Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/include/ceres/jet.h')
-rw-r--r--extern/libmv/third_party/ceres/include/ceres/jet.h670
1 files changed, 0 insertions, 670 deletions
diff --git a/extern/libmv/third_party/ceres/include/ceres/jet.h b/extern/libmv/third_party/ceres/include/ceres/jet.h
deleted file mode 100644
index 74ce1e9dd53..00000000000
--- a/extern/libmv/third_party/ceres/include/ceres/jet.h
+++ /dev/null
@@ -1,670 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: keir@google.com (Keir Mierle)
-//
-// A simple implementation of N-dimensional dual numbers, for automatically
-// computing exact derivatives of functions.
-//
-// While a complete treatment of the mechanics of automatic differentation is
-// beyond the scope of this header (see
-// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
-// basic idea is to extend normal arithmetic with an extra element, "e," often
-// denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
-// numbers are extensions of the real numbers analogous to complex numbers:
-// whereas complex numbers augment the reals by introducing an imaginary unit i
-// such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
-// that e^2 = 0. Dual numbers have two components: the "real" component and the
-// "infinitesimal" component, generally written as x + y*e. Surprisingly, this
-// leads to a convenient method for computing exact derivatives without needing
-// to manipulate complicated symbolic expressions.
-//
-// For example, consider the function
-//
-// f(x) = x^2 ,
-//
-// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
-// Next, augument 10 with an infinitesimal to get:
-//
-// f(10 + e) = (10 + e)^2
-// = 100 + 2 * 10 * e + e^2
-// = 100 + 20 * e -+-
-// -- |
-// | +--- This is zero, since e^2 = 0
-// |
-// +----------------- This is df/dx!
-//
-// Note that the derivative of f with respect to x is simply the infinitesimal
-// component of the value of f(x + e). So, in order to take the derivative of
-// any function, it is only necessary to replace the numeric "object" used in
-// the function with one extended with infinitesimals. The class Jet, defined in
-// this header, is one such example of this, where substitution is done with
-// templates.
-//
-// To handle derivatives of functions taking multiple arguments, different
-// infinitesimals are used, one for each variable to take the derivative of. For
-// example, consider a scalar function of two scalar parameters x and y:
-//
-// f(x, y) = x^2 + x * y
-//
-// Following the technique above, to compute the derivatives df/dx and df/dy for
-// f(1, 3) involves doing two evaluations of f, the first time replacing x with
-// x + e, the second time replacing y with y + e.
-//
-// For df/dx:
-//
-// f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
-// = 1 + 2 * e + 3 + 3 * e
-// = 4 + 5 * e
-//
-// --> df/dx = 5
-//
-// For df/dy:
-//
-// f(1, 3 + e) = 1^2 + 1 * (3 + e)
-// = 1 + 3 + e
-// = 4 + e
-//
-// --> df/dy = 1
-//
-// To take the gradient of f with the implementation of dual numbers ("jets") in
-// this file, it is necessary to create a single jet type which has components
-// for the derivative in x and y, and passing them to a templated version of f:
-//
-// template<typename T>
-// T f(const T &x, const T &y) {
-// return x * x + x * y;
-// }
-//
-// // The "2" means there should be 2 dual number components.
-// Jet<double, 2> x(0); // Pick the 0th dual number for x.
-// Jet<double, 2> y(1); // Pick the 1st dual number for y.
-// Jet<double, 2> z = f(x, y);
-//
-// LOG(INFO) << "df/dx = " << z.a[0]
-// << "df/dy = " << z.a[1];
-//
-// Most users should not use Jet objects directly; a wrapper around Jet objects,
-// which makes computing the derivative, gradient, or jacobian of templated
-// functors simple, is in autodiff.h. Even autodiff.h should not be used
-// directly; instead autodiff_cost_function.h is typically the file of interest.
-//
-// For the more mathematically inclined, this file implements first-order
-// "jets". A 1st order jet is an element of the ring
-//
-// T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
-//
-// which essentially means that each jet consists of a "scalar" value 'a' from T
-// and a 1st order perturbation vector 'v' of length N:
-//
-// x = a + \sum_i v[i] t_i
-//
-// A shorthand is to write an element as x = a + u, where u is the pertubation.
-// Then, the main point about the arithmetic of jets is that the product of
-// perturbations is zero:
-//
-// (a + u) * (b + v) = ab + av + bu + uv
-// = ab + (av + bu) + 0
-//
-// which is what operator* implements below. Addition is simpler:
-//
-// (a + u) + (b + v) = (a + b) + (u + v).
