Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/colamd/Source/colamd.c')
-rw-r--r--extern/colamd/Source/colamd.c3611
1 files changed, 0 insertions, 3611 deletions
diff --git a/extern/colamd/Source/colamd.c b/extern/colamd/Source/colamd.c
deleted file mode 100644
index 5fe20d62822..00000000000
--- a/extern/colamd/Source/colamd.c
+++ /dev/null
@@ -1,3611 +0,0 @@
-/* ========================================================================== */
-/* === colamd/symamd - a sparse matrix column ordering algorithm ============ */
-/* ========================================================================== */
-
-/* COLAMD / SYMAMD
-
- colamd: an approximate minimum degree column ordering algorithm,
- for LU factorization of symmetric or unsymmetric matrices,
- QR factorization, least squares, interior point methods for
- linear programming problems, and other related problems.
-
- symamd: an approximate minimum degree ordering algorithm for Cholesky
- factorization of symmetric matrices.
-
- Purpose:
-
- Colamd computes a permutation Q such that the Cholesky factorization of
- (AQ)'(AQ) has less fill-in and requires fewer floating point operations
- than A'A. This also provides a good ordering for sparse partial
- pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
- factorization, and P is computed during numerical factorization via
- conventional partial pivoting with row interchanges. Colamd is the
- column ordering method used in SuperLU, part of the ScaLAPACK library.
- It is also available as built-in function in MATLAB Version 6,
- available from MathWorks, Inc. (http://www.mathworks.com). This
- routine can be used in place of colmmd in MATLAB.
-
- Symamd computes a permutation P of a symmetric matrix A such that the
- Cholesky factorization of PAP' has less fill-in and requires fewer
- floating point operations than A. Symamd constructs a matrix M such
- that M'M has the same nonzero pattern of A, and then orders the columns
- of M using colmmd. The column ordering of M is then returned as the
- row and column ordering P of A.
-
- Authors:
-
- The authors of the code itself are Stefan I. Larimore and Timothy A.
- Davis (davis at cise.ufl.edu), University of Florida. The algorithm was
- developed in collaboration with John Gilbert, Xerox PARC, and Esmond
- Ng, Oak Ridge National Laboratory.
-
- Acknowledgements:
-
- This work was supported by the National Science Foundation, under
- grants DMS-9504974 and DMS-9803599.
-
- Copyright and License:
-
- Copyright (c) 1998-2007, Timothy A. Davis, All Rights Reserved.
- COLAMD is also available under alternate licenses, contact T. Davis
- for details.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
-
- Permission is hereby granted to use or copy this program under the
- terms of the GNU LGPL, provided that the Copyright, this License,
- and the Availability of the original version is retained on all copies.
- User documentation of any code that uses this code or any modified
- version of this code must cite the Copyright, this License, the
- Availability note, and "Used by permission." Permission to modify
- the code and to distribute modified code is granted, provided the
- Copyright, this License, and the Availability note are retained,
- and a notice that the code was modified is included.
-
- Availability:
-
- The colamd/symamd library is available at
-
- http://www.cise.ufl.edu/research/sparse/colamd/
-
- This is the http://www.cise.ufl.edu/research/sparse/colamd/colamd.c
- file. It requires the colamd.h file. It is required by the colamdmex.c
- and symamdmex.c files, for the MATLAB interface to colamd and symamd.
- Appears as ACM Algorithm 836.
-
- See the ChangeLog file for changes since Version 1.0.
-
- References:
-
- T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, An approximate column
- minimum degree ordering algorithm, ACM Transactions on Mathematical
- Software, vol. 30, no. 3., pp. 353-376, 2004.
-
- T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: COLAMD,
- an approximate column minimum degree ordering algorithm, ACM
- Transactions on Mathematical Software, vol. 30, no. 3., pp. 377-380,
- 2004.
-
-*/
-
-/* ========================================================================== */
-/* === Description of user-callable routines ================================ */
-/* ========================================================================== */
-
-/* COLAMD includes both int and UF_long versions of all its routines. The
- * description below is for the int version. For UF_long, all int arguments
- * become UF_long. UF_long is normally defined as long, except for WIN64.
-
- ----------------------------------------------------------------------------
- colamd_recommended:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- size_t colamd_recommended (int nnz, int n_row, int n_col) ;
- size_t colamd_l_recommended (UF_long nnz, UF_long n_row,
- UF_long n_col) ;
-
- Purpose:
-
- Returns recommended value of Alen for use by colamd. Returns 0
- if any input argument is negative. The use of this routine
- is optional. Not needed for symamd, which dynamically allocates
- its own memory.
-
- Note that in v2.4 and earlier, these routines returned int or long.
- They now return a value of type size_t.
-
- Arguments (all input arguments):
-
- int nnz ; Number of nonzeros in the matrix A. This must
- be the same value as p [n_col] in the call to
- colamd - otherwise you will get a wrong value
- of the recommended memory to use.
-
- int n_row ; Number of rows in the matrix A.
-
- int n_col ; Number of columns in the matrix A.
-
- ----------------------------------------------------------------------------
- colamd_set_defaults:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- colamd_set_defaults (double knobs [COLAMD_KNOBS]) ;
- colamd_l_set_defaults (double knobs [COLAMD_KNOBS]) ;
-
- Purpose:
-
- Sets the default parameters. The use of this routine is optional.
-
- Arguments:
-
- double knobs [COLAMD_KNOBS] ; Output only.
-
- NOTE: the meaning of the dense row/col knobs has changed in v2.4
-
- knobs [0] and knobs [1] control dense row and col detection:
-
- Colamd: rows with more than
- max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n_col))
- entries are removed prior to ordering. Columns with more than
- max (16, knobs [COLAMD_DENSE_COL] * sqrt (MIN (n_row,n_col)))
- entries are removed prior to
- ordering, and placed last in the output column ordering.
-
- Symamd: uses only knobs [COLAMD_DENSE_ROW], which is knobs [0].
- Rows and columns with more than
- max (16, knobs [COLAMD_DENSE_ROW] * sqrt (n))
- entries are removed prior to ordering, and placed last in the
- output ordering.
-
- COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
- respectively, in colamd.h. Default values of these two knobs
- are both 10. Currently, only knobs [0] and knobs [1] are
- used, but future versions may use more knobs. If so, they will
- be properly set to their defaults by the future version of
- colamd_set_defaults, so that the code that calls colamd will
- not need to change, assuming that you either use
- colamd_set_defaults, or pass a (double *) NULL pointer as the
- knobs array to colamd or symamd.
-
- knobs [2]: aggressive absorption
-
- knobs [COLAMD_AGGRESSIVE] controls whether or not to do
- aggressive absorption during the ordering. Default is TRUE.
-
-
- ----------------------------------------------------------------------------
- colamd:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- int colamd (int n_row, int n_col, int Alen, int *A, int *p,
- double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS]) ;
- UF_long colamd_l (UF_long n_row, UF_long n_col, UF_long Alen,
- UF_long *A, UF_long *p, double knobs [COLAMD_KNOBS],
- UF_long stats [COLAMD_STATS]) ;
-
- Purpose:
-
- Computes a column ordering (Q) of A such that P(AQ)=LU or
- (AQ)'AQ=LL' have less fill-in and require fewer floating point
- operations than factorizing the unpermuted matrix A or A'A,
- respectively.
-
- Returns:
-
- TRUE (1) if successful, FALSE (0) otherwise.
-
- Arguments:
-
- int n_row ; Input argument.
-
- Number of rows in the matrix A.
- Restriction: n_row >= 0.
- Colamd returns FALSE if n_row is negative.
-
- int n_col ; Input argument.
-
- Number of columns in the matrix A.
- Restriction: n_col >= 0.
- Colamd returns FALSE if n_col is negative.
-
- int Alen ; Input argument.
-
- Restriction (see note):
- Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col
- Colamd returns FALSE if these conditions are not met.
-
- Note: this restriction makes an modest assumption regarding
- the size of the two typedef's structures in colamd.h.
- We do, however, guarantee that
-
- Alen >= colamd_recommended (nnz, n_row, n_col)
-
- will be sufficient. Note: the macro version does not check
- for integer overflow, and thus is not recommended. Use
- the colamd_recommended routine instead.
-
- int A [Alen] ; Input argument, undefined on output.
-
- A is an integer array of size Alen. Alen must be at least as
- large as the bare minimum value given above, but this is very
- low, and can result in excessive run time. For best
- performance, we recommend that Alen be greater than or equal to
- colamd_recommended (nnz, n_row, n_col), which adds
- nnz/5 to the bare minimum value given above.
-
- On input, the row indices of the entries in column c of the
- matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
- in a given column c need not be in ascending order, and
- duplicate row indices may be be present. However, colamd will
- work a little faster if both of these conditions are met
- (Colamd puts the matrix into this format, if it finds that the
- the conditions are not met).
-
- The matrix is 0-based. That is, rows are in the range 0 to
- n_row-1, and columns are in the range 0 to n_col-1. Colamd
- returns FALSE if any row index is out of range.
-
- The contents of A are modified during ordering, and are
- undefined on output.
-
- int p [n_col+1] ; Both input and output argument.
-
- p is an integer array of size n_col+1. On input, it holds the
- "pointers" for the column form of the matrix A. Column c of
- the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
- entry, p [0], must be zero, and p [c] <= p [c+1] must hold
- for all c in the range 0 to n_col-1. The value p [n_col] is
- thus the total number of entries in the pattern of the matrix A.
- Colamd returns FALSE if these conditions are not met.
-
- On output, if colamd returns TRUE, the array p holds the column
- permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
- the first column index in the new ordering, and p [n_col-1] is
- the last. That is, p [k] = j means that column j of A is the
- kth pivot column, in AQ, where k is in the range 0 to n_col-1
- (p [0] = j means that column j of A is the first column in AQ).
-
- If colamd returns FALSE, then no permutation is returned, and
- p is undefined on output.
-
- double knobs [COLAMD_KNOBS] ; Input argument.
-
- See colamd_set_defaults for a description.
-
- int stats [COLAMD_STATS] ; Output argument.
-
- Statistics on the ordering, and error status.
- See colamd.h for related definitions.
- Colamd returns FALSE if stats is not present.
-
- stats [0]: number of dense or empty rows ignored.
-
- stats [1]: number of dense or empty columns ignored (and
- ordered last in the output permutation p)
- Note that a row can become "empty" if it
- contains only "dense" and/or "empty" columns,
- and similarly a column can become "empty" if it
- only contains "dense" and/or "empty" rows.
-
- stats [2]: number of garbage collections performed.
- This can be excessively high if Alen is close
- to the minimum required value.
-
- stats [3]: status code. < 0 is an error code.
- > 1 is a warning or notice.
-
- 0 OK. Each column of the input matrix contained
- row indices in increasing order, with no
- duplicates.
-
- 1 OK, but columns of input matrix were jumbled
- (unsorted columns or duplicate entries). Colamd
- had to do some extra work to sort the matrix
- first and remove duplicate entries, but it
- still was able to return a valid permutation
- (return value of colamd was TRUE).
-
- stats [4]: highest numbered column that
- is unsorted or has duplicate
- entries.
- stats [5]: last seen duplicate or
- unsorted row index.
- stats [6]: number of duplicate or
- unsorted row indices.
-
- -1 A is a null pointer
-
- -2 p is a null pointer
-
- -3 n_row is negative
-
- stats [4]: n_row
-
- -4 n_col is negative
-
- stats [4]: n_col
-
- -5 number of nonzeros in matrix is negative
-
- stats [4]: number of nonzeros, p [n_col]
-
- -6 p [0] is nonzero
-
- stats [4]: p [0]
-
- -7 A is too small
-
- stats [4]: required size
- stats [5]: actual size (Alen)
-
- -8 a column has a negative number of entries
-
- stats [4]: column with < 0 entries
- stats [5]: number of entries in col
-
- -9 a row index is out of bounds
-
- stats [4]: column with bad row index
- stats [5]: bad row index
- stats [6]: n_row, # of rows of matrx
-
- -10 (unused; see symamd.c)
-
- -999 (unused; see symamd.c)
-
- Future versions may return more statistics in the stats array.
-
- Example:
-
- See http://www.cise.ufl.edu/research/sparse/colamd/example.c
- for a complete example.
-
- To order the columns of a 5-by-4 matrix with 11 nonzero entries in
- the following nonzero pattern
-
- x 0 x 0
- x 0 x x
- 0 x x 0
- 0 0 x x
- x x 0 0
-
- with default knobs and no output statistics, do the following:
-
- #include "colamd.h"
- #define ALEN 100
- int A [ALEN] = {0, 1, 4, 2, 4, 0, 1, 2, 3, 1, 3} ;
- int p [ ] = {0, 3, 5, 9, 11} ;
- int stats [COLAMD_STATS] ;
- colamd (5, 4, ALEN, A, p, (double *) NULL, stats) ;
-
- The permutation is returned in the array p, and A is destroyed.
