Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/patches/levenberg_marquardt.patch')
-rw-r--r--extern/libmv/patches/levenberg_marquardt.patch71
1 files changed, 0 insertions, 71 deletions
diff --git a/extern/libmv/patches/levenberg_marquardt.patch b/extern/libmv/patches/levenberg_marquardt.patch
deleted file mode 100644
index 49ef82d73d2..00000000000
--- a/extern/libmv/patches/levenberg_marquardt.patch
+++ /dev/null
@@ -1,71 +0,0 @@
-diff --git a/src/libmv/numeric/levenberg_marquardt.h b/src/libmv/numeric/levenberg_marquardt.h
-index 6a54f66..4473b72 100644
---- a/src/libmv/numeric/levenberg_marquardt.h
-+++ b/src/libmv/numeric/levenberg_marquardt.h
-@@ -33,6 +33,7 @@
-
- #include "libmv/numeric/numeric.h"
- #include "libmv/numeric/function_derivative.h"
-+#include "libmv/logging/logging.h"
-
- namespace libmv {
-
-@@ -123,26 +124,40 @@ class LevenbergMarquardt {
- Parameters dx, x_new;
- int i;
- for (i = 0; results.status == RUNNING && i < params.max_iterations; ++i) {
-- if (dx.norm() <= params.relative_step_threshold * x.norm()) {
-+ VLOG(1) << "iteration: " << i;
-+ VLOG(1) << "||f(x)||: " << f_(x).norm();
-+ VLOG(1) << "max(g): " << g.array().abs().maxCoeff();
-+ VLOG(1) << "u: " << u;
-+ VLOG(1) << "v: " << v;
-+
-+ AMatrixType A_augmented = A + u*AMatrixType::Identity(J.cols(), J.cols());
-+ Solver solver(A_augmented);
-+ dx = solver.solve(g);
-+ bool solved = (A_augmented * dx).isApprox(g);
-+ if (!solved) {
-+ LOG(ERROR) << "Failed to solve";
-+ }
-+ if (solved && dx.norm() <= params.relative_step_threshold * x.norm()) {
- results.status = RELATIVE_STEP_SIZE_TOO_SMALL;
- break;
-- }
-- x_new = x + dx;
-- // Rho is the ratio of the actual reduction in error to the reduction
-- // in error that would be obtained if the problem was linear.
-- // See [1] for details.
-- Scalar rho((error.squaredNorm() - f_(x_new).squaredNorm())
-- / dx.dot(u*dx + g));
-- if (rho > 0) {
-- // Accept the Gauss-Newton step because the linear model fits well.
-- x = x_new;
-- results.status = Update(x, params, &J, &A, &error, &g);
-- Scalar tmp = Scalar(2*rho-1);
-- u = u*std::max(1/3., 1 - (tmp*tmp*tmp));
-- v = 2;
-- continue;
-- }
--
-+ }
-+ if (solved) {
-+ x_new = x + dx;
-+ // Rho is the ratio of the actual reduction in error to the reduction
-+ // in error that would be obtained if the problem was linear.
-+ // See [1] for details.
-+ Scalar rho((error.squaredNorm() - f_(x_new).squaredNorm())
-+ / dx.dot(u*dx + g));
-+ if (rho > 0) {
-+ // Accept the Gauss-Newton step because the linear model fits well.
-+ x = x_new;
-+ results.status = Update(x, params, &J, &A, &error, &g);
-+ Scalar tmp = Scalar(2*rho-1);
-+ u = u*std::max(1/3., 1 - (tmp*tmp*tmp));
-+ v = 2;
-+ continue;
-+ }
-+ }
- // Reject the update because either the normal equations failed to solve
- // or the local linear model was not good (rho < 0). Instead, increase u
- // to move closer to gradient descent.