-//
-// The only remaining question is how to evaluate the function of a jet, for
-// which we use the chain rule:
-//
-// f(a + u) = f(a) + f'(a) u
-//
-// where f'(a) is the (scalar) derivative of f at a.
-//
-// By pushing these things through sufficiently and suitably templated
-// functions, we can do automatic differentiation. Just be sure to turn on
-// function inlining and common-subexpression elimination, or it will be very
-// slow!
-//
-// WARNING: Most Ceres users should not directly include this file or know the
-// details of how jets work. Instead the suggested method for automatic
-// derivatives is to use autodiff_cost_function.h, which is a wrapper around
-// both jets.h and autodiff.h to make taking derivatives of cost functions for
-// use in Ceres easier.
-
-#ifndef CERES_PUBLIC_JET_H_
-#define CERES_PUBLIC_JET_H_
-
-#include <cmath>
-#include <iosfwd>
-#include <iostream> // NOLINT
-#include <limits>
-#include <string>
-
-#include "Eigen/Core"
-#include "ceres/fpclassify.h"
-
-namespace ceres {
-
-template <typename T, int N>
-struct Jet {
- enum { DIMENSION = N };
-
- // Default-construct "a" because otherwise this can lead to false errors about
- // uninitialized uses when other classes relying on default constructed T
- // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
- // the C++ standard mandates that e.g. default constructed doubles are
- // initialized to 0.0; see sections 8.5 of the C++03 standard.
- Jet() : a() {
- v.setZero();
- }
-
- // Constructor from scalar: a + 0.
- explicit Jet(const T& value) {
- a = value;
- v.setZero();
- }
-
- // Constructor from scalar plus variable: a + t_i.
- Jet(const T& value, int k) {
- a = value;
- v.setZero();
- v[k] = T(1.0);
- }
-
- // Constructor from scalar and vector part
- // The use of Eigen::DenseBase allows Eigen expressions
- // to be passed in without being fully evaluated until
- // they are assigned to v
- template<typename Derived>
- EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v)
- : a(a), v(v) {
- }
-
- // Compound operators
- Jet<T, N>& operator+=(const Jet<T, N> &y) {
- *this = *this + y;
- return *this;
- }
-
- Jet<T, N>& operator-=(const Jet<T, N> &y) {
- *this = *this - y;
- return *this;
- }
-
- Jet<T, N>& operator*=(const Jet<T, N> &y) {
- *this = *this * y;
- return *this;
- }
-
- Jet<T, N>& operator/=(const Jet<T, N> &y) {
- *this = *this / y;
- return *this;
- }
-
- // The scalar part.
- T a;
-
- // The infinitesimal part.
- //
- // Note the Eigen::DontAlign bit is needed here because this object
- // gets allocated on the stack and as part of other arrays and
- // structs. Forcing the right alignment there is the source of much
- // pain and suffering. Even if that works, passing Jets around to
- // functions by value has problems because the C++ ABI does not
- // guarantee alignment for function arguments.
- //
- // Setting the DontAlign bit prevents Eigen from using SSE for the
- // various operations on Jets. This is a small performance penalty
- // since the AutoDiff code will still expose much of the code as
- // statically sized loops to the compiler. But given the subtle
- // issues that arise due to alignment, especially when dealing with
- // multiple platforms, it seems to be a trade off worth making.
- Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
-};
-
-// Unary +
-template<typename T, int N> inline
-Jet<T, N> const& operator+(const Jet<T, N>& f) {
- return f;
-}
-
-// TODO(keir): Try adding __attribute__((always_inline)) to these functions to
-// see if it causes a performance increase.