-
- ----------------------------------------------------------------------------
- symamd:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- int symamd (int n, int *A, int *p, int *perm,
- double knobs [COLAMD_KNOBS], int stats [COLAMD_STATS],
- void (*allocate) (size_t, size_t), void (*release) (void *)) ;
- UF_long symamd_l (UF_long n, UF_long *A, UF_long *p, UF_long *perm,
- double knobs [COLAMD_KNOBS], UF_long stats [COLAMD_STATS],
- void (*allocate) (size_t, size_t), void (*release) (void *)) ;
-
- Purpose:
-
- The symamd routine computes an ordering P of a symmetric sparse
- matrix A such that the Cholesky factorization PAP' = LL' remains
- sparse. It is based on a column ordering of a matrix M constructed
- so that the nonzero pattern of M'M is the same as A. The matrix A
- is assumed to be symmetric; only the strictly lower triangular part
- is accessed. You must pass your selected memory allocator (usually
- calloc/free or mxCalloc/mxFree) to symamd, for it to allocate
- memory for the temporary matrix M.
-
- Returns:
-
- TRUE (1) if successful, FALSE (0) otherwise.
-
- Arguments:
-
- int n ; Input argument.
-
- Number of rows and columns in the symmetrix matrix A.
- Restriction: n >= 0.
- Symamd returns FALSE if n is negative.
-
- int A [nnz] ; Input argument.
-
- A is an integer array of size nnz, where nnz = p [n].
-
- The row indices of the entries in column c of the matrix are
- held in A [(p [c]) ... (p [c+1]-1)]. The row indices in a
- given column c need not be in ascending order, and duplicate
- row indices may be present. However, symamd will run faster
- if the columns are in sorted order with no duplicate entries.
-
- The matrix is 0-based. That is, rows are in the range 0 to
- n-1, and columns are in the range 0 to n-1. Symamd
- returns FALSE if any row index is out of range.
-
- The contents of A are not modified.
-
- int p [n+1] ; Input argument.
-
- p is an integer array of size n+1. On input, it holds the
- "pointers" for the column form of the matrix A. Column c of
- the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
- entry, p [0], must be zero, and p [c] <= p [c+1] must hold
- for all c in the range 0 to n-1. The value p [n] is
- thus the total number of entries in the pattern of the matrix A.
- Symamd returns FALSE if these conditions are not met.
-
- The contents of p are not modified.
-
- int perm [n+1] ; Output argument.
-
- On output, if symamd returns TRUE, the array perm holds the
- permutation P, where perm [0] is the first index in the new
- ordering, and perm [n-1] is the last. That is, perm [k] = j
- means that row and column j of A is the kth column in PAP',
- where k is in the range 0 to n-1 (perm [0] = j means
- that row and column j of A are the first row and column in
- PAP'). The array is used as a workspace during the ordering,
- which is why it must be of length n+1, not just n.
-
- double knobs [COLAMD_KNOBS] ; Input argument.
-
- See colamd_set_defaults for a description.
-
- int stats [COLAMD_STATS] ; Output argument.
-
- Statistics on the ordering, and error status.
- See colamd.h for related definitions.
- Symamd returns FALSE if stats is not present.
-
- stats [0]: number of dense or empty row and columns ignored
- (and ordered last in the output permutation
- perm). Note that a row/column can become
- "empty" if it contains only "dense" and/or
- "empty" columns/rows.
-
- stats [1]: (same as stats [0])
-
- stats [2]: number of garbage collections performed.
-
- stats [3]: status code. < 0 is an error code.
- > 1 is a warning or notice.
-
- 0 OK. Each column of the input matrix contained
- row indices in increasing order, with no
- duplicates.
-
- 1 OK, but columns of input matrix were jumbled
- (unsorted columns or duplicate entries). Symamd
- had to do some extra work to sort the matrix
- first and remove duplicate entries, but it
- still was able to return a valid permutation
- (return value of symamd was TRUE).
-
- stats [4]: highest numbered column that
- is unsorted or has duplicate
- entries.
- stats [5]: last seen duplicate or
- unsorted row index.
- stats [6]: number of duplicate or
- unsorted row indices.
-
- -1 A is a null pointer
-
- -2 p is a null pointer
-
- -3 (unused, see colamd.c)
-
- -4 n is negative
-
- stats [4]: n
-
- -5 number of nonzeros in matrix is negative
-
- stats [4]: # of nonzeros (p [n]).
-
- -6 p [0] is nonzero
-
- stats [4]: p [0]
-
- -7 (unused)
-
- -8 a column has a negative number of entries
-
- stats [4]: column with < 0 entries
- stats [5]: number of entries in col
-
- -9 a row index is out of bounds
-
- stats [4]: column with bad row index
- stats [5]: bad row index
- stats [6]: n_row, # of rows of matrx
-
- -10 out of memory (unable to allocate temporary
- workspace for M or count arrays using the
- "allocate" routine passed into symamd).
-
- Future versions may return more statistics in the stats array.
-
- void * (*allocate) (size_t, size_t)
-
- A pointer to a function providing memory allocation. The
- allocated memory must be returned initialized to zero. For a
- C application, this argument should normally be a pointer to
- calloc. For a MATLAB mexFunction, the routine mxCalloc is
- passed instead.
-
- void (*release) (size_t, size_t)
-
- A pointer to a function that frees memory allocated by the
- memory allocation routine above. For a C application, this
- argument should normally be a pointer to free. For a MATLAB
- mexFunction, the routine mxFree is passed instead.
-
-
- ----------------------------------------------------------------------------
- colamd_report:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- colamd_report (int stats [COLAMD_STATS]) ;
- colamd_l_report (UF_long stats [COLAMD_STATS]) ;
-
- Purpose:
-
- Prints the error status and statistics recorded in the stats
- array on the standard error output (for a standard C routine)
- or on the MATLAB output (for a mexFunction).
-
- Arguments:
-
- int stats [COLAMD_STATS] ; Input only. Statistics from colamd.
-
-
- ----------------------------------------------------------------------------
- symamd_report:
- ----------------------------------------------------------------------------
-
- C syntax:
-
- #include "colamd.h"
- symamd_report (int stats [COLAMD_STATS]) ;
- symamd_l_report (UF_long stats [COLAMD_STATS]) ;
-
- Purpose:
-
- Prints the error status and statistics recorded in the stats
- array on the standard error output (for a standard C routine)
- or on the MATLAB output (for a mexFunction).
-
- Arguments:
-
- int stats [COLAMD_STATS] ; Input only. Statistics from symamd.
-
-
-*/
-
-/* ========================================================================== */
-/* === Scaffolding code definitions ======================================== */
-/* ========================================================================== */
-
-/* Ensure that debugging is turned off: */
-#ifndef NDEBUG
-#define NDEBUG
-#endif
-
-/* turn on debugging by uncommenting the following line
- #undef NDEBUG
-*/
-
-/*
- Our "scaffolding code" philosophy: In our opinion, well-written library
- code should keep its "debugging" code, and just normally have it turned off
- by the compiler so as not to interfere with performance. This serves
- several purposes:
-
- (1) assertions act as comments to the reader, telling you what the code
- expects at that point. All assertions will always be true (unless
- there really is a bug, of course).
-
- (2) leaving in the scaffolding code assists anyone who would like to modify
- the code, or understand the algorithm (by reading the debugging output,
- one can get a glimpse into what the code is doing).
-
- (3) (gasp!) for actually finding bugs. This code has been heavily tested
- and "should" be fully functional and bug-free ... but you never know...
-
- The code will become outrageously slow when debugging is
- enabled. To control the level of debugging output, set an environment
- variable D to 0 (little), 1 (some), 2, 3, or 4 (lots). When debugging,
- you should see the following message on the standard output:
-
- colamd: debug version, D = 1 (THIS WILL BE SLOW!)
-
- or a similar message for symamd. If you don't, then debugging has not
- been enabled.
-
-*/
-
-/* ========================================================================== */
-/* === Include files ======================================================== */
-/* ========================================================================== */
-
-#include "colamd.h"
-#include <limits.h>
-#include <math.h>
-
-#ifdef MATLAB_MEX_FILE
-#include "mex.h"
-#include "matrix.h"
-#endif /* MATLAB_MEX_FILE */
-
-#if !defined (NPRINT) || !defined (NDEBUG)
-#include <stdio.h>
-#endif
-
-#ifndef NULL
-#define NULL ((void *) 0)
-#endif
-
-/* ========================================================================== */
-/* === int or UF_long ======================================================= */
-/* ========================================================================== */
-
-/* define UF_long */
-#include "UFconfig.h"
-
-#ifdef DLONG
-
-#define Int UF_long
-#define ID UF_long_id
-#define Int_MAX UF_long_max
-
-#define COLAMD_recommended colamd_l_recommended
-#define COLAMD_set_defaults colamd_l_set_defaults
-#define COLAMD_MAIN colamd_l
-#define SYMAMD_MAIN symamd_l
-#define COLAMD_report colamd_l_report
-#define SYMAMD_report symamd_l_report
-
-#else
-
-#define Int int
-#define ID "%d"
-#define Int_MAX INT_MAX
-
-#define COLAMD_recommended colamd_recommended
-#define COLAMD_set_defaults colamd_set_defaults
-#define COLAMD_MAIN colamd
-#define SYMAMD_MAIN symamd
-#define COLAMD_report colamd_report
-#define SYMAMD_report symamd_report
-
-#endif
-
-/* ========================================================================== */
-/* === Row and Column structures ============================================ */
-/* ========================================================================== */
-
-/* User code that makes use of the colamd/symamd routines need not directly */
-/* reference these structures. They are used only for colamd_recommended. */
-
-typedef struct Colamd_Col_struct
-{
- Int start ; /* index for A of first row in this column, or DEAD */
- /* if column is dead */
- Int length ; /* number of rows in this column */
- union
- {
- Int thickness ; /* number of original columns represented by this */
- /* col, if the column is alive */
- Int parent ; /* parent in parent tree super-column structure, if */
- /* the column is dead */
- } shared1 ;
- union
- {
- Int score ; /* the score used to maintain heap, if col is alive */
- Int order ; /* pivot ordering of this column, if col is dead */
- } shared2 ;
- union
- {
- Int headhash ; /* head of a hash bucket, if col is at the head of */
- /* a degree list */
- Int hash ; /* hash value, if col is not in a degree list */
- Int prev ; /* previous column in degree list, if col is in a */
- /* degree list (but not at the head of a degree list) */
- } shared3 ;
- union
- {
- Int degree_next ; /* next column, if col is in a degree list */
- Int hash_next ; /* next column, if col is in a hash list */
- } shared4 ;
-
-} Colamd_Col ;
-
-typedef struct Colamd_Row_struct
-{
- Int start ; /* index for A of first col in this row */
- Int length ; /* number of principal columns in this row */
- union
- {
- Int degree ; /* number of principal & non-principal columns in row */
- Int p ; /* used as a row pointer in init_rows_cols () */
- } shared1 ;
- union
- {
- Int mark ; /* for computing set differences and marking dead rows*/
- Int first_column ;/* first column in row (used in garbage collection) */
- } shared2 ;
-
-} Colamd_Row ;
-
-/* ========================================================================== */
-/* === Definitions ========================================================== */
-/* ========================================================================== */
-
-/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
-#define PUBLIC
-#define PRIVATE static
-
-#define DENSE_DEGREE(alpha,n) \
- ((Int) MAX (16.0, (alpha) * sqrt ((double) (n))))
-
-#define MAX(a,b) (((a) > (b)) ? (a) : (b))
-#define MIN(a,b) (((a) < (b)) ? (a) : (b))
-
-#define ONES_COMPLEMENT(r) (-(r)-1)
-
