the canonical views algorithm and cluster the cameras based on
+// their visibility sets. The visibility set of a camera is the set of
+// e_blocks/3D points in the scene that are seen by it.
+//
+// The cluster_membership_ vector is updated to indicate cluster
+// memberships for each camera block.
+void VisibilityBasedPreconditioner::ClusterCameras(
+ const vector<set<int>>& visibility) {
+ std::unique_ptr<WeightedGraph<int>> schur_complement_graph(
+ CreateSchurComplementGraph(visibility));
+ CHECK(schur_complement_graph != nullptr);
+
+ std::unordered_map<int, int> membership;
+
+ if (options_.visibility_clustering_type == CANONICAL_VIEWS) {
+ vector<int> centers;
+ CanonicalViewsClusteringOptions clustering_options;
+ clustering_options.size_penalty_weight = kCanonicalViewsSizePenaltyWeight;
+ clustering_options.similarity_penalty_weight =
+ kCanonicalViewsSimilarityPenaltyWeight;
+ ComputeCanonicalViewsClustering(
+ clustering_options, *schur_complement_graph, &centers, &membership);
+ num_clusters_ = centers.size();
+ } else if (options_.visibility_clustering_type == SINGLE_LINKAGE) {
+ SingleLinkageClusteringOptions clustering_options;
+ clustering_options.min_similarity = kSingleLinkageMinSimilarity;
+ num_clusters_ = ComputeSingleLinkageClustering(
+ clustering_options, *schur_complement_graph, &membership);
+ } else {
+ LOG(FATAL) << "Unknown visibility clustering algorithm.";
+ }
+
+ CHECK_GT(num_clusters_, 0);
+ VLOG(2) << "num_clusters: " << num_clusters_;
+ FlattenMembershipMap(membership, &cluster_membership_);
+}
+
+// Compute the block sparsity structure of the Schur complement
+// matrix. For each pair of cameras contributing a non-zero cell to
+// the schur complement, determine if that cell is present in the
+// preconditioner or not.
+//
+// A pair of cameras contribute a cell to the preconditioner if they
+// are part of the same cluster or if the two clusters that they
+// belong have an edge connecting them in the degree-2 maximum
+// spanning forest.
+//
+// For example, a camera pair (i,j) where i belongs to cluster1 and
+// j belongs to cluster2 (assume that cluster1 < cluster2).
+//
+// The cell corresponding to (i,j) is present in the preconditioner
+// if cluster1 == cluster2 or the pair (cluster1, cluster2) were
+// connected by an edge in the degree-2 maximum spanning forest.
+//
+// Since we have already expanded the forest into a set of camera
+// pairs/edges, including self edges, the check can be reduced to
+// checking membership of (cluster1, cluster2) in cluster_pairs_.
+void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
+ const CompressedRowBlockStructure& bs) {
+ block_pairs_.clear();
+ for (int i = 0; i < num_blocks_; ++i) {
+ block_pairs_.insert(make_pair(i, i));
+ }
+
+ int r = 0;
+ const int num_row_blocks = bs.rows.size();
+ const int num_eliminate_blocks = options_.elimination_groups[0];
+
+ // Iterate over each row of the matrix. The block structure of the
+ // matrix is assumed to be sorted in order of the e_blocks/point
+ // blocks. Thus all row blocks containing an e_block/point occur
+ // contiguously. Further, if present, an e_block is always the first
+ // parameter block in each row block. These structural assumptions
+ // are common to all Schur complement based solvers in Ceres.
+ //
+ // For each e_block/point block we identify the set of cameras
+ // seeing it. The cross product of this set with itself is the set
+ // of non-zero cells contributed by this e_block.
+ //
+ // The time complexity of this is O(nm^2) where, n is the number of
+ // 3d points and m is the maximum number of cameras seeing any
+ // point, which for most scenes is a fairly small number.
+ while (r < num_row_blocks) {
+ int e_block_id = bs.rows[r].cells.front().block_id;
+ if (e_block_id >= num_eliminate_blocks) {
+ // Skip the rows whose first block is an f_block.