-
-// Unary -
-template<typename T, int N> inline
-Jet<T, N> operator-(const Jet<T, N>&f) {
- return Jet<T, N>(-f.a, -f.v);
-}
-
-// Binary +
-template<typename T, int N> inline
-Jet<T, N> operator+(const Jet<T, N>& f,
- const Jet<T, N>& g) {
- return Jet<T, N>(f.a + g.a, f.v + g.v);
-}
-
-// Binary + with a scalar: x + s
-template<typename T, int N> inline
-Jet<T, N> operator+(const Jet<T, N>& f, T s) {
- return Jet<T, N>(f.a + s, f.v);
-}
-
-// Binary + with a scalar: s + x
-template<typename T, int N> inline
-Jet<T, N> operator+(T s, const Jet<T, N>& f) {
- return Jet<T, N>(f.a + s, f.v);
-}
-
-// Binary -
-template<typename T, int N> inline
-Jet<T, N> operator-(const Jet<T, N>& f,
- const Jet<T, N>& g) {
- return Jet<T, N>(f.a - g.a, f.v - g.v);
-}
-
-// Binary - with a scalar: x - s
-template<typename T, int N> inline
-Jet<T, N> operator-(const Jet<T, N>& f, T s) {
- return Jet<T, N>(f.a - s, f.v);
-}
-
-// Binary - with a scalar: s - x
-template<typename T, int N> inline
-Jet<T, N> operator-(T s, const Jet<T, N>& f) {
- return Jet<T, N>(s - f.a, -f.v);
-}
-
-// Binary *
-template<typename T, int N> inline
-Jet<T, N> operator*(const Jet<T, N>& f,
- const Jet<T, N>& g) {
- return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
-}
-
-// Binary * with a scalar: x * s
-template<typename T, int N> inline
-Jet<T, N> operator*(const Jet<T, N>& f, T s) {
- return Jet<T, N>(f.a * s, f.v * s);
-}
-
-// Binary * with a scalar: s * x
-template<typename T, int N> inline
-Jet<T, N> operator*(T s, const Jet<T, N>& f) {
- return Jet<T, N>(f.a * s, f.v * s);
-}
-
-// Binary /
-template<typename T, int N> inline
-Jet<T, N> operator/(const Jet<T, N>& f,
- const Jet<T, N>& g) {
- // This uses:
- //
- // a + u (a + u)(b - v) (a + u)(b - v)
- // ----- = -------------- = --------------
- // b + v (b + v)(b - v) b^2
- //
- // which holds because v*v = 0.
- const T g_a_inverse = T(1.0) / g.a;
- const T f_a_by_g_a = f.a * g_a_inverse;
- return Jet<T, N>(f.a * g_a_inverse, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
-}
-
-// Binary / with a scalar: s / x
-template<typename T, int N> inline
-Jet<T, N> operator/(T s, const Jet<T, N>& g) {
- const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
- return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
-}
-
-// Binary / with a scalar: x / s
-template<typename T, int N> inline
-Jet<T, N> operator/(const Jet<T, N>& f, T s) {
- const T s_inverse = 1.0 / s;
- return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
-}
-
-// Binary comparison operators for both scalars and jets.
-#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
-template<typename T, int N> inline \
-bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
- return f.a op g.a; \
-} \
-template<typename T, int N> inline \
-bool operator op(const T& s, const Jet<T, N>& g) { \
- return s op g.a; \
-} \
-template<typename T, int N> inline \
-bool operator op(const Jet<T, N>& f, const T& s) { \
- return f.a op s; \
-}
-CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
-CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
-#undef CERES_DEFINE_JET_COMPARISON_OPERATOR
-
-// Pull some functions from namespace std.
-//
-// This is necessary because we want to use the same name (e.g. 'sqrt') for
-// double-valued and Jet-valued functions, but we are not allowed to put
-// Jet-valued functions inside namespace std.
-//
-// TODO(keir): Switch to "using".
-inline double abs (double x) { return std::abs(x); }
-inline double log (double x) { return std::log(x); }
-inline double exp (double x) { return std::exp(x); }
-inline double sqrt (double x) { return std::sqrt(x); }
-inline double cos (double x) { return std::cos(x); }
-inline double acos (double x) { return std::acos(x); }
-inline double sin (double x) { return std::sin(x); }
-inline double asin (double x) { return std::asin(x); }
-inline double tan (double x) { return std::tan(x); }
-inline double atan (double x) { return std::atan(x); }
-inline double sinh (double x) { return std::sinh(x); }
-inline double cosh (double x) { return std::cosh(x); }
-inline double tanh (double x) { return std::tanh(x); }
-inline double pow (double x, double y) { return std::pow(x, y); }
-inline double atan2(double y, double x) { return std::atan2(y, x); }
-
-// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
-
-// abs(x + h) ~= x + h or -(x + h)
-template <typename T, int N> inline
-Jet<T, N> abs(const Jet<T, N>& f) {
- return f.a < T(0.0) ? -f : f;
-}