-/* -------------------------------------------------------------------------- */
-/* Change for version 2.1: define TRUE and FALSE only if not yet defined */
-/* -------------------------------------------------------------------------- */
-
-#ifndef TRUE
-#define TRUE (1)
-#endif
-
-#ifndef FALSE
-#define FALSE (0)
-#endif
-
-/* -------------------------------------------------------------------------- */
-
-#define EMPTY (-1)
-
-/* Row and column status */
-#define ALIVE (0)
-#define DEAD (-1)
-
-/* Column status */
-#define DEAD_PRINCIPAL (-1)
-#define DEAD_NON_PRINCIPAL (-2)
-
-/* Macros for row and column status update and checking. */
-#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
-#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
-#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
-#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
-#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
-#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
-#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
-#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
-#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
-
-/* ========================================================================== */
-/* === Colamd reporting mechanism =========================================== */
-/* ========================================================================== */
-
-#if defined (MATLAB_MEX_FILE) || defined (MATHWORKS)
-/* In MATLAB, matrices are 1-based to the user, but 0-based internally */
-#define INDEX(i) ((i)+1)
-#else
-/* In C, matrices are 0-based and indices are reported as such in *_report */
-#define INDEX(i) (i)
-#endif
-
-/* All output goes through the PRINTF macro. */
-#define PRINTF(params) { if (colamd_printf != NULL) (void) colamd_printf params ; }
-
-/* ========================================================================== */
-/* === Prototypes of PRIVATE routines ======================================= */
-/* ========================================================================== */
-
-PRIVATE Int init_rows_cols
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int p [],
- Int stats [COLAMD_STATS]
-) ;
-
-PRIVATE void init_scoring
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int head [],
- double knobs [COLAMD_KNOBS],
- Int *p_n_row2,
- Int *p_n_col2,
- Int *p_max_deg
-) ;
-
-PRIVATE Int find_ordering
-(
- Int n_row,
- Int n_col,
- Int Alen,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int head [],
- Int n_col2,
- Int max_deg,
- Int pfree,
- Int aggressive
-) ;
-
-PRIVATE void order_children
-(
- Int n_col,
- Colamd_Col Col [],
- Int p []
-) ;
-
-PRIVATE void detect_super_cols
-(
-
-#ifndef NDEBUG
- Int n_col,
- Colamd_Row Row [],
-#endif /* NDEBUG */
-
- Colamd_Col Col [],
- Int A [],
- Int head [],
- Int row_start,
- Int row_length
-) ;
-
-PRIVATE Int garbage_collection
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int *pfree
-) ;
-
-PRIVATE Int clear_mark
-(
- Int tag_mark,
- Int max_mark,
- Int n_row,
- Colamd_Row Row []
-) ;
-
-PRIVATE void print_report
-(
- char *method,
- Int stats [COLAMD_STATS]
-) ;
-
-/* ========================================================================== */
-/* === Debugging prototypes and definitions ================================= */
-/* ========================================================================== */
-
-#ifndef NDEBUG
-
-#include <assert.h>
-
-/* colamd_debug is the *ONLY* global variable, and is only */
-/* present when debugging */
-
-PRIVATE Int colamd_debug = 0 ; /* debug print level */
-
-#define DEBUG0(params) { PRINTF (params) ; }
-#define DEBUG1(params) { if (colamd_debug >= 1) PRINTF (params) ; }
-#define DEBUG2(params) { if (colamd_debug >= 2) PRINTF (params) ; }
-#define DEBUG3(params) { if (colamd_debug >= 3) PRINTF (params) ; }
-#define DEBUG4(params) { if (colamd_debug >= 4) PRINTF (params) ; }
-
-#ifdef MATLAB_MEX_FILE
-#define ASSERT(expression) (mxAssert ((expression), ""))
-#else
-#define ASSERT(expression) (assert (expression))
-#endif /* MATLAB_MEX_FILE */
-
-PRIVATE void colamd_get_debug /* gets the debug print level from getenv */
-(
- char *method
-) ;
-
-PRIVATE void debug_deg_lists
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int head [],
- Int min_score,
- Int should,
- Int max_deg
-) ;
-
-PRIVATE void debug_mark
-(
- Int n_row,
- Colamd_Row Row [],
- Int tag_mark,
- Int max_mark
-) ;
-
-PRIVATE void debug_matrix
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A []
-) ;
-
-PRIVATE void debug_structures
-(
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int n_col2
-) ;
-
-#else /* NDEBUG */
-
-/* === No debugging ========================================================= */
-
-#define DEBUG0(params) ;
-#define DEBUG1(params) ;
-#define DEBUG2(params) ;
-#define DEBUG3(params) ;
-#define DEBUG4(params) ;
-
-#define ASSERT(expression)
-
-#endif /* NDEBUG */
-
-/* ========================================================================== */
-/* === USER-CALLABLE ROUTINES: ============================================== */
-/* ========================================================================== */
-
-/* ========================================================================== */
-/* === colamd_recommended =================================================== */
-/* ========================================================================== */
-
-/*
- The colamd_recommended routine returns the suggested size for Alen. This
- value has been determined to provide good balance between the number of
- garbage collections and the memory requirements for colamd. If any
- argument is negative, or if integer overflow occurs, a 0 is returned as an
- error condition. 2*nnz space is required for the row and column
- indices of the matrix. COLAMD_C (n_col) + COLAMD_R (n_row) space is
- required for the Col and Row arrays, respectively, which are internal to
- colamd (roughly 6*n_col + 4*n_row). An additional n_col space is the
- minimal amount of "elbow room", and nnz/5 more space is recommended for
- run time efficiency.
-
- Alen is approximately 2.2*nnz + 7*n_col + 4*n_row + 10.
-
- This function is not needed when using symamd.
-*/
-
-/* add two values of type size_t, and check for integer overflow */
-static size_t t_add (size_t a, size_t b, int *ok)
-{
- (*ok) = (*ok) && ((a + b) >= MAX (a,b)) ;
- return ((*ok) ? (a + b) : 0) ;
-}
-
-/* compute a*k where k is a small integer, and check for integer overflow */
-static size_t t_mult (size_t a, size_t k, int *ok)
-{
- size_t i, s = 0 ;
- for (i = 0 ; i < k ; i++)
- {
- s = t_add (s, a, ok) ;
- }
- return (s) ;
-}
-
-/* size of the Col and Row structures */
-#define COLAMD_C(n_col,ok) \
- ((t_mult (t_add (n_col, 1, ok), sizeof (Colamd_Col), ok) / sizeof (Int)))
-
-#define COLAMD_R(n_row,ok) \
- ((t_mult (t_add (n_row, 1, ok), sizeof (Colamd_Row), ok) / sizeof (Int)))
-
-
-PUBLIC size_t COLAMD_recommended /* returns recommended value of Alen. */
-(
- /* === Parameters ======================================================= */
-
- Int nnz, /* number of nonzeros in A */
- Int n_row, /* number of rows in A */
- Int n_col /* number of columns in A */
-)
-{
- size_t s, c, r ;
- int ok = TRUE ;
- if (nnz < 0 || n_row < 0 || n_col < 0)
- {
- return (0) ;
- }
- s = t_mult (nnz, 2, &ok) ; /* 2*nnz */
- c = COLAMD_C (n_col, &ok) ; /* size of column structures */
- r = COLAMD_R (n_row, &ok) ; /* size of row structures */
- s = t_add (s, c, &ok) ;
- s = t_add (s, r, &ok) ;
- s = t_add (s, n_col, &ok) ; /* elbow room */
- s = t_add (s, nnz/5, &ok) ; /* elbow room */
- ok = ok && (s < Int_MAX) ;
- return (ok ? s : 0) ;
-}
-
-
-/* ========================================================================== */
-/* === colamd_set_defaults ================================================== */
-/* ========================================================================== */
-
-/*
- The colamd_set_defaults routine sets the default values of the user-
- controllable parameters for colamd and symamd:
-
- Colamd: rows with more than max (16, knobs [0] * sqrt (n_col))
- entries are removed prior to ordering. Columns with more than
- max (16, knobs [1] * sqrt (MIN (n_row,n_col))) entries are removed
- prior to ordering, and placed last in the output column ordering.
-
- Symamd: Rows and columns with more than max (16, knobs [0] * sqrt (n))
- entries are removed prior to ordering, and placed last in the
- output ordering.
-
- knobs [0] dense row control
-
- knobs [1] dense column control
-
- knobs [2] if nonzero, do aggresive absorption
-
- knobs [3..19] unused, but future versions might use this
-
-*/
-
-PUBLIC void COLAMD_set_defaults
-(
- /* === Parameters ======================================================= */
-
- double knobs [COLAMD_KNOBS] /* knob array */
-)
-{
- /* === Local variables ================================================== */
-
- Int i ;
-
- if (!knobs)
- {
- return ; /* no knobs to initialize */
- }
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- knobs [i] = 0 ;
- }
- knobs [COLAMD_DENSE_ROW] = 10 ;
- knobs [COLAMD_DENSE_COL] = 10 ;
- knobs [COLAMD_AGGRESSIVE] = TRUE ; /* default: do aggressive absorption*/
-}
-
-
-/* ========================================================================== */
-/* === symamd =============================================================== */
-/* ========================================================================== */
-
-PUBLIC Int SYMAMD_MAIN /* return TRUE if OK, FALSE otherwise */
-(
- /* === Parameters ======================================================= */
-
- Int n, /* number of rows and columns of A */
- Int A [], /* row indices of A */
- Int p [], /* column pointers of A */
- Int perm [], /* output permutation, size n+1 */
- double knobs [COLAMD_KNOBS], /* parameters (uses defaults if NULL) */
- Int stats [COLAMD_STATS], /* output statistics and error codes */
- void * (*allocate) (size_t, size_t),
- /* pointer to calloc (ANSI C) or */
- /* mxCalloc (for MATLAB mexFunction) */
- void (*release) (void *)
- /* pointer to free (ANSI C) or */
- /* mxFree (for MATLAB mexFunction) */
-)
-{
- /* === Local variables ================================================== */
-
- Int *count ; /* length of each column of M, and col pointer*/
- Int *mark ; /* mark array for finding duplicate entries */
- Int *M ; /* row indices of matrix M */
- size_t Mlen ; /* length of M */
- Int n_row ; /* number of rows in M */
- Int nnz ; /* number of entries in A */
- Int i ; /* row index of A */
- Int j ; /* column index of A */
- Int k ; /* row index of M */
- Int mnz ; /* number of nonzeros in M */
- Int pp ; /* index into a column of A */
- Int last_row ; /* last row seen in the current column */
- Int length ; /* number of nonzeros in a column */
-
- double cknobs [COLAMD_KNOBS] ; /* knobs for colamd */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs for colamd */
-
-#ifndef NDEBUG
- colamd_get_debug ("symamd") ;
-#endif /* NDEBUG */
-
- /* === Check the input arguments ======================================== */
-
- if (!stats)
- {
- DEBUG0 (("symamd: stats not present\n")) ;
- return (FALSE) ;
- }
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- stats [i] = 0 ;
- }
- stats [COLAMD_STATUS] = COLAMD_OK ;
- stats [COLAMD_INFO1] = -1 ;
- stats [COLAMD_INFO2] = -1 ;
-
- if (!A)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
- DEBUG0 (("symamd: A not present\n")) ;
- return (FALSE) ;
- }
-
- if (!p) /* p is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
- DEBUG0 (("symamd: p not present\n")) ;
- return (FALSE) ;
- }
-
- if (n < 0) /* n must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
- stats [COLAMD_INFO1] = n ;
- DEBUG0 (("symamd: n negative %d\n", n)) ;
- return (FALSE) ;
- }
-
- nnz = p [n] ;
- if (nnz < 0) /* nnz must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
- stats [COLAMD_INFO1] = nnz ;
- DEBUG0 (("symamd: number of entries negative %d\n", nnz)) ;
- return (FALSE) ;
- }
-
- if (p [0] != 0)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
- stats [COLAMD_INFO1] = p [0] ;
- DEBUG0 (("symamd: p[0] not zero %d\n", p [0])) ;
- return (FALSE) ;
- }
-
- /* === If no knobs, set default knobs =================================== */
-
- if (!knobs)
- {
- COLAMD_set_defaults (default_knobs) ;
