Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/include/ceres/rotation.h')
-rw-r--r--extern/libmv/third_party/ceres/include/ceres/rotation.h645
1 files changed, 0 insertions, 645 deletions
diff --git a/extern/libmv/third_party/ceres/include/ceres/rotation.h b/extern/libmv/third_party/ceres/include/ceres/rotation.h
deleted file mode 100644
index e3dbfe84a5a..00000000000
--- a/extern/libmv/third_party/ceres/include/ceres/rotation.h
+++ /dev/null
@@ -1,645 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: keir@google.com (Keir Mierle)
-// sameeragarwal@google.com (Sameer Agarwal)
-//
-// Templated functions for manipulating rotations. The templated
-// functions are useful when implementing functors for automatic
-// differentiation.
-//
-// In the following, the Quaternions are laid out as 4-vectors, thus:
-//
-// q[0] scalar part.
-// q[1] coefficient of i.
-// q[2] coefficient of j.
-// q[3] coefficient of k.
-//
-// where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
-
-#ifndef CERES_PUBLIC_ROTATION_H_
-#define CERES_PUBLIC_ROTATION_H_
-
-#include <algorithm>
-#include <cmath>
-#include "glog/logging.h"
-
-namespace ceres {
-
-// Trivial wrapper to index linear arrays as matrices, given a fixed
-// column and row stride. When an array "T* array" is wrapped by a
-//
-// (const) MatrixAdapter<T, row_stride, col_stride> M"
-//
-// the expression M(i, j) is equivalent to
-//
-// arrary[i * row_stride + j * col_stride]
-//
-// Conversion functions to and from rotation matrices accept
-// MatrixAdapters to permit using row-major and column-major layouts,
-// and rotation matrices embedded in larger matrices (such as a 3x4
-// projection matrix).
-template <typename T, int row_stride, int col_stride>
-struct MatrixAdapter;
-
-// Convenience functions to create a MatrixAdapter that treats the
-// array pointed to by "pointer" as a 3x3 (contiguous) column-major or
-// row-major matrix.
-template <typename T>
-MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
-
-template <typename T>
-MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
-
-// Convert a value in combined axis-angle representation to a quaternion.
-// The value angle_axis is a triple whose norm is an angle in radians,
-// and whose direction is aligned with the axis of rotation,
-// and quaternion is a 4-tuple that will contain the resulting quaternion.
-// The implementation may be used with auto-differentiation up to the first
-// derivative, higher derivatives may have unexpected results near the origin.
-template<typename T>
-void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
-
-// Convert a quaternion to the equivalent combined axis-angle representation.
-// The value quaternion must be a unit quaternion - it is not normalized first,
-// and angle_axis will be filled with a value whose norm is the angle of
-// rotation in radians, and whose direction is the axis of rotation.
-// The implemention may be used with auto-differentiation up to the first
-// derivative, higher derivatives may have unexpected results near the origin.
-template<typename T>
-void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
-
-// Conversions between 3x3 rotation matrix (in column major order) and
-// axis-angle rotation representations. Templated for use with
-// autodifferentiation.
-template <typename T>
-void RotationMatrixToAngleAxis(const T* R, T* angle_axis);
-
-template <typename T, int row_stride, int col_stride>
-void RotationMatrixToAngleAxis(
- const MatrixAdapter<const T, row_stride, col_stride>& R,
- T* angle_axis);
-
-template <typename T>
-void AngleAxisToRotationMatrix(const T* angle_axis, T* R);
-
-template <typename T, int row_stride, int col_stride>
-void AngleAxisToRotationMatrix(
- const T* angle_axis,
- const MatrixAdapter<T, row_stride, col_stride>& R);
-
-// Conversions between 3x3 rotation matrix (in row major order) and
-// Euler angle (in degrees) rotation representations.
-//
-// The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
-// axes, respectively. They are applied in that same order, so the
-// total rotation R is Rz * Ry * Rx.
-template <typename T>
-void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
-
-template <typename T, int row_stride, int col_stride>
-void EulerAnglesToRotationMatrix(
- const T* euler,
- const MatrixAdapter<T, row_stride, col_stride>& R);
-
-// Convert a 4-vector to a 3x3 scaled rotation matrix.