-
-// log(a + h) ~= log(a) + h / a
-template <typename T, int N> inline
-Jet<T, N> log(const Jet<T, N>& f) {
- const T a_inverse = T(1.0) / f.a;
- return Jet<T, N>(log(f.a), f.v * a_inverse);
-}
-
-// exp(a + h) ~= exp(a) + exp(a) h
-template <typename T, int N> inline
-Jet<T, N> exp(const Jet<T, N>& f) {
- const T tmp = exp(f.a);
- return Jet<T, N>(tmp, tmp * f.v);
-}
-
-// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
-template <typename T, int N> inline
-Jet<T, N> sqrt(const Jet<T, N>& f) {
- const T tmp = sqrt(f.a);
- const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
- return Jet<T, N>(tmp, f.v * two_a_inverse);
-}
-
-// cos(a + h) ~= cos(a) - sin(a) h
-template <typename T, int N> inline
-Jet<T, N> cos(const Jet<T, N>& f) {
- return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
-}
-
-// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
-template <typename T, int N> inline
-Jet<T, N> acos(const Jet<T, N>& f) {
- const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
- return Jet<T, N>(acos(f.a), tmp * f.v);
-}
-
-// sin(a + h) ~= sin(a) + cos(a) h
-template <typename T, int N> inline
-Jet<T, N> sin(const Jet<T, N>& f) {
- return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
-}
-
-// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
-template <typename T, int N> inline
-Jet<T, N> asin(const Jet<T, N>& f) {
- const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
- return Jet<T, N>(asin(f.a), tmp * f.v);
-}
-
-// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
-template <typename T, int N> inline
-Jet<T, N> tan(const Jet<T, N>& f) {
- const T tan_a = tan(f.a);
- const T tmp = T(1.0) + tan_a * tan_a;
- return Jet<T, N>(tan_a, tmp * f.v);
-}
-
-// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
-template <typename T, int N> inline
-Jet<T, N> atan(const Jet<T, N>& f) {
- const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
- return Jet<T, N>(atan(f.a), tmp * f.v);
-}
-
-// sinh(a + h) ~= sinh(a) + cosh(a) h
-template <typename T, int N> inline
-Jet<T, N> sinh(const Jet<T, N>& f) {
- return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
-}
-
-// cosh(a + h) ~= cosh(a) + sinh(a) h
-template <typename T, int N> inline
-Jet<T, N> cosh(const Jet<T, N>& f) {
- return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
-}
-
-// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
-template <typename T, int N> inline
-Jet<T, N> tanh(const Jet<T, N>& f) {
- const T tanh_a = tanh(f.a);
- const T tmp = T(1.0) - tanh_a * tanh_a;
- return Jet<T, N>(tanh_a, tmp * f.v);
-}
-
-// Jet Classification. It is not clear what the appropriate semantics are for
-// these classifications. This picks that IsFinite and isnormal are "all"
-// operations, i.e. all elements of the jet must be finite for the jet itself
-// to be finite (or normal). For IsNaN and IsInfinite, the answer is less
-// clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
-// part of a jet is nan or inf, then the entire jet is nan or inf. This leads
-// to strange situations like a jet can be both IsInfinite and IsNaN, but in
-// practice the "any" semantics are the most useful for e.g. checking that
-// derivatives are sane.
-
-// The jet is finite if all parts of the jet are finite.
-template <typename T, int N> inline
-bool IsFinite(const Jet<T, N>& f) {
- if (!IsFinite(f.a)) {
- return false;
- }
- for (int i = 0; i < N; ++i) {
- if (!IsFinite(f.v[i])) {
- return false;
- }
- }
- return true;
-}
-
-// The jet is infinite if any part of the jet is infinite.
-template <typename T, int N> inline
-bool IsInfinite(const Jet<T, N>& f) {
- if (IsInfinite(f.a)) {
- return true;
- }
- for (int i = 0; i < N; i++) {
- if (IsInfinite(f.v[i])) {
- return true;
- }
- }
- return false;
-}
-
-// The jet is NaN if any part of the jet is NaN.
-template <typename T, int N> inline
-bool IsNaN(const Jet<T, N>& f) {
- if (IsNaN(f.a)) {
- return true;
- }
- for (int i = 0; i < N; ++i) {
- if (IsNaN(f.v[i])) {
- return true;
- }
- }
- return false;
-}
-
-// The jet is normal if all parts of the jet are normal.
-template <typename T, int N> inline
-bool IsNormal(const Jet<T, N>& f) {
- if (!IsNormal(f.a)) {
- return false;
- }
- for (int i = 0; i < N; ++i) {
- if (!IsNormal(f.v[i])) {
- return false;
- }
- }
- return true;
-}
-
-// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
-//
-// In words: the rate of change of theta is 1/r times the rate of
-// change of (x, y) in the positive angular direction.