- knobs = default_knobs ;
- }
-
- /* === Allocate count and mark ========================================== */
-
- count = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
- if (!count)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
- DEBUG0 (("symamd: allocate count (size %d) failed\n", n+1)) ;
- return (FALSE) ;
- }
-
- mark = (Int *) ((*allocate) (n+1, sizeof (Int))) ;
- if (!mark)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
- (*release) ((void *) count) ;
- DEBUG0 (("symamd: allocate mark (size %d) failed\n", n+1)) ;
- return (FALSE) ;
- }
-
- /* === Compute column counts of M, check if A is valid ================== */
-
- stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
-
- for (i = 0 ; i < n ; i++)
- {
- mark [i] = -1 ;
- }
-
- for (j = 0 ; j < n ; j++)
- {
- last_row = -1 ;
-
- length = p [j+1] - p [j] ;
- if (length < 0)
- {
- /* column pointers must be non-decreasing */
- stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
- stats [COLAMD_INFO1] = j ;
- stats [COLAMD_INFO2] = length ;
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ;
- DEBUG0 (("symamd: col %d negative length %d\n", j, length)) ;
- return (FALSE) ;
- }
-
- for (pp = p [j] ; pp < p [j+1] ; pp++)
- {
- i = A [pp] ;
- if (i < 0 || i >= n)
- {
- /* row index i, in column j, is out of bounds */
- stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
- stats [COLAMD_INFO1] = j ;
- stats [COLAMD_INFO2] = i ;
- stats [COLAMD_INFO3] = n ;
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ;
- DEBUG0 (("symamd: row %d col %d out of bounds\n", i, j)) ;
- return (FALSE) ;
- }
-
- if (i <= last_row || mark [i] == j)
- {
- /* row index is unsorted or repeated (or both), thus col */
- /* is jumbled. This is a notice, not an error condition. */
- stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
- stats [COLAMD_INFO1] = j ;
- stats [COLAMD_INFO2] = i ;
- (stats [COLAMD_INFO3]) ++ ;
- DEBUG1 (("symamd: row %d col %d unsorted/duplicate\n", i, j)) ;
- }
-
- if (i > j && mark [i] != j)
- {
- /* row k of M will contain column indices i and j */
- count [i]++ ;
- count [j]++ ;
- }
-
- /* mark the row as having been seen in this column */
- mark [i] = j ;
-
- last_row = i ;
- }
- }
-
- /* v2.4: removed free(mark) */
-
- /* === Compute column pointers of M ===================================== */
-
- /* use output permutation, perm, for column pointers of M */
- perm [0] = 0 ;
- for (j = 1 ; j <= n ; j++)
- {
- perm [j] = perm [j-1] + count [j-1] ;
- }
- for (j = 0 ; j < n ; j++)
- {
- count [j] = perm [j] ;
- }
-
- /* === Construct M ====================================================== */
-
- mnz = perm [n] ;
- n_row = mnz / 2 ;
- Mlen = COLAMD_recommended (mnz, n_row, n) ;
- M = (Int *) ((*allocate) (Mlen, sizeof (Int))) ;
- DEBUG0 (("symamd: M is %d-by-%d with %d entries, Mlen = %g\n",
- n_row, n, mnz, (double) Mlen)) ;
-
- if (!M)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_out_of_memory ;
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ;
- DEBUG0 (("symamd: allocate M (size %g) failed\n", (double) Mlen)) ;
- return (FALSE) ;
- }
-
- k = 0 ;
-
- if (stats [COLAMD_STATUS] == COLAMD_OK)
- {
- /* Matrix is OK */
- for (j = 0 ; j < n ; j++)
- {
- ASSERT (p [j+1] - p [j] >= 0) ;
- for (pp = p [j] ; pp < p [j+1] ; pp++)
- {
- i = A [pp] ;
- ASSERT (i >= 0 && i < n) ;
- if (i > j)
- {
- /* row k of M contains column indices i and j */
- M [count [i]++] = k ;
- M [count [j]++] = k ;
- k++ ;
- }
- }
- }
- }
- else
- {
- /* Matrix is jumbled. Do not add duplicates to M. Unsorted cols OK. */
- DEBUG0 (("symamd: Duplicates in A.\n")) ;
- for (i = 0 ; i < n ; i++)
- {
- mark [i] = -1 ;
- }
- for (j = 0 ; j < n ; j++)
- {
- ASSERT (p [j+1] - p [j] >= 0) ;
- for (pp = p [j] ; pp < p [j+1] ; pp++)
- {
- i = A [pp] ;
- ASSERT (i >= 0 && i < n) ;
- if (i > j && mark [i] != j)
- {
- /* row k of M contains column indices i and j */
- M [count [i]++] = k ;
- M [count [j]++] = k ;
- k++ ;
- mark [i] = j ;
- }
- }
- }
- /* v2.4: free(mark) moved below */
- }
-
- /* count and mark no longer needed */
- (*release) ((void *) count) ;
- (*release) ((void *) mark) ; /* v2.4: free (mark) moved here */
- ASSERT (k == n_row) ;
-
- /* === Adjust the knobs for M =========================================== */
-
- for (i = 0 ; i < COLAMD_KNOBS ; i++)
- {
- cknobs [i] = knobs [i] ;
- }
-
- /* there are no dense rows in M */
- cknobs [COLAMD_DENSE_ROW] = -1 ;
- cknobs [COLAMD_DENSE_COL] = knobs [COLAMD_DENSE_ROW] ;
-
- /* === Order the columns of M =========================================== */
-
- /* v2.4: colamd cannot fail here, so the error check is removed */
- (void) COLAMD_MAIN (n_row, n, (Int) Mlen, M, perm, cknobs, stats) ;
-
- /* Note that the output permutation is now in perm */
-
- /* === get the statistics for symamd from colamd ======================== */
-
- /* a dense column in colamd means a dense row and col in symamd */
- stats [COLAMD_DENSE_ROW] = stats [COLAMD_DENSE_COL] ;
-
- /* === Free M =========================================================== */
-
- (*release) ((void *) M) ;
- DEBUG0 (("symamd: done.\n")) ;
- return (TRUE) ;
-
-}
-
-/* ========================================================================== */
-/* === colamd =============================================================== */
-/* ========================================================================== */
-
-/*
- The colamd routine computes a column ordering Q of a sparse matrix
- A such that the LU factorization P(AQ) = LU remains sparse, where P is
- selected via partial pivoting. The routine can also be viewed as
- providing a permutation Q such that the Cholesky factorization
- (AQ)'(AQ) = LL' remains sparse.
-*/
-
-PUBLIC Int COLAMD_MAIN /* returns TRUE if successful, FALSE otherwise*/
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows in A */
- Int n_col, /* number of columns in A */
- Int Alen, /* length of A */
- Int A [], /* row indices of A */
- Int p [], /* pointers to columns in A */
- double knobs [COLAMD_KNOBS],/* parameters (uses defaults if NULL) */
- Int stats [COLAMD_STATS] /* output statistics and error codes */
-)
-{
- /* === Local variables ================================================== */
-
- Int i ; /* loop index */
- Int nnz ; /* nonzeros in A */
- size_t Row_size ; /* size of Row [], in integers */
- size_t Col_size ; /* size of Col [], in integers */
- size_t need ; /* minimum required length of A */
- Colamd_Row *Row ; /* pointer into A of Row [0..n_row] array */
- Colamd_Col *Col ; /* pointer into A of Col [0..n_col] array */
- Int n_col2 ; /* number of non-dense, non-empty columns */
- Int n_row2 ; /* number of non-dense, non-empty rows */
- Int ngarbage ; /* number of garbage collections performed */
- Int max_deg ; /* maximum row degree */
- double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
- Int aggressive ; /* do aggressive absorption */
- int ok ;
-
-#ifndef NDEBUG
- colamd_get_debug ("colamd") ;
-#endif /* NDEBUG */
-
- /* === Check the input arguments ======================================== */
-
- if (!stats)
- {
- DEBUG0 (("colamd: stats not present\n")) ;
- return (FALSE) ;
- }
- for (i = 0 ; i < COLAMD_STATS ; i++)
- {
- stats [i] = 0 ;
- }
- stats [COLAMD_STATUS] = COLAMD_OK ;
- stats [COLAMD_INFO1] = -1 ;
- stats [COLAMD_INFO2] = -1 ;
-
- if (!A) /* A is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
- DEBUG0 (("colamd: A not present\n")) ;
- return (FALSE) ;
- }
-
- if (!p) /* p is not present */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
- DEBUG0 (("colamd: p not present\n")) ;
- return (FALSE) ;
- }
-
- if (n_row < 0) /* n_row must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
- stats [COLAMD_INFO1] = n_row ;
- DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
- return (FALSE) ;
- }
-
- if (n_col < 0) /* n_col must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
- stats [COLAMD_INFO1] = n_col ;
- DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
- return (FALSE) ;
- }
-
- nnz = p [n_col] ;
- if (nnz < 0) /* nnz must be >= 0 */
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
- stats [COLAMD_INFO1] = nnz ;
- DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
- return (FALSE) ;
- }
-
- if (p [0] != 0)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
- stats [COLAMD_INFO1] = p [0] ;
- DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
- return (FALSE) ;
- }
-
- /* === If no knobs, set default knobs =================================== */
-
- if (!knobs)
- {
- COLAMD_set_defaults (default_knobs) ;
- knobs = default_knobs ;
- }
-
- aggressive = (knobs [COLAMD_AGGRESSIVE] != FALSE) ;
-
- /* === Allocate the Row and Col arrays from array A ===================== */
-
- ok = TRUE ;
- Col_size = COLAMD_C (n_col, &ok) ; /* size of Col array of structs */
- Row_size = COLAMD_R (n_row, &ok) ; /* size of Row array of structs */
-
- /* need = 2*nnz + n_col + Col_size + Row_size ; */
- need = t_mult (nnz, 2, &ok) ;
- need = t_add (need, n_col, &ok) ;
- need = t_add (need, Col_size, &ok) ;
- need = t_add (need, Row_size, &ok) ;
-
- if (!ok || need > (size_t) Alen || need > Int_MAX)
- {
- /* not enough space in array A to perform the ordering */
- stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
- stats [COLAMD_INFO1] = need ;
- stats [COLAMD_INFO2] = Alen ;
- DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
- return (FALSE) ;
- }
-
- Alen -= Col_size + Row_size ;
- Col = (Colamd_Col *) &A [Alen] ;
- Row = (Colamd_Row *) &A [Alen + Col_size] ;
-
- /* === Construct the row and column data structures ===================== */
-
- if (!init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
- {
- /* input matrix is invalid */
- DEBUG0 (("colamd: Matrix invalid\n")) ;
- return (FALSE) ;
- }
-
- /* === Initialize scores, kill dense rows/columns ======================= */
-
- init_scoring (n_row, n_col, Row, Col, A, p, knobs,
- &n_row2, &n_col2, &max_deg) ;
-
- /* === Order the supercolumns =========================================== */
-
- ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
- n_col2, max_deg, 2*nnz, aggressive) ;
-
- /* === Order the non-principal columns ================================== */
-
- order_children (n_col, Col, p) ;
-
- /* === Return statistics in stats ======================================= */
-
- stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
- stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
- stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
- DEBUG0 (("colamd: done.\n")) ;
- return (TRUE) ;
-}
-
-
-/* ========================================================================== */
-/* === colamd_report ======================================================== */
-/* ========================================================================== */
-
-PUBLIC void COLAMD_report
-(
- Int stats [COLAMD_STATS]
-)
-{
- print_report ("colamd", stats) ;
-}
-
-
-/* ========================================================================== */
-/* === symamd_report ======================================================== */
-/* ========================================================================== */
-
-PUBLIC void SYMAMD_report
-(
- Int stats [COLAMD_STATS]
-)
-{
- print_report ("symamd", stats) ;
-}
-
-
-
-/* ========================================================================== */
-/* === NON-USER-CALLABLE ROUTINES: ========================================== */
-/* ========================================================================== */
-
-/* There are no user-callable routines beyond this point in the file */
-
-
-/* ========================================================================== */
-/* === init_rows_cols ======================================================= */
-/* ========================================================================== */
-
-/*
- Takes the column form of the matrix in A and creates the row form of the
- matrix. Also, row and column attributes are stored in the Col and Row
- structs. If the columns are un-sorted or contain duplicate row indices,
- this routine will also sort and remove duplicate row indices from the
- column form of the matrix. Returns FALSE if the matrix is invalid,
- TRUE otherwise. Not user-callable.