+ break;
+ }
+
+ set<int> f_blocks;
+ for (; r < num_row_blocks; ++r) {
+ const CompressedRow& row = bs.rows[r];
+ if (row.cells.front().block_id != e_block_id) {
+ break;
+ }
+
+ // Iterate over the blocks in the row, ignoring the first block
+ // since it is the one to be eliminated and adding the rest to
+ // the list of f_blocks associated with this e_block.
+ for (int c = 1; c < row.cells.size(); ++c) {
+ const Cell& cell = row.cells[c];
+ const int f_block_id = cell.block_id - num_eliminate_blocks;
+ CHECK_GE(f_block_id, 0);
+ f_blocks.insert(f_block_id);
+ }
+ }
+
+ for (set<int>::const_iterator block1 = f_blocks.begin();
+ block1 != f_blocks.end();
+ ++block1) {
+ set<int>::const_iterator block2 = block1;
+ ++block2;
+ for (; block2 != f_blocks.end(); ++block2) {
+ if (IsBlockPairInPreconditioner(*block1, *block2)) {
+ block_pairs_.insert(make_pair(*block1, *block2));
+ }
+ }
+ }
+ }
+
+ // The remaining rows which do not contain any e_blocks.
+ for (; r < num_row_blocks; ++r) {
+ const CompressedRow& row = bs.rows[r];
+ CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
+ for (int i = 0; i < row.cells.size(); ++i) {
+ const int block1 = row.cells[i].block_id - num_eliminate_blocks;
+ for (int j = 0; j < row.cells.size(); ++j) {
+ const int block2 = row.cells[j].block_id - num_eliminate_blocks;
+ if (block1 <= block2) {
+ if (IsBlockPairInPreconditioner(block1, block2)) {
+ block_pairs_.insert(make_pair(block1, block2));
+ }
+ }
+ }
+ }
+ }
+
+ VLOG(1) << "Block pair stats: " << block_pairs_.size();
+}
+
+// Initialize the SchurEliminator.
+void VisibilityBasedPreconditioner::InitEliminator(
+ const CompressedRowBlockStructure& bs) {
+ LinearSolver::Options eliminator_options;
+ eliminator_options.elimination_groups = options_.elimination_groups;
+ eliminator_options.num_threads = options_.num_threads;
+ eliminator_options.e_block_size = options_.e_block_size;
+ eliminator_options.f_block_size = options_.f_block_size;
+ eliminator_options.row_block_size = options_.row_block_size;
+ eliminator_options.context = options_.context;
+ eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
+ const bool kFullRankETE = true;
+ eliminator_->Init(
+ eliminator_options.elimination_groups[0], kFullRankETE, &bs);
+}
+
+// Update the values of the preconditioner matrix and factorize it.
+bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
+ const double* D) {
+ const time_t start_time = time(NULL);
+ const int num_rows = m_->num_rows();
+ CHECK_GT(num_rows, 0);
+
+ // Compute a subset of the entries of the Schur complement.
+ eliminator_->Eliminate(
+ BlockSparseMatrixData(A), nullptr, D, m_.get(), nullptr);
+
+ // Try factorizing the matrix. For CLUSTER_JACOBI, this should
+ // always succeed modulo some numerical/conditioning problems. For
+ // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
+ // constructed is not positive definite. However, we will go ahead
+ // and try factorizing it. If it works, great, otherwise we scale
+ // all the cells in the preconditioner corresponding to the edges in
+ // the degree-2 forest and that guarantees positive
+ // definiteness. The proof of this fact can be found in Lemma 1 in
+ // "Visibility Based Preconditioning for Bundle Adjustment".
+ //
+ // Doing the factorization like this saves us matrix mass when
+ // scaling is not needed, which is quite often in our experience.
+ LinearSolverTerminationType status = Factorize();
+
+ if (status == LINEAR_SOLVER_FATAL_ERROR) {
+ return false;
+ }
+
+ // The scaling only affects the tri-diagonal case, since
+ // ScaleOffDiagonalBlocks only pays attention to the cells that
+ // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
+ // case, the preconditioner is guaranteed to be positive
+ // semidefinite.