-//
-// The choice of rotation is such that the quaternion [1 0 0 0] goes to an
-// identity matrix and for small a, b, c the quaternion [1 a b c] goes to
-// the matrix
-//
-// [ 0 -c b ]
-// I + 2 [ c 0 -a ] + higher order terms
-// [ -b a 0 ]
-//
-// which corresponds to a Rodrigues approximation, the last matrix being
-// the cross-product matrix of [a b c]. Together with the property that
-// R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
-//
-// The rotation matrix is row-major.
-//
-// No normalization of the quaternion is performed, i.e.
-// R = ||q||^2 * Q, where Q is an orthonormal matrix
-// such that det(Q) = 1 and Q*Q' = I
-template <typename T> inline
-void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
-
-template <typename T, int row_stride, int col_stride> inline
-void QuaternionToScaledRotation(
- const T q[4],
- const MatrixAdapter<T, row_stride, col_stride>& R);
-
-// Same as above except that the rotation matrix is normalized by the
-// Frobenius norm, so that R * R' = I (and det(R) = 1).
-template <typename T> inline
-void QuaternionToRotation(const T q[4], T R[3 * 3]);
-
-template <typename T, int row_stride, int col_stride> inline
-void QuaternionToRotation(
- const T q[4],
- const MatrixAdapter<T, row_stride, col_stride>& R);
-
-// Rotates a point pt by a quaternion q:
-//
-// result = R(q) * pt
-//
-// Assumes the quaternion is unit norm. This assumption allows us to
-// write the transform as (something)*pt + pt, as is clear from the
-// formula below. If you pass in a quaternion with |q|^2 = 2 then you
-// WILL NOT get back 2 times the result you get for a unit quaternion.
-template <typename T> inline
-void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
-
-// With this function you do not need to assume that q has unit norm.
-// It does assume that the norm is non-zero.
-template <typename T> inline
-void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
-
-// zw = z * w, where * is the Quaternion product between 4 vectors.
-template<typename T> inline
-void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
-
-// xy = x cross y;
-template<typename T> inline
-void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
-
-template<typename T> inline
-T DotProduct(const T x[3], const T y[3]);
-
-// y = R(angle_axis) * x;
-template<typename T> inline
-void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]);
-
-// --- IMPLEMENTATION
-
-template<typename T, int row_stride, int col_stride>
-struct MatrixAdapter {
- T* pointer_;
- explicit MatrixAdapter(T* pointer)
- : pointer_(pointer)
- {}
-
- T& operator()(int r, int c) const {
- return pointer_[r * row_stride + c * col_stride];
- }
-};
-
-template <typename T>
-MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
- return MatrixAdapter<T, 1, 3>(pointer);
-}
-
-template <typename T>
-MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
- return MatrixAdapter<T, 3, 1>(pointer);
-}
-
-template<typename T>
-inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
- const T& a0 = angle_axis[0];
- const T& a1 = angle_axis[1];
- const T& a2 = angle_axis[2];
- const T theta_squared = a0 * a0 + a1 * a1 + a2 * a2;
-
- // For points not at the origin, the full conversion is numerically stable.
- if (theta_squared > T(0.0)) {
- const T theta = sqrt(theta_squared);
- const T half_theta = theta * T(0.5);
- const T k = sin(half_theta) / theta;
- quaternion[0] = cos(half_theta);
- quaternion[1] = a0 * k;
- quaternion[2] = a1 * k;
- quaternion[3] = a2 * k;
- } else {
- // At the origin, sqrt() will produce NaN in the derivative since
- // the argument is zero. By approximating with a Taylor series,
- // and truncating at one term, the value and first derivatives will be
- // computed correctly when Jets are used.
- const T k(0.5);
- quaternion[0] = T(1.0);
- quaternion[1] = a0 * k;
- quaternion[2] = a1 * k;
- quaternion[3] = a2 * k;
- }
-}
-
-template<typename T>
-inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
- const T& q1 = quaternion[1];
- const T& q2 = quaternion[2];
- const T& q3 = quaternion[3];
- const T sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3;
-
- // For quaternions representing non-zero rotation, the conversion
- // is numerically stable.
- if (sin_squared_theta > T(0.0)) {
- const T sin_theta = sqrt(sin_squared_theta);
- const T& cos_theta = quaternion[0];
-
- // If cos_theta is negative, theta is greater than pi/2, which
- // means that angle for the angle_axis vector which is 2 * theta
- // would be greater than pi.
- //
- // While this will result in the correct rotation, it does not
- // result in a normalized angle-axis vector.