-*/
-
-PRIVATE Int init_rows_cols /* returns TRUE if OK, or FALSE otherwise */
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows of A */
- Int n_col, /* number of columns of A */
- Colamd_Row Row [], /* of size n_row+1 */
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* row indices of A, of size Alen */
- Int p [], /* pointers to columns in A, of size n_col+1 */
- Int stats [COLAMD_STATS] /* colamd statistics */
-)
-{
- /* === Local variables ================================================== */
-
- Int col ; /* a column index */
- Int row ; /* a row index */
- Int *cp ; /* a column pointer */
- Int *cp_end ; /* a pointer to the end of a column */
- Int *rp ; /* a row pointer */
- Int *rp_end ; /* a pointer to the end of a row */
- Int last_row ; /* previous row */
-
- /* === Initialize columns, and check column pointers ==================== */
-
- for (col = 0 ; col < n_col ; col++)
- {
- Col [col].start = p [col] ;
- Col [col].length = p [col+1] - p [col] ;
-
- if (Col [col].length < 0)
- {
- /* column pointers must be non-decreasing */
- stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = Col [col].length ;
- DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
- return (FALSE) ;
- }
-
- Col [col].shared1.thickness = 1 ;
- Col [col].shared2.score = 0 ;
- Col [col].shared3.prev = EMPTY ;
- Col [col].shared4.degree_next = EMPTY ;
- }
-
- /* p [0..n_col] no longer needed, used as "head" in subsequent routines */
-
- /* === Scan columns, compute row degrees, and check row indices ========= */
-
- stats [COLAMD_INFO3] = 0 ; /* number of duplicate or unsorted row indices*/
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].length = 0 ;
- Row [row].shared2.mark = -1 ;
- }
-
- for (col = 0 ; col < n_col ; col++)
- {
- last_row = -1 ;
-
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
-
- while (cp < cp_end)
- {
- row = *cp++ ;
-
- /* make sure row indices within range */
- if (row < 0 || row >= n_row)
- {
- stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- stats [COLAMD_INFO3] = n_row ;
- DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
- return (FALSE) ;
- }
-
- if (row <= last_row || Row [row].shared2.mark == col)
- {
- /* row index are unsorted or repeated (or both), thus col */
- /* is jumbled. This is a notice, not an error condition. */
- stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
- stats [COLAMD_INFO1] = col ;
- stats [COLAMD_INFO2] = row ;
- (stats [COLAMD_INFO3]) ++ ;
- DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
- }
-
- if (Row [row].shared2.mark != col)
- {
- Row [row].length++ ;
- }
- else
- {
- /* this is a repeated entry in the column, */
- /* it will be removed */
- Col [col].length-- ;
- }
-
- /* mark the row as having been seen in this column */
- Row [row].shared2.mark = col ;
-
- last_row = row ;
- }
- }
-
- /* === Compute row pointers ============================================= */
-
- /* row form of the matrix starts directly after the column */
- /* form of matrix in A */
- Row [0].start = p [n_col] ;
- Row [0].shared1.p = Row [0].start ;
- Row [0].shared2.mark = -1 ;
- for (row = 1 ; row < n_row ; row++)
- {
- Row [row].start = Row [row-1].start + Row [row-1].length ;
- Row [row].shared1.p = Row [row].start ;
- Row [row].shared2.mark = -1 ;
- }
-
- /* === Create row form ================================================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- /* if cols jumbled, watch for repeated row indices */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- row = *cp++ ;
- if (Row [row].shared2.mark != col)
- {
- A [(Row [row].shared1.p)++] = col ;
- Row [row].shared2.mark = col ;
- }
- }
- }
- }
- else
- {
- /* if cols not jumbled, we don't need the mark (this is faster) */
- for (col = 0 ; col < n_col ; col++)
- {
- cp = &A [p [col]] ;
- cp_end = &A [p [col+1]] ;
- while (cp < cp_end)
- {
- A [(Row [*cp++].shared1.p)++] = col ;
- }
- }
- }
-
- /* === Clear the row marks and set row degrees ========================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- Row [row].shared2.mark = 0 ;
- Row [row].shared1.degree = Row [row].length ;
- }
-
- /* === See if we need to re-create columns ============================== */
-
- if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
- {
- DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;
-
-#ifndef NDEBUG
- /* make sure column lengths are correct */
- for (col = 0 ; col < n_col ; col++)
- {
- p [col] = Col [col].length ;
- }
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- p [*rp++]-- ;
- }
- }
- for (col = 0 ; col < n_col ; col++)
- {
- ASSERT (p [col] == 0) ;
- }
- /* now p is all zero (different than when debugging is turned off) */
-#endif /* NDEBUG */
-
- /* === Compute col pointers ========================================= */
-
- /* col form of the matrix starts at A [0]. */
- /* Note, we may have a gap between the col form and the row */
- /* form if there were duplicate entries, if so, it will be */
- /* removed upon the first garbage collection */
- Col [0].start = 0 ;
- p [0] = Col [0].start ;
- for (col = 1 ; col < n_col ; col++)
- {
- /* note that the lengths here are for pruned columns, i.e. */
- /* no duplicate row indices will exist for these columns */
- Col [col].start = Col [col-1].start + Col [col-1].length ;
- p [col] = Col [col].start ;
- }
-
- /* === Re-create col form =========================================== */
-
- for (row = 0 ; row < n_row ; row++)
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- A [(p [*rp++])++] = row ;
- }
- }
- }
-
- /* === Done. Matrix is not (or no longer) jumbled ====================== */
-
- return (TRUE) ;
-}
-
-
-/* ========================================================================== */
-/* === init_scoring ========================================================= */
-/* ========================================================================== */
-
-/*
- Kills dense or empty columns and rows, calculates an initial score for
- each column, and places all columns in the degree lists. Not user-callable.
-*/
-
-PRIVATE void init_scoring
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows of A */
- Int n_col, /* number of columns of A */
- Colamd_Row Row [], /* of size n_row+1 */
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* column form and row form of A */
- Int head [], /* of size n_col+1 */
- double knobs [COLAMD_KNOBS],/* parameters */
- Int *p_n_row2, /* number of non-dense, non-empty rows */
- Int *p_n_col2, /* number of non-dense, non-empty columns */
- Int *p_max_deg /* maximum row degree */
-)
-{
- /* === Local variables ================================================== */
-
- Int c ; /* a column index */
- Int r, row ; /* a row index */
- Int *cp ; /* a column pointer */
- Int deg ; /* degree of a row or column */
- Int *cp_end ; /* a pointer to the end of a column */
- Int *new_cp ; /* new column pointer */
- Int col_length ; /* length of pruned column */
- Int score ; /* current column score */
- Int n_col2 ; /* number of non-dense, non-empty columns */
- Int n_row2 ; /* number of non-dense, non-empty rows */
- Int dense_row_count ; /* remove rows with more entries than this */
- Int dense_col_count ; /* remove cols with more entries than this */
- Int min_score ; /* smallest column score */
- Int max_deg ; /* maximum row degree */
- Int next_col ; /* Used to add to degree list.*/
-
-#ifndef NDEBUG
- Int debug_count ; /* debug only. */
-#endif /* NDEBUG */
-
- /* === Extract knobs ==================================================== */
-
- /* Note: if knobs contains a NaN, this is undefined: */
- if (knobs [COLAMD_DENSE_ROW] < 0)
- {
- /* only remove completely dense rows */
- dense_row_count = n_col-1 ;
- }
- else
- {
- dense_row_count = DENSE_DEGREE (knobs [COLAMD_DENSE_ROW], n_col) ;
- }
- if (knobs [COLAMD_DENSE_COL] < 0)
- {
- /* only remove completely dense columns */
- dense_col_count = n_row-1 ;
- }
- else
- {
- dense_col_count =
- DENSE_DEGREE (knobs [COLAMD_DENSE_COL], MIN (n_row, n_col)) ;
- }
-
- DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
- max_deg = 0 ;
- n_col2 = n_col ;
- n_row2 = n_row ;
-
- /* === Kill empty columns =============================================== */
-
- /* Put the empty columns at the end in their natural order, so that LU */
- /* factorization can proceed as far as possible. */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- deg = Col [c].length ;
- if (deg == 0)
- {
- /* this is a empty column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense columns =============================================== */
-
- /* Put the dense columns at the end, in their natural order */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip any dead columns */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- deg = Col [c].length ;
- if (deg > dense_col_count)
- {
- /* this is a dense column, kill and order it last */
- Col [c].shared2.order = --n_col2 ;
- /* decrement the row degrees */
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- Row [*cp++].shared1.degree-- ;
- }
- KILL_PRINCIPAL_COL (c) ;
- }
- }
- DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;
-
- /* === Kill dense and empty rows ======================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- deg = Row [r].shared1.degree ;
- ASSERT (deg >= 0 && deg <= n_col) ;
- if (deg > dense_row_count || deg == 0)
- {
- /* kill a dense or empty row */
- KILL_ROW (r) ;
- --n_row2 ;
- }
- else
- {
- /* keep track of max degree of remaining rows */
- max_deg = MAX (max_deg, deg) ;
- }
- }
- DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;
-
- /* === Compute initial column scores ==================================== */
-
- /* At this point the row degrees are accurate. They reflect the number */
- /* of "live" (non-dense) columns in each row. No empty rows exist. */
- /* Some "live" columns may contain only dead rows, however. These are */
- /* pruned in the code below. */
-
- /* now find the initial matlab score for each column */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* skip dead column */
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- score = 0 ;
- cp = &A [Col [c].start] ;
- new_cp = cp ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- /* skip if dead */
- if (ROW_IS_DEAD (row))
- {
- continue ;
- }
- /* compact the column */
- *new_cp++ = row ;
- /* add row's external degree */
- score += Row [row].shared1.degree - 1 ;
- /* guard against integer overflow */
- score = MIN (score, n_col) ;
- }
- /* determine pruned column length */
- col_length = (Int) (new_cp - &A [Col [c].start]) ;
- if (col_length == 0)
- {
- /* a newly-made null column (all rows in this col are "dense" */
- /* and have already been killed) */
- DEBUG2 (("Newly null killed: %d\n", c)) ;
- Col [c].shared2.order = --n_col2 ;
- KILL_PRINCIPAL_COL (c) ;
- }
- else
- {
- /* set column length and set score */
- ASSERT (score >= 0) ;
- ASSERT (score <= n_col) ;
- Col [c].length = col_length ;
- Col [c].shared2.score = score ;
- }
- }
- DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
- n_col-n_col2)) ;
-
- /* At this point, all empty rows and columns are dead. All live columns */
- /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
- /* yet). Rows may contain dead columns, but all live rows contain at */
- /* least one live column. */
-
-#ifndef NDEBUG
- debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
-#endif /* NDEBUG */
-
- /* === Initialize degree lists ========================================== */
-
-#ifndef NDEBUG
- debug_count = 0 ;
-#endif /* NDEBUG */
-
- /* clear the hash buckets */
- for (c = 0 ; c <= n_col ; c++)
- {
- head [c] = EMPTY ;
- }
- min_score = n_col ;
- /* place in reverse order, so low column indices are at the front */
- /* of the lists. This is to encourage natural tie-breaking */
- for (c = n_col-1 ; c >= 0 ; c--)
- {
- /* only add principal columns to degree lists */
- if (COL_IS_ALIVE (c))
- {
- DEBUG4 (("place %d score %d minscore %d ncol %d\n",
- c, Col [c].shared2.score, min_score, n_col)) ;
-
- /* === Add columns score to DList =============================== */
-
- score = Col [c].shared2.score ;
-
- ASSERT (min_score >= 0) ;
- ASSERT (min_score <= n_col) ;
- ASSERT (score >= 0) ;
- ASSERT (score <= n_col) ;
- ASSERT (head [score] >= EMPTY) ;
-
- /* now add this column to dList at proper score location */
- next_col = head [score] ;
- Col [c].shared3.prev = EMPTY ;
- Col [c].shared4.degree_next = next_col ;
-
- /* if there already was a column with the same score, set its */
- /* previous pointer to this new column */
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = c ;
- }
- head [score] = c ;
-
- /* see if this score is less than current min */
- min_score = MIN (min_score, score) ;
-
-#ifndef NDEBUG
- debug_count++ ;
-#endif /* NDEBUG */
-
- }
- }
-
-#ifndef NDEBUG
- DEBUG1 (("colamd: Live cols %d out of %d, non-princ: %d\n",
- debug_count, n_col, n_col-debug_count)) ;
- ASSERT (debug_count == n_col2) ;
- debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
-#endif /* NDEBUG */
-
- /* === Return number of remaining columns, and max row degree =========== */
-
- *p_n_col2 = n_col2 ;
- *p_n_row2 = n_row2 ;
- *p_max_deg = max_deg ;
-}
-
-
-/* ========================================================================== */
-/* === find_ordering ======================================================== */
-/* ========================================================================== */
-
-/*
- Order the principal columns of the supercolumn form of the matrix
- (no supercolumns on input). Uses a minimum approximate column minimum
- degree ordering method. Not user-callable.