+ if (status == LINEAR_SOLVER_FAILURE && options_.type == CLUSTER_TRIDIAGONAL) {
+ VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
+ << "scaling";
+ ScaleOffDiagonalCells();
+ status = Factorize();
+ }
+
+ VLOG(2) << "Compute time: " << time(NULL) - start_time;
+ return (status == LINEAR_SOLVER_SUCCESS);
+}
+
+// Consider the preconditioner matrix as meta-block matrix, whose
+// blocks correspond to the clusters. Then cluster pairs corresponding
+// to edges in the degree-2 forest are off diagonal entries of this
+// matrix. Scaling these off-diagonal entries by 1/2 forces this
+// matrix to be positive definite.
+void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
+ for (const auto& block_pair : block_pairs_) {
+ const int block1 = block_pair.first;
+ const int block2 = block_pair.second;
+ if (!IsBlockPairOffDiagonal(block1, block2)) {
+ continue;
+ }
+
+ int r, c, row_stride, col_stride;
+ CellInfo* cell_info =
+ m_->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
+ CHECK(cell_info != NULL)
+ << "Cell missing for block pair (" << block1 << "," << block2 << ")"
+ << " cluster pair (" << cluster_membership_[block1] << " "
+ << cluster_membership_[block2] << ")";
+
+ // Ah the magic of tri-diagonal matrices and diagonal
+ // dominance. See Lemma 1 in "Visibility Based Preconditioning
+ // For Bundle Adjustment".
+ MatrixRef m(cell_info->values, row_stride, col_stride);
+ m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
+ }
+}
+
+// Compute the sparse Cholesky factorization of the preconditioner
+// matrix.
+LinearSolverTerminationType VisibilityBasedPreconditioner::Factorize() {
+ // Extract the TripletSparseMatrix that is used for actually storing
+ // S and convert it into a CompressedRowSparseMatrix.
+ const TripletSparseMatrix* tsm =
+ down_cast<BlockRandomAccessSparseMatrix*>(m_.get())->mutable_matrix();
+
+ std::unique_ptr<CompressedRowSparseMatrix> lhs;
+ const CompressedRowSparseMatrix::StorageType storage_type =
+ sparse_cholesky_->StorageType();
+ if (storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
+ lhs.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));
+ lhs->set_storage_type(CompressedRowSparseMatrix::UPPER_TRIANGULAR);
+ } else {
+ lhs.reset(
+ CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm));
+ lhs->set_storage_type(CompressedRowSparseMatrix::LOWER_TRIANGULAR);
+ }
+
+ std::string message;
+ return sparse_cholesky_->Factorize(lhs.get(), &message);
+}
+
+void VisibilityBasedPreconditioner::RightMultiply(const double* x,
+ double* y) const {
+ CHECK(x != nullptr);
+ CHECK(y != nullptr);
+ CHECK(sparse_cholesky_ != nullptr);
+ std::string message;
+ sparse_cholesky_->Solve(x, y, &message);
+}
+
+int VisibilityBasedPreconditioner::num_rows() const { return m_->num_rows(); }
+
+// Classify camera/f_block pairs as in and out of the preconditioner,
+// based on whether the cluster pair that they belong to is in the
+// preconditioner or not.
+bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
+ const int block1, const int block2) const {
+ int cluster1 = cluster_membership_[block1];
+ int cluster2 = cluster_membership_[block2];
+ if (cluster1 > cluster2) {
+ swap(cluster1, cluster2);
+ }
+ return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
+}
+
+bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
+ const int block1, const int block2) const {
+ return (cluster_membership_[block1] != cluster_membership_[block2]);
+}
+
+// Convert a graph into a list of edges that includes self edges for
+// each vertex.
+void VisibilityBasedPreconditioner::ForestToClusterPairs(
+ const WeightedGraph<int>& forest,
+ std::unordered_set<pair<int, int>, pair_hash>* cluster_pairs) const {
+ CHECK(cluster_pairs != nullptr);
+ cluster_pairs->clear();
+ const std::unordered_set<int>& vertices = forest.vertices();
+ CHECK_EQ(vertices.size(), num_clusters_);
+
+ // Add all the cluster pairs corresponding to the edges in the
+ // forest.