- //
- // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
- // which is equivalent saying
- //
- // theta - pi = atan(sin(theta - pi), cos(theta - pi))
- // = atan(-sin(theta), -cos(theta))
- //
- const T two_theta =
- T(2.0) * ((cos_theta < 0.0)
- ? atan2(-sin_theta, -cos_theta)
- : atan2(sin_theta, cos_theta));
- const T k = two_theta / sin_theta;
- angle_axis[0] = q1 * k;
- angle_axis[1] = q2 * k;
- angle_axis[2] = q3 * k;
- } else {
- // For zero rotation, sqrt() will produce NaN in the derivative since
- // the argument is zero. By approximating with a Taylor series,
- // and truncating at one term, the value and first derivatives will be
- // computed correctly when Jets are used.
- const T k(2.0);
- angle_axis[0] = q1 * k;
- angle_axis[1] = q2 * k;
- angle_axis[2] = q3 * k;
- }
-}
-
-// The conversion of a rotation matrix to the angle-axis form is
-// numerically problematic when then rotation angle is close to zero
-// or to Pi. The following implementation detects when these two cases
-// occurs and deals with them by taking code paths that are guaranteed
-// to not perform division by a small number.
-template <typename T>
-inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
- RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
-}
-
-template <typename T, int row_stride, int col_stride>
-void RotationMatrixToAngleAxis(
- const MatrixAdapter<const T, row_stride, col_stride>& R,
- T* angle_axis) {
- // x = k * 2 * sin(theta), where k is the axis of rotation.
- angle_axis[0] = R(2, 1) - R(1, 2);
- angle_axis[1] = R(0, 2) - R(2, 0);
- angle_axis[2] = R(1, 0) - R(0, 1);
-
- static const T kOne = T(1.0);
- static const T kTwo = T(2.0);
-
- // Since the right hand side may give numbers just above 1.0 or
- // below -1.0 leading to atan misbehaving, we threshold.
- T costheta = std::min(std::max((R(0, 0) + R(1, 1) + R(2, 2) - kOne) / kTwo,
- T(-1.0)),
- kOne);
-
- // sqrt is guaranteed to give non-negative results, so we only
- // threshold above.
- T sintheta = std::min(sqrt(angle_axis[0] * angle_axis[0] +
- angle_axis[1] * angle_axis[1] +
- angle_axis[2] * angle_axis[2]) / kTwo,
- kOne);
-
- // Use the arctan2 to get the right sign on theta
- const T theta = atan2(sintheta, costheta);
-
- // Case 1: sin(theta) is large enough, so dividing by it is not a
- // problem. We do not use abs here, because while jets.h imports
- // std::abs into the namespace, here in this file, abs resolves to
- // the int version of the function, which returns zero always.
- //
- // We use a threshold much larger then the machine epsilon, because
- // if sin(theta) is small, not only do we risk overflow but even if
- // that does not occur, just dividing by a small number will result
- // in numerical garbage. So we play it safe.
- static const double kThreshold = 1e-12;
- if ((sintheta > kThreshold) || (sintheta < -kThreshold)) {
- const T r = theta / (kTwo * sintheta);
- for (int i = 0; i < 3; ++i) {
- angle_axis[i] *= r;
- }
- return;
- }
-
- // Case 2: theta ~ 0, means sin(theta) ~ theta to a good
- // approximation.
- if (costheta > 0.0) {
- const T kHalf = T(0.5);
- for (int i = 0; i < 3; ++i) {
- angle_axis[i] *= kHalf;
- }
- return;
- }
-
- // Case 3: theta ~ pi, this is the hard case. Since theta is large,
- // and sin(theta) is small. Dividing by theta by sin(theta) will
- // either give an overflow or worse still numerically meaningless
- // results. Thus we use an alternate more complicated formula
- // here.
-
- // Since cos(theta) is negative, division by (1-cos(theta)) cannot
- // overflow.
- const T inv_one_minus_costheta = kOne / (kOne - costheta);
-
- // We now compute the absolute value of coordinates of the axis
- // vector using the diagonal entries of R. To resolve the sign of
- // these entries, we compare the sign of angle_axis[i]*sin(theta)
- // with the sign of sin(theta). If they are the same, then
- // angle_axis[i] should be positive, otherwise negative.