-*/
-
-PRIVATE Int find_ordering /* return the number of garbage collections */
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows of A */
- Int n_col, /* number of columns of A */
- Int Alen, /* size of A, 2*nnz + n_col or larger */
- Colamd_Row Row [], /* of size n_row+1 */
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* column form and row form of A */
- Int head [], /* of size n_col+1 */
- Int n_col2, /* Remaining columns to order */
- Int max_deg, /* Maximum row degree */
- Int pfree, /* index of first free slot (2*nnz on entry) */
- Int aggressive
-)
-{
- /* === Local variables ================================================== */
-
- Int k ; /* current pivot ordering step */
- Int pivot_col ; /* current pivot column */
- Int *cp ; /* a column pointer */
- Int *rp ; /* a row pointer */
- Int pivot_row ; /* current pivot row */
- Int *new_cp ; /* modified column pointer */
- Int *new_rp ; /* modified row pointer */
- Int pivot_row_start ; /* pointer to start of pivot row */
- Int pivot_row_degree ; /* number of columns in pivot row */
- Int pivot_row_length ; /* number of supercolumns in pivot row */
- Int pivot_col_score ; /* score of pivot column */
- Int needed_memory ; /* free space needed for pivot row */
- Int *cp_end ; /* pointer to the end of a column */
- Int *rp_end ; /* pointer to the end of a row */
- Int row ; /* a row index */
- Int col ; /* a column index */
- Int max_score ; /* maximum possible score */
- Int cur_score ; /* score of current column */
- unsigned Int hash ; /* hash value for supernode detection */
- Int head_column ; /* head of hash bucket */
- Int first_col ; /* first column in hash bucket */
- Int tag_mark ; /* marker value for mark array */
- Int row_mark ; /* Row [row].shared2.mark */
- Int set_difference ; /* set difference size of row with pivot row */
- Int min_score ; /* smallest column score */
- Int col_thickness ; /* "thickness" (no. of columns in a supercol) */
- Int max_mark ; /* maximum value of tag_mark */
- Int pivot_col_thickness ; /* number of columns represented by pivot col */
- Int prev_col ; /* Used by Dlist operations. */
- Int next_col ; /* Used by Dlist operations. */
- Int ngarbage ; /* number of garbage collections performed */
-
-#ifndef NDEBUG
- Int debug_d ; /* debug loop counter */
- Int debug_step = 0 ; /* debug loop counter */
-#endif /* NDEBUG */
-
- /* === Initialization and clear mark ==================================== */
-
- max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
- tag_mark = clear_mark (0, max_mark, n_row, Row) ;
- min_score = 0 ;
- ngarbage = 0 ;
- DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;
-
- /* === Order the columns ================================================ */
-
- for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
- {
-
-#ifndef NDEBUG
- if (debug_step % 100 == 0)
- {
- DEBUG2 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
- }
- else
- {
- DEBUG3 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
- }
- debug_step++ ;
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k, max_deg) ;
- debug_matrix (n_row, n_col, Row, Col, A) ;
-#endif /* NDEBUG */
-
- /* === Select pivot column, and order it ============================ */
-
- /* make sure degree list isn't empty */
- ASSERT (min_score >= 0) ;
- ASSERT (min_score <= n_col) ;
- ASSERT (head [min_score] >= EMPTY) ;
-
-#ifndef NDEBUG
- for (debug_d = 0 ; debug_d < min_score ; debug_d++)
- {
- ASSERT (head [debug_d] == EMPTY) ;
- }
-#endif /* NDEBUG */
-
- /* get pivot column from head of minimum degree list */
- while (head [min_score] == EMPTY && min_score < n_col)
- {
- min_score++ ;
- }
- pivot_col = head [min_score] ;
- ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
- next_col = Col [pivot_col].shared4.degree_next ;
- head [min_score] = next_col ;
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = EMPTY ;
- }
-
- ASSERT (COL_IS_ALIVE (pivot_col)) ;
-
- /* remember score for defrag check */
- pivot_col_score = Col [pivot_col].shared2.score ;
-
- /* the pivot column is the kth column in the pivot order */
- Col [pivot_col].shared2.order = k ;
-
- /* increment order count by column thickness */
- pivot_col_thickness = Col [pivot_col].shared1.thickness ;
- k += pivot_col_thickness ;
- ASSERT (pivot_col_thickness > 0) ;
- DEBUG3 (("Pivot col: %d thick %d\n", pivot_col, pivot_col_thickness)) ;
-
- /* === Garbage_collection, if necessary ============================= */
-
- needed_memory = MIN (pivot_col_score, n_col - k) ;
- if (pfree + needed_memory >= Alen)
- {
- pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
- ngarbage++ ;
- /* after garbage collection we will have enough */
- ASSERT (pfree + needed_memory < Alen) ;
- /* garbage collection has wiped out the Row[].shared2.mark array */
- tag_mark = clear_mark (0, max_mark, n_row, Row) ;
-
-#ifndef NDEBUG
- debug_matrix (n_row, n_col, Row, Col, A) ;
-#endif /* NDEBUG */
- }
-
- /* === Compute pivot row pattern ==================================== */
-
- /* get starting location for this new merged row */
- pivot_row_start = pfree ;
-
- /* initialize new row counts to zero */
- pivot_row_degree = 0 ;
-
- /* tag pivot column as having been visited so it isn't included */
- /* in merged pivot row */
- Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
-
- /* pivot row is the union of all rows in the pivot column pattern */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
- /* skip if row is dead */
- if (ROW_IS_ALIVE (row))
- {
- rp = &A [Row [row].start] ;
- rp_end = rp + Row [row].length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- /* add the column, if alive and untagged */
- col_thickness = Col [col].shared1.thickness ;
- if (col_thickness > 0 && COL_IS_ALIVE (col))
- {
- /* tag column in pivot row */
- Col [col].shared1.thickness = -col_thickness ;
- ASSERT (pfree < Alen) ;
- /* place column in pivot row */
- A [pfree++] = col ;
- pivot_row_degree += col_thickness ;
- }
- }
- }
- }
-
- /* clear tag on pivot column */
- Col [pivot_col].shared1.thickness = pivot_col_thickness ;
- max_deg = MAX (max_deg, pivot_row_degree) ;
-
-#ifndef NDEBUG
- DEBUG3 (("check2\n")) ;
- debug_mark (n_row, Row, tag_mark, max_mark) ;
-#endif /* NDEBUG */
-
- /* === Kill all rows used to construct pivot row ==================== */
-
- /* also kill pivot row, temporarily */
- cp = &A [Col [pivot_col].start] ;
- cp_end = cp + Col [pivot_col].length ;
- while (cp < cp_end)
- {
- /* may be killing an already dead row */
- row = *cp++ ;
- DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
- KILL_ROW (row) ;
- }
-
- /* === Select a row index to use as the new pivot row =============== */
-
- pivot_row_length = pfree - pivot_row_start ;
- if (pivot_row_length > 0)
- {
- /* pick the "pivot" row arbitrarily (first row in col) */
- pivot_row = A [Col [pivot_col].start] ;
- DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
- }
- else
- {
- /* there is no pivot row, since it is of zero length */
- pivot_row = EMPTY ;
- ASSERT (pivot_row_length == 0) ;
- }
- ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
-
- /* === Approximate degree computation =============================== */
-
- /* Here begins the computation of the approximate degree. The column */
- /* score is the sum of the pivot row "length", plus the size of the */
- /* set differences of each row in the column minus the pattern of the */
- /* pivot row itself. The column ("thickness") itself is also */
- /* excluded from the column score (we thus use an approximate */
- /* external degree). */
-
- /* The time taken by the following code (compute set differences, and */
- /* add them up) is proportional to the size of the data structure */
- /* being scanned - that is, the sum of the sizes of each column in */
- /* the pivot row. Thus, the amortized time to compute a column score */
- /* is proportional to the size of that column (where size, in this */
- /* context, is the column "length", or the number of row indices */
- /* in that column). The number of row indices in a column is */
- /* monotonically non-decreasing, from the length of the original */
- /* column on input to colamd. */
-
- /* === Compute set differences ====================================== */
-
- DEBUG3 (("** Computing set differences phase. **\n")) ;
-
- /* pivot row is currently dead - it will be revived later. */
-
- DEBUG3 (("Pivot row: ")) ;
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- DEBUG3 (("Col: %d\n", col)) ;
-
- /* clear tags used to construct pivot row pattern */
- col_thickness = -Col [col].shared1.thickness ;
- ASSERT (col_thickness > 0) ;
- Col [col].shared1.thickness = col_thickness ;
-
- /* === Remove column from degree list =========================== */
-
- cur_score = Col [col].shared2.score ;
- prev_col = Col [col].shared3.prev ;
- next_col = Col [col].shared4.degree_next ;
- ASSERT (cur_score >= 0) ;
- ASSERT (cur_score <= n_col) ;
- ASSERT (cur_score >= EMPTY) ;
- if (prev_col == EMPTY)
- {
- head [cur_score] = next_col ;
- }
- else
- {
- Col [prev_col].shared4.degree_next = next_col ;
- }
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = prev_col ;
- }
-
- /* === Scan the column ========================================== */
-
- cp = &A [Col [col].start] ;
- cp_end = cp + Col [col].length ;
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- continue ;
- }
- ASSERT (row != pivot_row) ;
- set_difference = row_mark - tag_mark ;
- /* check if the row has been seen yet */
- if (set_difference < 0)
- {
- ASSERT (Row [row].shared1.degree <= max_deg) ;
- set_difference = Row [row].shared1.degree ;
- }
- /* subtract column thickness from this row's set difference */
- set_difference -= col_thickness ;
- ASSERT (set_difference >= 0) ;
- /* absorb this row if the set difference becomes zero */
- if (set_difference == 0 && aggressive)
- {
- DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
- KILL_ROW (row) ;
- }
- else
- {
- /* save the new mark */
- Row [row].shared2.mark = set_difference + tag_mark ;
- }
- }
- }
-
-#ifndef NDEBUG
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k-pivot_row_degree, max_deg) ;
-#endif /* NDEBUG */
-
- /* === Add up set differences for each column ======================= */
-
- DEBUG3 (("** Adding set differences phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- /* get a column */
- col = *rp++ ;
- ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
- hash = 0 ;
- cur_score = 0 ;
- cp = &A [Col [col].start] ;
- /* compact the column */
- new_cp = cp ;
- cp_end = cp + Col [col].length ;
-
- DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;
-
- while (cp < cp_end)
- {
- /* get a row */
- row = *cp++ ;
- ASSERT(row >= 0 && row < n_row) ;
- row_mark = Row [row].shared2.mark ;
- /* skip if dead */
- if (ROW_IS_MARKED_DEAD (row_mark))
- {
- DEBUG4 ((" Row %d, dead\n", row)) ;
- continue ;
- }
- DEBUG4 ((" Row %d, set diff %d\n", row, row_mark-tag_mark));
- ASSERT (row_mark >= tag_mark) ;
- /* compact the column */
- *new_cp++ = row ;
- /* compute hash function */
- hash += row ;
- /* add set difference */
- cur_score += row_mark - tag_mark ;
- /* integer overflow... */
- cur_score = MIN (cur_score, n_col) ;
- }
-
- /* recompute the column's length */
- Col [col].length = (Int) (new_cp - &A [Col [col].start]) ;
-
- /* === Further mass elimination ================================= */
-
- if (Col [col].length == 0)
- {
- DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
- /* nothing left but the pivot row in this column */
- KILL_PRINCIPAL_COL (col) ;
- pivot_row_degree -= Col [col].shared1.thickness ;
- ASSERT (pivot_row_degree >= 0) ;
- /* order it */
- Col [col].shared2.order = k ;
- /* increment order count by column thickness */
- k += Col [col].shared1.thickness ;
- }
- else
- {
- /* === Prepare for supercolumn detection ==================== */
-
- DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;
-
- /* save score so far */
- Col [col].shared2.score = cur_score ;
-
- /* add column to hash table, for supercolumn detection */
- hash %= n_col + 1 ;
-
- DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
- ASSERT (((Int) hash) <= n_col) ;
-
- head_column = head [hash] ;
- if (head_column > EMPTY)
- {
- /* degree list "hash" is non-empty, use prev (shared3) of */
- /* first column in degree list as head of hash bucket */
- first_col = Col [head_column].shared3.headhash ;
- Col [head_column].shared3.headhash = col ;
- }
- else
- {
- /* degree list "hash" is empty, use head as hash bucket */
- first_col = - (head_column + 2) ;
- head [hash] = - (col + 2) ;
- }
- Col [col].shared4.hash_next = first_col ;
-
- /* save hash function in Col [col].shared3.hash */
- Col [col].shared3.hash = (Int) hash ;
- ASSERT (COL_IS_ALIVE (col)) ;
- }
- }
-
- /* The approximate external column degree is now computed. */
-
- /* === Supercolumn detection ======================================== */
-
- DEBUG3 (("** Supercolumn detection phase. **\n")) ;
-
- detect_super_cols (
-
-#ifndef NDEBUG
- n_col, Row,
-#endif /* NDEBUG */
-
- Col, A, head, pivot_row_start, pivot_row_length) ;
-
- /* === Kill the pivotal column ====================================== */
-
- KILL_PRINCIPAL_COL (pivot_col) ;
-
- /* === Clear mark =================================================== */
-
- tag_mark = clear_mark (tag_mark+max_deg+1, max_mark, n_row, Row) ;
-
-#ifndef NDEBUG
- DEBUG3 (("check3\n")) ;
- debug_mark (n_row, Row, tag_mark, max_mark) ;
-#endif /* NDEBUG */
-
- /* === Finalize the new pivot row, and column scores ================ */
-
- DEBUG3 (("** Finalize scores phase. **\n")) ;
-
- /* for each column in pivot row */
- rp = &A [pivot_row_start] ;
- /* compact the pivot row */
- new_rp = rp ;
- rp_end = rp + pivot_row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- /* skip dead columns */
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
- *new_rp++ = col ;
- /* add new pivot row to column */
- A [Col [col].start + (Col [col].length++)] = pivot_row ;
-
- /* retrieve score so far and add on pivot row's degree. */
- /* (we wait until here for this in case the pivot */
- /* row's degree was reduced due to mass elimination). */
- cur_score = Col [col].shared2.score + pivot_row_degree ;
-
- /* calculate the max possible score as the number of */
- /* external columns minus the 'k' value minus the */
- /* columns thickness */
- max_score = n_col - k - Col [col].shared1.thickness ;
-
- /* make the score the external degree of the union-of-rows */
- cur_score -= Col [col].shared1.thickness ;
-
- /* make sure score is less or equal than the max score */
- cur_score = MIN (cur_score, max_score) ;
- ASSERT (cur_score >= 0) ;
-
- /* store updated score */
- Col [col].shared2.score = cur_score ;
-
- /* === Place column back in degree list ========================= */
-
- ASSERT (min_score >= 0) ;
- ASSERT (min_score <= n_col) ;
- ASSERT (cur_score >= 0) ;
- ASSERT (cur_score <= n_col) ;
- ASSERT (head [cur_score] >= EMPTY) ;
- next_col = head [cur_score] ;
- Col [col].shared4.degree_next = next_col ;
- Col [col].shared3.prev = EMPTY ;
- if (next_col != EMPTY)
- {
- Col [next_col].shared3.prev = col ;
- }
- head [cur_score] = col ;
-
- /* see if this score is less than current min */
- min_score = MIN (min_score, cur_score) ;
-
- }
-
-#ifndef NDEBUG
- debug_deg_lists (n_row, n_col, Row, Col, head,
- min_score, n_col2-k, max_deg) ;
-#endif /* NDEBUG */
-
- /* === Resurrect the new pivot row ================================== */
-
- if (pivot_row_degree > 0)
- {
- /* update pivot row length to reflect any cols that were killed */
- /* during super-col detection and mass elimination */
- Row [pivot_row].start = pivot_row_start ;
- Row [pivot_row].length = (Int) (new_rp - &A[pivot_row_start]) ;
- ASSERT (Row [pivot_row].length > 0) ;
- Row [pivot_row].shared1.degree = pivot_row_degree ;
- Row [pivot_row].shared2.mark = 0 ;
- /* pivot row is no longer dead */
-
- DEBUG1 (("Resurrect Pivot_row %d deg: %d\n",
- pivot_row, pivot_row_degree)) ;
- }
- }
-
- /* === All principal columns have now been ordered ====================== */
-
- return (ngarbage) ;
-}
-
-
-/* ========================================================================== */
-/* === order_children ======================================================= */
-/* ========================================================================== */
-
-/*
- The find_ordering routine has ordered all of the principal columns (the
- representatives of the supercolumns). The non-principal columns have not
- yet been ordered. This routine orders those columns by walking up the
- parent tree (a column is a child of the column which absorbed it). The
- final permutation vector is then placed in p [0 ... n_col-1], with p [0]
- being the first column, and p [n_col-1] being the last. It doesn't look
- like it at first glance, but be assured that this routine takes time linear
- in the number of columns. Although not immediately obvious, the time
- taken by this routine is O (n_col), that is, linear in the number of
- columns. Not user-callable.
