Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/include/ceres/types.h')
-rw-r--r--extern/libmv/third_party/ceres/include/ceres/types.h487
1 files changed, 0 insertions, 487 deletions
diff --git a/extern/libmv/third_party/ceres/include/ceres/types.h b/extern/libmv/third_party/ceres/include/ceres/types.h
deleted file mode 100644
index a07c8933e64..00000000000
--- a/extern/libmv/third_party/ceres/include/ceres/types.h
+++ /dev/null
@@ -1,487 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: sameeragarwal@google.com (Sameer Agarwal)
-//
-// Enums and other top level class definitions.
-//
-// Note: internal/types.cc defines stringification routines for some
-// of these enums. Please update those routines if you extend or
-// remove enums from here.
-
-#ifndef CERES_PUBLIC_TYPES_H_
-#define CERES_PUBLIC_TYPES_H_
-
-#include <string>
-
-#include "ceres/internal/port.h"
-#include "ceres/internal/disable_warnings.h"
-
-namespace ceres {
-
-// Basic integer types. These typedefs are in the Ceres namespace to avoid
-// conflicts with other packages having similar typedefs.
-typedef int int32;
-
-// Argument type used in interfaces that can optionally take ownership
-// of a passed in argument. If TAKE_OWNERSHIP is passed, the called
-// object takes ownership of the pointer argument, and will call
-// delete on it upon completion.
-enum Ownership {
- DO_NOT_TAKE_OWNERSHIP,
- TAKE_OWNERSHIP
-};
-
-// TODO(keir): Considerably expand the explanations of each solver type.
-enum LinearSolverType {
- // These solvers are for general rectangular systems formed from the
- // normal equations A'A x = A'b. They are direct solvers and do not
- // assume any special problem structure.
-
- // Solve the normal equations using a dense Cholesky solver; based
- // on Eigen.
- DENSE_NORMAL_CHOLESKY,
-
- // Solve the normal equations using a dense QR solver; based on
- // Eigen.
- DENSE_QR,
-
- // Solve the normal equations using a sparse cholesky solver; requires
- // SuiteSparse or CXSparse.
- SPARSE_NORMAL_CHOLESKY,
-
- // Specialized solvers, specific to problems with a generalized
- // bi-partitite structure.
-
- // Solves the reduced linear system using a dense Cholesky solver;
- // based on Eigen.
- DENSE_SCHUR,
-
- // Solves the reduced linear system using a sparse Cholesky solver;
- // based on CHOLMOD.
- SPARSE_SCHUR,
-
- // Solves the reduced linear system using Conjugate Gradients, based
- // on a new Ceres implementation. Suitable for large scale
- // problems.
- ITERATIVE_SCHUR,
-
- // Conjugate gradients on the normal equations.
- CGNR
-};
-
-enum PreconditionerType {
- // Trivial preconditioner - the identity matrix.
- IDENTITY,
-
- // Block diagonal of the Gauss-Newton Hessian.
- JACOBI,
-
- // Note: The following three preconditioners can only be used with
- // the ITERATIVE_SCHUR solver. They are well suited for Structure
- // from Motion problems.
-
- // Block diagonal of the Schur complement. This preconditioner may
- // only be used with the ITERATIVE_SCHUR solver.
- SCHUR_JACOBI,
-
- // Visibility clustering based preconditioners.
- //
- // The following two preconditioners use the visibility structure of
- // the scene to determine the sparsity structure of the
- // preconditioner. This is done using a clustering algorithm. The
- // available visibility clustering algorithms are described below.
- //
- // Note: Requires SuiteSparse.
- CLUSTER_JACOBI,
- CLUSTER_TRIDIAGONAL
-};
-
-enum VisibilityClusteringType {
- // Canonical views algorithm as described in
- //
- // "Scene Summarization for Online Image Collections", Ian Simon, Noah
- // Snavely, Steven M. Seitz, ICCV 2007.
- //
- // This clustering algorithm can be quite slow, but gives high
- // quality clusters. The original visibility based clustering paper
- // used this algorithm.
- CANONICAL_VIEWS,
-
- // The classic single linkage algorithm. It is extremely fast as
- // compared to CANONICAL_VIEWS, but can give slightly poorer
- // results. For problems with large number of cameras though, this
- // is generally a pretty good option.
- //
- // If you are using SCHUR_JACOBI preconditioner and have SuiteSparse
- // available, CLUSTER_JACOBI and CLUSTER_TRIDIAGONAL in combination
- // with the SINGLE_LINKAGE algorithm will generally give better
- // results.
