Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/draco/dracoenc/src/draco/compression/mesh/mesh_edgebreaker_traversal_valence_encoder.h')
-rw-r--r--extern/draco/dracoenc/src/draco/compression/mesh/mesh_edgebreaker_traversal_valence_encoder.h223
1 files changed, 223 insertions, 0 deletions
diff --git a/extern/draco/dracoenc/src/draco/compression/mesh/mesh_edgebreaker_traversal_valence_encoder.h b/extern/draco/dracoenc/src/draco/compression/mesh/mesh_edgebreaker_traversal_valence_encoder.h
new file mode 100644
index 00000000000..ef3a86bf983
--- /dev/null
+++ b/extern/draco/dracoenc/src/draco/compression/mesh/mesh_edgebreaker_traversal_valence_encoder.h
@@ -0,0 +1,223 @@
+// Copyright 2016 The Draco Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+#ifndef DRACO_COMPRESSION_MESH_MESH_EDGEBREAKER_TRAVERSAL_VALENCE_ENCODER_H_
+#define DRACO_COMPRESSION_MESH_MESH_EDGEBREAKER_TRAVERSAL_VALENCE_ENCODER_H_
+
+#include "draco/compression/entropy/symbol_encoding.h"
+#include "draco/compression/mesh/mesh_edgebreaker_traversal_encoder.h"
+#include "draco/core/varint_encoding.h"
+
+namespace draco {
+
+// Predictive encoder for the Edgebreaker symbols based on valences of the
+// previously encoded vertices, following the method described in: Szymczak'02,
+// "Optimized Edgebreaker Encoding for Large and Regular Triangle Meshes". Each
+// valence is used to specify a different entropy context for encoding of the
+// symbols.
+// Encoder can operate in various predefined modes that can be used to select
+// the way in which the entropy contexts are computed (e.g. using different
+// clamping for valences, or even using different inputs to compute the
+// contexts), see EdgebreakerValenceCodingMode in mesh_edgebreaker_shared.h for
+// a list of supported modes.
+class MeshEdgebreakerTraversalValenceEncoder
+ : public MeshEdgebreakerTraversalEncoder {
+ public:
+ MeshEdgebreakerTraversalValenceEncoder()
+ : corner_table_(nullptr),
+ prev_symbol_(-1),
+ last_corner_(kInvalidCornerIndex),
+ num_symbols_(0),
+ min_valence_(2),
+ max_valence_(7) {}
+
+ bool Init(MeshEdgebreakerEncoderImplInterface *encoder) {
+ if (!MeshEdgebreakerTraversalEncoder::Init(encoder))
+ return false;
+ min_valence_ = 2;
+ max_valence_ = 7;
+ corner_table_ = encoder->GetCornerTable();
+
+ // Initialize valences of all vertices.
+ vertex_valences_.resize(corner_table_->num_vertices());
+ for (VertexIndex i(0); i < static_cast<uint32_t>(vertex_valences_.size());
+ ++i) {
+ vertex_valences_[i] = corner_table_->Valence(VertexIndex(i));
+ }
+
+ // Replicate the corner to vertex map from the corner table. We need to do
+ // this because the map may get updated during encoding because we add new
+ // vertices when we encounter split symbols.
+ corner_to_vertex_map_.resize(corner_table_->num_corners());
+ for (CornerIndex i(0); i < corner_table_->num_corners(); ++i) {
+ corner_to_vertex_map_[i] = corner_table_->Vertex(i);
+ }
+ const int32_t num_unique_valences = max_valence_ - min_valence_ + 1;
+
+ context_symbols_.resize(num_unique_valences);
+ return true;
+ }
+
+ inline void NewCornerReached(CornerIndex corner) { last_corner_ = corner; }
+
+ inline void EncodeSymbol(EdgebreakerTopologyBitPattern symbol) {
+ ++num_symbols_;
+ // Update valences on the mesh and compute the context that is going to be
+ // used to encode the processed symbol.
+ // Note that the valences are computed for the so far unencoded part of the
+ // mesh (i.e. the decoding is reverse). Adding a new symbol either reduces
+ // valences on the vertices or leaves the valence unchanged.
+
+ const CornerIndex next = corner_table_->Next(last_corner_);
+ const CornerIndex prev = corner_table_->Previous(last_corner_);
+
+ // Get valence on the tip corner of the active edge (outgoing edge that is
+ // going to be used in reverse decoding of the connectivity to predict the
+ // next symbol).
+ const int active_valence = vertex_valences_[corner_to_vertex_map_[next]];
+ switch (symbol) {
+ case TOPOLOGY_C:
+ // Compute prediction.
+ FALLTHROUGH_INTENDED;
+ case TOPOLOGY_S:
+ // Update valences.
+ vertex_valences_[corner_to_vertex_map_[next]] -= 1;
+ vertex_valences_[corner_to_vertex_map_[prev]] -= 1;
+ if (symbol == TOPOLOGY_S) {
+ // Whenever we reach a split symbol, we need to split the vertex into
+ // two and attach all corners on the left and right sides of the split
+ // vertex to the respective vertices (see image below). This is
+ // necessary since the decoder works in the reverse order and it
+ // merges the two vertices only after the split symbol is processed.