-*/
-
-PRIVATE void order_children
-(
- /* === Parameters ======================================================= */
-
- Int n_col, /* number of columns of A */
- Colamd_Col Col [], /* of size n_col+1 */
- Int p [] /* p [0 ... n_col-1] is the column permutation*/
-)
-{
- /* === Local variables ================================================== */
-
- Int i ; /* loop counter for all columns */
- Int c ; /* column index */
- Int parent ; /* index of column's parent */
- Int order ; /* column's order */
-
- /* === Order each non-principal column ================================== */
-
- for (i = 0 ; i < n_col ; i++)
- {
- /* find an un-ordered non-principal column */
- ASSERT (COL_IS_DEAD (i)) ;
- if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
- {
- parent = i ;
- /* once found, find its principal parent */
- do
- {
- parent = Col [parent].shared1.parent ;
- } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
-
- /* now, order all un-ordered non-principal columns along path */
- /* to this parent. collapse tree at the same time */
- c = i ;
- /* get order of parent */
- order = Col [parent].shared2.order ;
-
- do
- {
- ASSERT (Col [c].shared2.order == EMPTY) ;
-
- /* order this column */
- Col [c].shared2.order = order++ ;
- /* collaps tree */
- Col [c].shared1.parent = parent ;
-
- /* get immediate parent of this column */
- c = Col [c].shared1.parent ;
-
- /* continue until we hit an ordered column. There are */
- /* guarranteed not to be anymore unordered columns */
- /* above an ordered column */
- } while (Col [c].shared2.order == EMPTY) ;
-
- /* re-order the super_col parent to largest order for this group */
- Col [parent].shared2.order = order ;
- }
- }
-
- /* === Generate the permutation ========================================= */
-
- for (c = 0 ; c < n_col ; c++)
- {
- p [Col [c].shared2.order] = c ;
- }
-}
-
-
-/* ========================================================================== */
-/* === detect_super_cols ==================================================== */
-/* ========================================================================== */
-
-/*
- Detects supercolumns by finding matches between columns in the hash buckets.
- Check amongst columns in the set A [row_start ... row_start + row_length-1].
- The columns under consideration are currently *not* in the degree lists,
- and have already been placed in the hash buckets.
-
- The hash bucket for columns whose hash function is equal to h is stored
- as follows:
-
- if head [h] is >= 0, then head [h] contains a degree list, so:
-
- head [h] is the first column in degree bucket h.
- Col [head [h]].headhash gives the first column in hash bucket h.
-
- otherwise, the degree list is empty, and:
-
- -(head [h] + 2) is the first column in hash bucket h.
-
- For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
- column" pointer. Col [c].shared3.hash is used instead as the hash number
- for that column. The value of Col [c].shared4.hash_next is the next column
- in the same hash bucket.
-
- Assuming no, or "few" hash collisions, the time taken by this routine is
- linear in the sum of the sizes (lengths) of each column whose score has
- just been computed in the approximate degree computation.
- Not user-callable.
-*/
-
-PRIVATE void detect_super_cols
-(
- /* === Parameters ======================================================= */
-
-#ifndef NDEBUG
- /* these two parameters are only needed when debugging is enabled: */
- Int n_col, /* number of columns of A */
- Colamd_Row Row [], /* of size n_row+1 */
-#endif /* NDEBUG */
-
- Colamd_Col Col [], /* of size n_col+1 */
- Int A [], /* row indices of A */
- Int head [], /* head of degree lists and hash buckets */
- Int row_start, /* pointer to set of columns to check */
- Int row_length /* number of columns to check */
-)
-{
- /* === Local variables ================================================== */
-
- Int hash ; /* hash value for a column */
- Int *rp ; /* pointer to a row */
- Int c ; /* a column index */
- Int super_c ; /* column index of the column to absorb into */
- Int *cp1 ; /* column pointer for column super_c */
- Int *cp2 ; /* column pointer for column c */
- Int length ; /* length of column super_c */
- Int prev_c ; /* column preceding c in hash bucket */
- Int i ; /* loop counter */
- Int *rp_end ; /* pointer to the end of the row */
- Int col ; /* a column index in the row to check */
- Int head_column ; /* first column in hash bucket or degree list */
- Int first_col ; /* first column in hash bucket */
-
- /* === Consider each column in the row ================================== */
-
- rp = &A [row_start] ;
- rp_end = rp + row_length ;
- while (rp < rp_end)
- {
- col = *rp++ ;
- if (COL_IS_DEAD (col))
- {
- continue ;
- }
-
- /* get hash number for this column */
- hash = Col [col].shared3.hash ;
- ASSERT (hash <= n_col) ;
-
- /* === Get the first column in this hash bucket ===================== */
-
- head_column = head [hash] ;
- if (head_column > EMPTY)
- {
- first_col = Col [head_column].shared3.headhash ;
- }
- else
- {
- first_col = - (head_column + 2) ;
- }
-
- /* === Consider each column in the hash bucket ====================== */
-
- for (super_c = first_col ; super_c != EMPTY ;
- super_c = Col [super_c].shared4.hash_next)
- {
- ASSERT (COL_IS_ALIVE (super_c)) ;
- ASSERT (Col [super_c].shared3.hash == hash) ;
- length = Col [super_c].length ;
-
- /* prev_c is the column preceding column c in the hash bucket */
- prev_c = super_c ;
-
- /* === Compare super_c with all columns after it ================ */
-
- for (c = Col [super_c].shared4.hash_next ;
- c != EMPTY ; c = Col [c].shared4.hash_next)
- {
- ASSERT (c != super_c) ;
- ASSERT (COL_IS_ALIVE (c)) ;
- ASSERT (Col [c].shared3.hash == hash) ;
-
- /* not identical if lengths or scores are different */
- if (Col [c].length != length ||
- Col [c].shared2.score != Col [super_c].shared2.score)
- {
- prev_c = c ;
- continue ;
- }
-
- /* compare the two columns */
- cp1 = &A [Col [super_c].start] ;
- cp2 = &A [Col [c].start] ;
-
- for (i = 0 ; i < length ; i++)
- {
- /* the columns are "clean" (no dead rows) */
- ASSERT (ROW_IS_ALIVE (*cp1)) ;
- ASSERT (ROW_IS_ALIVE (*cp2)) ;
- /* row indices will same order for both supercols, */
- /* no gather scatter nessasary */
- if (*cp1++ != *cp2++)
- {
- break ;
- }
- }
-
- /* the two columns are different if the for-loop "broke" */
- if (i != length)
- {
- prev_c = c ;
- continue ;
- }
-
- /* === Got it! two columns are identical =================== */
-
- ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;
-
- Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
- Col [c].shared1.parent = super_c ;
- KILL_NON_PRINCIPAL_COL (c) ;
- /* order c later, in order_children() */
- Col [c].shared2.order = EMPTY ;
- /* remove c from hash bucket */
- Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
- }
- }
-
- /* === Empty this hash bucket ======================================= */
-
- if (head_column > EMPTY)
- {
- /* corresponding degree list "hash" is not empty */
- Col [head_column].shared3.headhash = EMPTY ;
- }
- else
- {
- /* corresponding degree list "hash" is empty */
- head [hash] = EMPTY ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === garbage_collection =================================================== */
-/* ========================================================================== */
-
-/*
- Defragments and compacts columns and rows in the workspace A. Used when
- all avaliable memory has been used while performing row merging. Returns
- the index of the first free position in A, after garbage collection. The
- time taken by this routine is linear is the size of the array A, which is
- itself linear in the number of nonzeros in the input matrix.
- Not user-callable.
-*/
-
-PRIVATE Int garbage_collection /* returns the new value of pfree */
-(
- /* === Parameters ======================================================= */
-
- Int n_row, /* number of rows */
- Int n_col, /* number of columns */
- Colamd_Row Row [], /* row info */
- Colamd_Col Col [], /* column info */
- Int A [], /* A [0 ... Alen-1] holds the matrix */
- Int *pfree /* &A [0] ... pfree is in use */
-)
-{
- /* === Local variables ================================================== */
-
- Int *psrc ; /* source pointer */
- Int *pdest ; /* destination pointer */
- Int j ; /* counter */
- Int r ; /* a row index */
- Int c ; /* a column index */
- Int length ; /* length of a row or column */
-
-#ifndef NDEBUG
- Int debug_rows ;
- DEBUG2 (("Defrag..\n")) ;
- for (psrc = &A[0] ; psrc < pfree ; psrc++) ASSERT (*psrc >= 0) ;
- debug_rows = 0 ;
-#endif /* NDEBUG */
-
- /* === Defragment the columns =========================================== */
-
- pdest = &A[0] ;
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- psrc = &A [Col [c].start] ;
-
- /* move and compact the column */
- ASSERT (pdest <= psrc) ;
- Col [c].start = (Int) (pdest - &A [0]) ;
- length = Col [c].length ;
- for (j = 0 ; j < length ; j++)
- {
- r = *psrc++ ;
- if (ROW_IS_ALIVE (r))
- {
- *pdest++ = r ;
- }
- }
- Col [c].length = (Int) (pdest - &A [Col [c].start]) ;
- }
- }
-
- /* === Prepare to defragment the rows =================================== */
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_DEAD (r) || (Row [r].length == 0))
- {
- /* This row is already dead, or is of zero length. Cannot compact
- * a row of zero length, so kill it. NOTE: in the current version,
- * there are no zero-length live rows. Kill the row (for the first
- * time, or again) just to be safe. */
- KILL_ROW (r) ;
- }
- else
- {
- /* save first column index in Row [r].shared2.first_column */
- psrc = &A [Row [r].start] ;
- Row [r].shared2.first_column = *psrc ;
- ASSERT (ROW_IS_ALIVE (r)) ;
- /* flag the start of the row with the one's complement of row */
- *psrc = ONES_COMPLEMENT (r) ;
-#ifndef NDEBUG
- debug_rows++ ;
-#endif /* NDEBUG */
- }
- }
-
- /* === Defragment the rows ============================================== */
-
- psrc = pdest ;
- while (psrc < pfree)
- {
- /* find a negative number ... the start of a row */
- if (*psrc++ < 0)
- {
- psrc-- ;
- /* get the row index */
- r = ONES_COMPLEMENT (*psrc) ;
- ASSERT (r >= 0 && r < n_row) ;
- /* restore first column index */
- *psrc = Row [r].shared2.first_column ;
- ASSERT (ROW_IS_ALIVE (r)) ;
- ASSERT (Row [r].length > 0) ;
- /* move and compact the row */
- ASSERT (pdest <= psrc) ;
- Row [r].start = (Int) (pdest - &A [0]) ;
- length = Row [r].length ;
- for (j = 0 ; j < length ; j++)
- {
- c = *psrc++ ;
- if (COL_IS_ALIVE (c))
- {
- *pdest++ = c ;
- }
- }
- Row [r].length = (Int) (pdest - &A [Row [r].start]) ;
- ASSERT (Row [r].length > 0) ;
-#ifndef NDEBUG
- debug_rows-- ;
-#endif /* NDEBUG */
- }
- }
- /* ensure we found all the rows */
- ASSERT (debug_rows == 0) ;
-
- /* === Return the new value of pfree ==================================== */
-
- return ((Int) (pdest - &A [0])) ;
-}
-
-
-/* ========================================================================== */
-/* === clear_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Clears the Row [].shared2.mark array, and returns the new tag_mark.