- for (int i = 0; i < 3; ++i) {
- angle_axis[i] = theta * sqrt((R(i, i) - costheta) * inv_one_minus_costheta);
- if (((sintheta < 0.0) && (angle_axis[i] > 0.0)) ||
- ((sintheta > 0.0) && (angle_axis[i] < 0.0))) {
- angle_axis[i] = -angle_axis[i];
- }
- }
-}
-
-template <typename T>
-inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
- AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
-}
-
-template <typename T, int row_stride, int col_stride>
-void AngleAxisToRotationMatrix(
- const T* angle_axis,
- const MatrixAdapter<T, row_stride, col_stride>& R) {
- static const T kOne = T(1.0);
- const T theta2 = DotProduct(angle_axis, angle_axis);
- if (theta2 > T(std::numeric_limits<double>::epsilon())) {
- // We want to be careful to only evaluate the square root if the
- // norm of the angle_axis vector is greater than zero. Otherwise
- // we get a division by zero.
- const T theta = sqrt(theta2);
- const T wx = angle_axis[0] / theta;
- const T wy = angle_axis[1] / theta;
- const T wz = angle_axis[2] / theta;
-
- const T costheta = cos(theta);
- const T sintheta = sin(theta);
-
- R(0, 0) = costheta + wx*wx*(kOne - costheta);
- R(1, 0) = wz*sintheta + wx*wy*(kOne - costheta);
- R(2, 0) = -wy*sintheta + wx*wz*(kOne - costheta);
- R(0, 1) = wx*wy*(kOne - costheta) - wz*sintheta;
- R(1, 1) = costheta + wy*wy*(kOne - costheta);
- R(2, 1) = wx*sintheta + wy*wz*(kOne - costheta);
- R(0, 2) = wy*sintheta + wx*wz*(kOne - costheta);
- R(1, 2) = -wx*sintheta + wy*wz*(kOne - costheta);
- R(2, 2) = costheta + wz*wz*(kOne - costheta);
- } else {
- // Near zero, we switch to using the first order Taylor expansion.
- R(0, 0) = kOne;
- R(1, 0) = angle_axis[2];
- R(2, 0) = -angle_axis[1];
- R(0, 1) = -angle_axis[2];
- R(1, 1) = kOne;
- R(2, 1) = angle_axis[0];
- R(0, 2) = angle_axis[1];
- R(1, 2) = -angle_axis[0];
- R(2, 2) = kOne;
- }
-}
-
-template <typename T>
-inline void EulerAnglesToRotationMatrix(const T* euler,
- const int row_stride_parameter,
- T* R) {
- CHECK_EQ(row_stride_parameter, 3);
- EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
-}
-
-template <typename T, int row_stride, int col_stride>
-void EulerAnglesToRotationMatrix(
- const T* euler,
- const MatrixAdapter<T, row_stride, col_stride>& R) {
- const double kPi = 3.14159265358979323846;
- const T degrees_to_radians(kPi / 180.0);
-
- const T pitch(euler[0] * degrees_to_radians);
- const T roll(euler[1] * degrees_to_radians);
- const T yaw(euler[2] * degrees_to_radians);
-
- const T c1 = cos(yaw);
- const T s1 = sin(yaw);
- const T c2 = cos(roll);
- const T s2 = sin(roll);
- const T c3 = cos(pitch);
- const T s3 = sin(pitch);
-
- R(0, 0) = c1*c2;
- R(0, 1) = -s1*c3 + c1*s2*s3;
- R(0, 2) = s1*s3 + c1*s2*c3;
-
- R(1, 0) = s1*c2;
- R(1, 1) = c1*c3 + s1*s2*s3;
- R(1, 2) = -c1*s3 + s1*s2*c3;
-
- R(2, 0) = -s2;
- R(2, 1) = c2*s3;
- R(2, 2) = c2*c3;
-}
-
-template <typename T> inline
-void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
- QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
-}
-
-template <typename T, int row_stride, int col_stride> inline
-void QuaternionToScaledRotation(
- const T q[4],
- const MatrixAdapter<T, row_stride, col_stride>& R) {
- // Make convenient names for elements of q.
- T a = q[0];
- T b = q[1];
- T c = q[2];
- T d = q[3];
- // This is not to eliminate common sub-expression, but to
- // make the lines shorter so that they fit in 80 columns!