+ //
+ // * -----
+ // / \--------
+ // / \--------
+ // / \-------
+ // *-------v-------*
+ // \ /c\ /
+ // \ / \ /
+ // \ /n S p\ /
+ // *.......*
+ //
+
+ // Count the number of faces on the left side of the split vertex and
+ // update the valence on the "left vertex".
+ int num_left_faces = 0;
+ CornerIndex act_c = corner_table_->Opposite(prev);
+ while (act_c != kInvalidCornerIndex) {
+ if (encoder_impl()->IsFaceEncoded(corner_table_->Face(act_c)))
+ break; // Stop when we reach the first visited face.
+ ++num_left_faces;
+ act_c = corner_table_->Opposite(corner_table_->Next(act_c));
+ }
+ vertex_valences_[corner_to_vertex_map_[last_corner_]] =
+ num_left_faces + 1;
+
+ // Create a new vertex for the right side and count the number of
+ // faces that should be attached to this vertex.
+ const int new_vert_id = static_cast<int>(vertex_valences_.size());
+ int num_right_faces = 0;
+
+ act_c = corner_table_->Opposite(next);
+ while (act_c != kInvalidCornerIndex) {
+ if (encoder_impl()->IsFaceEncoded(corner_table_->Face(act_c)))
+ break; // Stop when we reach the first visited face.
+ ++num_right_faces;
+ // Map corners on the right side to the newly created vertex.
+ corner_to_vertex_map_[corner_table_->Next(act_c)] = new_vert_id;
+ act_c = corner_table_->Opposite(corner_table_->Previous(act_c));
+ }
+ vertex_valences_.push_back(num_right_faces + 1);
+ }
+ break;
+ case TOPOLOGY_R:
+ // Update valences.
+ vertex_valences_[corner_to_vertex_map_[last_corner_]] -= 1;
+ vertex_valences_[corner_to_vertex_map_[next]] -= 1;
+ vertex_valences_[corner_to_vertex_map_[prev]] -= 2;
+ break;
+ case TOPOLOGY_L:
+
+ vertex_valences_[corner_to_vertex_map_[last_corner_]] -= 1;
+ vertex_valences_[corner_to_vertex_map_[next]] -= 2;
+ vertex_valences_[corner_to_vertex_map_[prev]] -= 1;
+ break;
+ case TOPOLOGY_E:
+ vertex_valences_[corner_to_vertex_map_[last_corner_]] -= 2;
+ vertex_valences_[corner_to_vertex_map_[next]] -= 2;
+ vertex_valences_[corner_to_vertex_map_[prev]] -= 2;
+ break;
+ default:
+ break;
+ }
+
+ if (prev_symbol_ != -1) {
+ int clamped_valence;
+ if (active_valence < min_valence_) {
+ clamped_valence = min_valence_;
+ } else if (active_valence > max_valence_) {
+ clamped_valence = max_valence_;
+ } else {
+ clamped_valence = active_valence;
+ }
+
+ const int context = clamped_valence - min_valence_;
+ context_symbols_[context].push_back(
+ edge_breaker_topology_to_symbol_id[prev_symbol_]);
+ }
+
+ prev_symbol_ = symbol;
+ }
+
+ void Done() {
+ // Store the init face configurations and attribute seam data
+ MeshEdgebreakerTraversalEncoder::EncodeStartFaces();
+ MeshEdgebreakerTraversalEncoder::EncodeAttributeSeams();
+
+ // Store the contexts.
+ for (int i = 0; i < context_symbols_.size(); ++i) {
+ EncodeVarint<uint32_t>(static_cast<uint32_t>(context_symbols_[i].size()),
+ GetOutputBuffer());
+ if (context_symbols_[i].size() > 0) {
+ EncodeSymbols(context_symbols_[i].data(),
+ static_cast<int>(context_symbols_[i].size()), 1, nullptr,
+ GetOutputBuffer());
+ }
+ }
+ }
+
+ int NumEncodedSymbols() const { return num_symbols_; }
+
+ private:
+ const CornerTable *corner_table_;
+ // Explicit map between corners and vertices. We cannot use the one stored
+ // in the |corner_table_| because we may need to add additional vertices to
+ // handle split symbols.
+ IndexTypeVector<CornerIndex, VertexIndex> corner_to_vertex_map_;
+ IndexTypeVector<VertexIndex, int> vertex_valences_;
+ // Previously encoded symbol.
+ int32_t prev_symbol_;
+ CornerIndex last_corner_;
+ // Explicitly count the number of encoded symbols.
+ int num_symbols_;
+
+ int min_valence_;
+ int max_valence_;
+ std::vector<std::vector<uint32_t>> context_symbols_;
+};
+
+} // namespace draco
+
+#endif // DRACO_COMPRESSION_MESH_MESH_EDGEBREAKER_TRAVERSAL_VALENCE_ENCODER_H_