-template <typename T, int N> inline
-Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
- // Note order of arguments:
- //
- // f = a + da
- // g = b + db
-
- T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
- return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
-}
-
-
-// pow -- base is a differentiable function, exponent is a constant.
-// (a+da)^p ~= a^p + p*a^(p-1) da
-template <typename T, int N> inline
-Jet<T, N> pow(const Jet<T, N>& f, double g) {
- T const tmp = g * pow(f.a, g - T(1.0));
- return Jet<T, N>(pow(f.a, g), tmp * f.v);
-}
-
-// pow -- base is a constant, exponent is a differentiable function.
-// (a)^(p+dp) ~= a^p + a^p log(a) dp
-template <typename T, int N> inline
-Jet<T, N> pow(double f, const Jet<T, N>& g) {
- T const tmp = pow(f, g.a);
- return Jet<T, N>(tmp, log(f) * tmp * g.v);
-}
-
-
-// pow -- both base and exponent are differentiable functions.
-// (a+da)^(b+db) ~= a^b + b * a^(b-1) da + a^b log(a) * db
-template <typename T, int N> inline
-Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
- T const tmp1 = pow(f.a, g.a);
- T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
- T const tmp3 = tmp1 * log(f.a);
-
- return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
-}
-
-// Define the helper functions Eigen needs to embed Jet types.
-//
-// NOTE(keir): machine_epsilon() and precision() are missing, because they don't
-// work with nested template types (e.g. where the scalar is itself templated).
-// Among other things, this means that decompositions of Jet's does not work,
-// for example
-//
-// Matrix<Jet<T, N> ... > A, x, b;
-// ...
-// A.solve(b, &x)
-//
-// does not work and will fail with a strange compiler error.
-//
-// TODO(keir): This is an Eigen 2.0 limitation that is lifted in 3.0. When we
-// switch to 3.0, also add the rest of the specialization functionality.
-template<typename T, int N> inline const Jet<T, N>& ei_conj(const Jet<T, N>& x) { return x; } // NOLINT
-template<typename T, int N> inline const Jet<T, N>& ei_real(const Jet<T, N>& x) { return x; } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_imag(const Jet<T, N>& ) { return Jet<T, N>(0.0); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_abs (const Jet<T, N>& x) { return fabs(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_abs2(const Jet<T, N>& x) { return x * x; } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_sqrt(const Jet<T, N>& x) { return sqrt(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_exp (const Jet<T, N>& x) { return exp(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_log (const Jet<T, N>& x) { return log(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_sin (const Jet<T, N>& x) { return sin(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_cos (const Jet<T, N>& x) { return cos(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_tan (const Jet<T, N>& x) { return tan(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_atan(const Jet<T, N>& x) { return atan(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_sinh(const Jet<T, N>& x) { return sinh(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_cosh(const Jet<T, N>& x) { return cosh(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_tanh(const Jet<T, N>& x) { return tanh(x); } // NOLINT
-template<typename T, int N> inline Jet<T, N> ei_pow (const Jet<T, N>& x, Jet<T, N> y) { return pow(x, y); } // NOLINT
-
-// Note: This has to be in the ceres namespace for argument dependent lookup to
-// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
-// strange compile errors.
-template <typename T, int N>
-inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
- return s << "[" << z.a << " ; " << z.v.transpose() << "]";
-}
-
-} // namespace ceres
-
-namespace Eigen {
-
-// Creating a specialization of NumTraits enables placing Jet objects inside
-// Eigen arrays, getting all the goodness of Eigen combined with autodiff.
-template<typename T, int N>
-struct NumTraits<ceres::Jet<T, N> > {
- typedef ceres::Jet<T, N> Real;
- typedef ceres::Jet<T, N> NonInteger;
- typedef ceres::Jet<T, N> Nested;
-
- static typename ceres::Jet<T, N> dummy_precision() {
- return ceres::Jet<T, N>(1e-12);
- }
-
- static inline Real epsilon() {
- return Real(std::numeric_limits<T>::epsilon());
- }
-
- enum {
- IsComplex = 0,
- IsInteger = 0,
- IsSigned,
- ReadCost = 1,
- AddCost = 1,
- // For Jet types, multiplication is more expensive than addition.
- MulCost = 3,
- HasFloatingPoint = 1,
- RequireInitialization = 1
- };
-};
-
-} // namespace Eigen
-
-#endif // CERES_PUBLIC_JET_H_