- Return value is the new tag_mark. Not user-callable.
-*/
-
-PRIVATE Int clear_mark /* return the new value for tag_mark */
-(
- /* === Parameters ======================================================= */
-
- Int tag_mark, /* new value of tag_mark */
- Int max_mark, /* max allowed value of tag_mark */
-
- Int n_row, /* number of rows in A */
- Colamd_Row Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
-)
-{
- /* === Local variables ================================================== */
-
- Int r ;
-
- if (tag_mark <= 0 || tag_mark >= max_mark)
- {
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- Row [r].shared2.mark = 0 ;
- }
- }
- tag_mark = 1 ;
- }
-
- return (tag_mark) ;
-}
-
-
-/* ========================================================================== */
-/* === print_report ========================================================= */
-/* ========================================================================== */
-
-PRIVATE void print_report
-(
- char *method,
- Int stats [COLAMD_STATS]
-)
-{
-
- Int i1, i2, i3 ;
-
- PRINTF (("\n%s version %d.%d, %s: ", method,
- COLAMD_MAIN_VERSION, COLAMD_SUB_VERSION, COLAMD_DATE)) ;
-
- if (!stats)
- {
- PRINTF (("No statistics available.\n")) ;
- return ;
- }
-
- i1 = stats [COLAMD_INFO1] ;
- i2 = stats [COLAMD_INFO2] ;
- i3 = stats [COLAMD_INFO3] ;
-
- if (stats [COLAMD_STATUS] >= 0)
- {
- PRINTF (("OK. ")) ;
- }
- else
- {
- PRINTF (("ERROR. ")) ;
- }
-
- switch (stats [COLAMD_STATUS])
- {
-
- case COLAMD_OK_BUT_JUMBLED:
-
- PRINTF(("Matrix has unsorted or duplicate row indices.\n")) ;
-
- PRINTF(("%s: number of duplicate or out-of-order row indices: %d\n",
- method, i3)) ;
-
- PRINTF(("%s: last seen duplicate or out-of-order row index: %d\n",
- method, INDEX (i2))) ;
-
- PRINTF(("%s: last seen in column: %d",
- method, INDEX (i1))) ;
-
- /* no break - fall through to next case instead */
-
- case COLAMD_OK:
-
- PRINTF(("\n")) ;
-
- PRINTF(("%s: number of dense or empty rows ignored: %d\n",
- method, stats [COLAMD_DENSE_ROW])) ;
-
- PRINTF(("%s: number of dense or empty columns ignored: %d\n",
- method, stats [COLAMD_DENSE_COL])) ;
-
- PRINTF(("%s: number of garbage collections performed: %d\n",
- method, stats [COLAMD_DEFRAG_COUNT])) ;
- break ;
-
- case COLAMD_ERROR_A_not_present:
-
- PRINTF(("Array A (row indices of matrix) not present.\n")) ;
- break ;
-
- case COLAMD_ERROR_p_not_present:
-
- PRINTF(("Array p (column pointers for matrix) not present.\n")) ;
- break ;
-
- case COLAMD_ERROR_nrow_negative:
-
- PRINTF(("Invalid number of rows (%d).\n", i1)) ;
- break ;
-
- case COLAMD_ERROR_ncol_negative:
-
- PRINTF(("Invalid number of columns (%d).\n", i1)) ;
- break ;
-
- case COLAMD_ERROR_nnz_negative:
-
- PRINTF(("Invalid number of nonzero entries (%d).\n", i1)) ;
- break ;
-
- case COLAMD_ERROR_p0_nonzero:
-
- PRINTF(("Invalid column pointer, p [0] = %d, must be zero.\n", i1));
- break ;
-
- case COLAMD_ERROR_A_too_small:
-
- PRINTF(("Array A too small.\n")) ;
- PRINTF((" Need Alen >= %d, but given only Alen = %d.\n",
- i1, i2)) ;
- break ;
-
- case COLAMD_ERROR_col_length_negative:
-
- PRINTF
- (("Column %d has a negative number of nonzero entries (%d).\n",
- INDEX (i1), i2)) ;
- break ;
-
- case COLAMD_ERROR_row_index_out_of_bounds:
-
- PRINTF
- (("Row index (row %d) out of bounds (%d to %d) in column %d.\n",
- INDEX (i2), INDEX (0), INDEX (i3-1), INDEX (i1))) ;
- break ;
-
- case COLAMD_ERROR_out_of_memory:
-
- PRINTF(("Out of memory.\n")) ;
- break ;
-
- /* v2.4: internal-error case deleted */
- }
-}
-
-
-
-
-/* ========================================================================== */
-/* === colamd debugging routines ============================================ */
-/* ========================================================================== */
-
-/* When debugging is disabled, the remainder of this file is ignored. */
-
-#ifndef NDEBUG
-
-
-/* ========================================================================== */
-/* === debug_structures ===================================================== */
-/* ========================================================================== */
-
-/*
- At this point, all empty rows and columns are dead. All live columns
- are "clean" (containing no dead rows) and simplicial (no supercolumns
- yet). Rows may contain dead columns, but all live rows contain at
- least one live column.
-*/
-
-PRIVATE void debug_structures
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A [],
- Int n_col2
-)
-{
- /* === Local variables ================================================== */
-
- Int i ;
- Int c ;
- Int *cp ;
- Int *cp_end ;
- Int len ;
- Int score ;
- Int r ;
- Int *rp ;
- Int *rp_end ;
- Int deg ;
-
- /* === Check A, Row, and Col ============================================ */
-
- for (c = 0 ; c < n_col ; c++)
- {
- if (COL_IS_ALIVE (c))
- {
- len = Col [c].length ;
- score = Col [c].shared2.score ;
- DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
- ASSERT (len > 0) ;
- ASSERT (score >= 0) ;
- ASSERT (Col [c].shared1.thickness == 1) ;
- cp = &A [Col [c].start] ;
- cp_end = cp + len ;
- while (cp < cp_end)
- {
- r = *cp++ ;
- ASSERT (ROW_IS_ALIVE (r)) ;
- }
- }
- else
- {
- i = Col [c].shared2.order ;
- ASSERT (i >= n_col2 && i < n_col) ;
- }
- }
-
- for (r = 0 ; r < n_row ; r++)
- {
- if (ROW_IS_ALIVE (r))
- {
- i = 0 ;
- len = Row [r].length ;
- deg = Row [r].shared1.degree ;
- ASSERT (len > 0) ;
- ASSERT (deg > 0) ;
- rp = &A [Row [r].start] ;
- rp_end = rp + len ;
- while (rp < rp_end)
- {
- c = *rp++ ;
- if (COL_IS_ALIVE (c))
- {
- i++ ;
- }
- }
- ASSERT (i > 0) ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_deg_lists ====================================================== */
-/* ========================================================================== */
-
-/*
- Prints the contents of the degree lists. Counts the number of columns
- in the degree list and compares it to the total it should have. Also
- checks the row degrees.
-*/
-
-PRIVATE void debug_deg_lists
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int head [],
- Int min_score,
- Int should,
- Int max_deg
-)
-{
- /* === Local variables ================================================== */
-
- Int deg ;
- Int col ;
- Int have ;
- Int row ;
-
- /* === Check the degree lists =========================================== */
-
- if (n_col > 10000 && colamd_debug <= 0)
- {
- return ;
- }
- have = 0 ;
- DEBUG4 (("Degree lists: %d\n", min_score)) ;
- for (deg = 0 ; deg <= n_col ; deg++)
- {
- col = head [deg] ;
- if (col == EMPTY)
- {
- continue ;
- }
- DEBUG4 (("%d:", deg)) ;
- while (col != EMPTY)
- {
- DEBUG4 ((" %d", col)) ;
- have += Col [col].shared1.thickness ;
- ASSERT (COL_IS_ALIVE (col)) ;
- col = Col [col].shared4.degree_next ;
- }
- DEBUG4 (("\n")) ;
- }
- DEBUG4 (("should %d have %d\n", should, have)) ;
- ASSERT (should == have) ;
-
- /* === Check the row degrees ============================================ */
-
- if (n_row > 10000 && colamd_debug <= 0)
- {
- return ;
- }
- for (row = 0 ; row < n_row ; row++)
- {
- if (ROW_IS_ALIVE (row))
- {
- ASSERT (Row [row].shared1.degree <= max_deg) ;
- }
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_mark =========================================================== */
-/* ========================================================================== */
-
-/*
- Ensures that the tag_mark is less that the maximum and also ensures that
- each entry in the mark array is less than the tag mark.
-*/
-
-PRIVATE void debug_mark
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Colamd_Row Row [],
- Int tag_mark,
- Int max_mark
-)
-{
- /* === Local variables ================================================== */
-
- Int r ;
-
- /* === Check the Row marks ============================================== */
-
- ASSERT (tag_mark > 0 && tag_mark <= max_mark) ;
- if (n_row > 10000 && colamd_debug <= 0)
- {
- return ;
- }
- for (r = 0 ; r < n_row ; r++)
- {
- ASSERT (Row [r].shared2.mark < tag_mark) ;
- }
-}
-
-
-/* ========================================================================== */
-/* === debug_matrix ========================================================= */
-/* ========================================================================== */
-
-/*
- Prints out the contents of the columns and the rows.
-*/
-
-PRIVATE void debug_matrix
-(
- /* === Parameters ======================================================= */
-
- Int n_row,
- Int n_col,
- Colamd_Row Row [],
- Colamd_Col Col [],
- Int A []
-)
-{
- /* === Local variables ================================================== */
-
- Int r ;
- Int c ;
- Int *rp ;
- Int *rp_end ;
- Int *cp ;
- Int *cp_end ;
-
- /* === Dump the rows and columns of the matrix ========================== */
-
- if (colamd_debug < 3)
- {
- return ;
- }
- DEBUG3 (("DUMP MATRIX:\n")) ;
- for (r = 0 ; r < n_row ; r++)
- {
- DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
- if (ROW_IS_DEAD (r))
- {
- continue ;
- }
- DEBUG3 (("start %d length %d degree %d\n",
- Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
- rp = &A [Row [r].start] ;
- rp_end = rp + Row [r].length ;
- while (rp < rp_end)
- {
- c = *rp++ ;
- DEBUG4 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
- }
- }
-
- for (c = 0 ; c < n_col ; c++)
- {
- DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
- if (COL_IS_DEAD (c))
- {
- continue ;
- }
- DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
- Col [c].start, Col [c].length,
- Col [c].shared1.thickness, Col [c].shared2.score)) ;
- cp = &A [Col [c].start] ;
- cp_end = cp + Col [c].length ;
- while (cp < cp_end)
- {
- r = *cp++ ;
- DEBUG4 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
- }
- }
-}
-
-PRIVATE void colamd_get_debug
-(
- char *method
-)
-{
- FILE *f ;
- colamd_debug = 0 ; /* no debug printing */
- f = fopen ("debug", "r") ;
- if (f == (FILE *) NULL)
- {
- colamd_debug = 0 ;
- }
- else
- {
- fscanf (f, "%d", &colamd_debug) ;
- fclose (f) ;
- }
- DEBUG0 (("%s: debug version, D = %d (THIS WILL BE SLOW!)\n",
- method, colamd_debug)) ;
-}
-
-#endif /* NDEBUG */