- T aa = a * a;
- T ab = a * b;
- T ac = a * c;
- T ad = a * d;
- T bb = b * b;
- T bc = b * c;
- T bd = b * d;
- T cc = c * c;
- T cd = c * d;
- T dd = d * d;
-
- R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad); R(0, 2) = T(2) * (ac + bd); // NOLINT
- R(1, 0) = T(2) * (ad + bc); R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab); // NOLINT
- R(2, 0) = T(2) * (bd - ac); R(2, 1) = T(2) * (ab + cd); R(2, 2) = aa - bb - cc + dd; // NOLINT
-}
-
-template <typename T> inline
-void QuaternionToRotation(const T q[4], T R[3 * 3]) {
- QuaternionToRotation(q, RowMajorAdapter3x3(R));
-}
-
-template <typename T, int row_stride, int col_stride> inline
-void QuaternionToRotation(const T q[4],
- const MatrixAdapter<T, row_stride, col_stride>& R) {
- QuaternionToScaledRotation(q, R);
-
- T normalizer = q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
- CHECK_NE(normalizer, T(0));
- normalizer = T(1) / normalizer;
-
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 3; ++j) {
- R(i, j) *= normalizer;
- }
- }
-}
-
-template <typename T> inline
-void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
- const T t2 = q[0] * q[1];
- const T t3 = q[0] * q[2];
- const T t4 = q[0] * q[3];
- const T t5 = -q[1] * q[1];
- const T t6 = q[1] * q[2];
- const T t7 = q[1] * q[3];
- const T t8 = -q[2] * q[2];
- const T t9 = q[2] * q[3];
- const T t1 = -q[3] * q[3];
- result[0] = T(2) * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]; // NOLINT
- result[1] = T(2) * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]; // NOLINT
- result[2] = T(2) * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]; // NOLINT
-}
-
-template <typename T> inline
-void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
- // 'scale' is 1 / norm(q).
- const T scale = T(1) / sqrt(q[0] * q[0] +
- q[1] * q[1] +
- q[2] * q[2] +
- q[3] * q[3]);
-
- // Make unit-norm version of q.
- const T unit[4] = {
- scale * q[0],
- scale * q[1],
- scale * q[2],
- scale * q[3],
- };
-
- UnitQuaternionRotatePoint(unit, pt, result);
-}
-
-template<typename T> inline
-void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
- zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
- zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
- zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
- zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
-}
-
-// xy = x cross y;
-template<typename T> inline
-void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
- x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
- x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
- x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
-}
-
-template<typename T> inline
-T DotProduct(const T x[3], const T y[3]) {
- return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
-}
-
-template<typename T> inline
-void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3], T result[3]) {
- const T theta2 = DotProduct(angle_axis, angle_axis);
- if (theta2 > T(std::numeric_limits<double>::epsilon())) {
- // Away from zero, use the rodriguez formula
- //
- // result = pt costheta +
- // (w x pt) * sintheta +
- // w (w . pt) (1 - costheta)
- //
- // We want to be careful to only evaluate the square root if the
- // norm of the angle_axis vector is greater than zero. Otherwise
- // we get a division by zero.
- //
- const T theta = sqrt(theta2);
- const T costheta = cos(theta);
- const T sintheta = sin(theta);
- const T theta_inverse = 1.0 / theta;
-
- const T w[3] = { angle_axis[0] * theta_inverse,
- angle_axis[1] * theta_inverse,
- angle_axis[2] * theta_inverse };
-
- // Explicitly inlined evaluation of the cross product for
- // performance reasons.
- const T w_cross_pt[3] = { w[1] * pt[2] - w[2] * pt[1],
- w[2] * pt[0] - w[0] * pt[2],
- w[0] * pt[1] - w[1] * pt[0] };
- const T tmp =
- (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
-
- result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
- result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
- result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
- } else {
- // Near zero, the first order Taylor approximation of the rotation
- // matrix R corresponding to a vector w and angle w is
- //
- // R = I + hat(w) * sin(theta)
- //
- // But sintheta ~ theta and theta * w = angle_axis, which gives us
- //
- // R = I + hat(w)
- //
- // and actually performing multiplication with the point pt, gives us
- // R * pt = pt + w x pt.
- //
- // Switching to the Taylor expansion near zero provides meaningful
- // derivatives when evaluated using Jets.
- //
- // Explicitly inlined evaluation of the cross product for
- // performance reasons.
- const T w_cross_pt[3] = { angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
- angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
- angle_axis[0] * pt[1] - angle_axis[1] * pt[0] };
-
- result[0] = pt[0] + w_cross_pt[0];
- result[1] = pt[1] + w_cross_pt[1];
- result[2] = pt[2] + w_cross_pt[2];
- }
-}
-
-} // namespace ceres
-
-#endif // CERES_PUBLIC_ROTATION_H_