+ for (const int cluster1 : vertices) {
+ cluster_pairs->insert(make_pair(cluster1, cluster1));
+ const std::unordered_set<int>& neighbors = forest.Neighbors(cluster1);
+ for (const int cluster2 : neighbors) {
+ if (cluster1 < cluster2) {
+ cluster_pairs->insert(make_pair(cluster1, cluster2));
+ }
+ }
+ }
+}
+
+// The visibility set of a cluster is the union of the visibility sets
+// of all its cameras. In other words, the set of points visible to
+// any camera in the cluster.
+void VisibilityBasedPreconditioner::ComputeClusterVisibility(
+ const vector<set<int>>& visibility,
+ vector<set<int>>* cluster_visibility) const {
+ CHECK(cluster_visibility != nullptr);
+ cluster_visibility->resize(0);
+ cluster_visibility->resize(num_clusters_);
+ for (int i = 0; i < num_blocks_; ++i) {
+ const int cluster_id = cluster_membership_[i];
+ (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
+ visibility[i].end());
+ }
+}
+
+// Construct a graph whose vertices are the clusters, and the edge
+// weights are the number of 3D points visible to cameras in both the
+// vertices.
+WeightedGraph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
+ const vector<set<int>>& cluster_visibility) const {
+ WeightedGraph<int>* cluster_graph = new WeightedGraph<int>;
+
+ for (int i = 0; i < num_clusters_; ++i) {
+ cluster_graph->AddVertex(i);
+ }
+
+ for (int i = 0; i < num_clusters_; ++i) {
+ const set<int>& cluster_i = cluster_visibility[i];
+ for (int j = i + 1; j < num_clusters_; ++j) {
+ vector<int> intersection;
+ const set<int>& cluster_j = cluster_visibility[j];
+ set_intersection(cluster_i.begin(),
+ cluster_i.end(),
+ cluster_j.begin(),
+ cluster_j.end(),
+ back_inserter(intersection));
+
+ if (intersection.size() > 0) {
+ // Clusters interact strongly when they share a large number
+ // of 3D points. The degree-2 maximum spanning forest
+ // algorithm, iterates on the edges in decreasing order of
+ // their weight, which is the number of points shared by the
+ // two cameras that it connects.
+ cluster_graph->AddEdge(i, j, intersection.size());
+ }
+ }
+ }
+ return cluster_graph;
+}
+
+// Canonical views clustering returns a std::unordered_map from vertices to
+// cluster ids. Convert this into a flat array for quick lookup. It is
+// possible that some of the vertices may not be associated with any
+// cluster. In that case, randomly assign them to one of the clusters.
+//
+// The cluster ids can be non-contiguous integers. So as we flatten
+// the membership_map, we also map the cluster ids to a contiguous set
+// of integers so that the cluster ids are in [0, num_clusters_).
+void VisibilityBasedPreconditioner::FlattenMembershipMap(
+ const std::unordered_map<int, int>& membership_map,
+ vector<int>* membership_vector) const {
+ CHECK(membership_vector != nullptr);
+ membership_vector->resize(0);
+ membership_vector->resize(num_blocks_, -1);
+
+ std::unordered_map<int, int> cluster_id_to_index;
+ // Iterate over the cluster membership map and update the
+ // cluster_membership_ vector assigning arbitrary cluster ids to
+ // the few cameras that have not been clustered.
+ for (const auto& m : membership_map) {
+ const int camera_id = m.first;
+ int cluster_id = m.second;
+
+ // If the view was not clustered, randomly assign it to one of the
+ // clusters. This preserves the mathematical correctness of the
+ // preconditioner. If there are too many views which are not
+ // clustered, it may lead to some quality degradation though.
+ //
+ // TODO(sameeragarwal): Check if a large number of views have not
+ // been clustered and deal with it?
+ if (cluster_id == -1) {
+ cluster_id = camera_id % num_clusters_;
+ }
+
+ const int index = FindWithDefault(
+ cluster_id_to_index, cluster_id, cluster_id_to_index.size());
+
+ if (index == cluster_id_to_index.size()) {
+ cluster_id_to_index[cluster_id] = index;
+ }
+
+ CHECK_LT(index, num_clusters_);
+ membership_vector->at(camera_id) = index;
+ }
+}
+
+} // namespace internal
+} // namespace ceres