- SINGLE_LINKAGE
-};
-
-enum SparseLinearAlgebraLibraryType {
- // High performance sparse Cholesky factorization and approximate
- // minimum degree ordering.
- SUITE_SPARSE,
-
- // A lightweight replacment for SuiteSparse, which does not require
- // a LAPACK/BLAS implementation. Consequently, its performance is
- // also a bit lower than SuiteSparse.
- CX_SPARSE,
-
- // Eigen's sparse linear algebra routines. In particular Ceres uses
- // the Simplicial LDLT routines.
- EIGEN_SPARSE
-};
-
-enum DenseLinearAlgebraLibraryType {
- EIGEN,
- LAPACK
-};
-
-// Logging options
-// The options get progressively noisier.
-enum LoggingType {
- SILENT,
- PER_MINIMIZER_ITERATION
-};
-
-enum MinimizerType {
- LINE_SEARCH,
- TRUST_REGION
-};
-
-enum LineSearchDirectionType {
- // Negative of the gradient.
- STEEPEST_DESCENT,
-
- // A generalization of the Conjugate Gradient method to non-linear
- // functions. The generalization can be performed in a number of
- // different ways, resulting in a variety of search directions. The
- // precise choice of the non-linear conjugate gradient algorithm
- // used is determined by NonlinerConjuateGradientType.
- NONLINEAR_CONJUGATE_GRADIENT,
-
- // BFGS, and it's limited memory approximation L-BFGS, are quasi-Newton
- // algorithms that approximate the Hessian matrix by iteratively refining
- // an initial estimate with rank-one updates using the gradient at each
- // iteration. They are a generalisation of the Secant method and satisfy
- // the Secant equation. The Secant equation has an infinium of solutions
- // in multiple dimensions, as there are N*(N+1)/2 degrees of freedom in a
- // symmetric matrix but only N conditions are specified by the Secant
- // equation. The requirement that the Hessian approximation be positive
- // definite imposes another N additional constraints, but that still leaves
- // remaining degrees-of-freedom. (L)BFGS methods uniquely deteremine the
- // approximate Hessian by imposing the additional constraints that the
- // approximation at the next iteration must be the 'closest' to the current
- // approximation (the nature of how this proximity is measured is actually
- // the defining difference between a family of quasi-Newton methods including
- // (L)BFGS & DFP). (L)BFGS is currently regarded as being the best known
- // general quasi-Newton method.
- //
- // The principal difference between BFGS and L-BFGS is that whilst BFGS
- // maintains a full, dense approximation to the (inverse) Hessian, L-BFGS
- // maintains only a window of the last M observations of the parameters and
- // gradients. Using this observation history, the calculation of the next
- // search direction can be computed without requiring the construction of the
- // full dense inverse Hessian approximation. This is particularly important
- // for problems with a large number of parameters, where storage of an N-by-N
- // matrix in memory would be prohibitive.
- //
- // For more details on BFGS see:
- //
- // Broyden, C.G., "The Convergence of a Class of Double-rank Minimization
- // Algorithms,"; J. Inst. Maths. Applics., Vol. 6, pp 76–90, 1970.
- //
- // Fletcher, R., "A New Approach to Variable Metric Algorithms,"
- // Computer Journal, Vol. 13, pp 317–322, 1970.
- //
- // Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational
- // Means," Mathematics of Computing, Vol. 24, pp 23–26, 1970.
- //
- // Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function
- // Minimization," Mathematics of Computing, Vol. 24, pp 647–656, 1970.
- //
- // For more details on L-BFGS see:
- //
- // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited
- // Storage". Mathematics of Computation 35 (151): 773–782.
- //
- // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994).
- // "Representations of Quasi-Newton Matrices and their use in
- // Limited Memory Methods". Mathematical Programming 63 (4):
- // 129–156.
- //
- // A general reference for both methods:
- //
- // Nocedal J., Wright S., Numerical Optimization, 2nd Ed. Springer, 1999.
- LBFGS,
- BFGS,
-};
-
-// Nonliner conjugate gradient methods are a generalization of the
-// method of Conjugate Gradients for linear systems. The
-// generalization can be carried out in a number of different ways
-// leading to number of different rules for computing the search
-// direction. Ceres provides a number of different variants. For more
-// details see Numerical Optimization by Nocedal & Wright.
-enum NonlinearConjugateGradientType {
- FLETCHER_REEVES,
- POLAK_RIBIERE,
- HESTENES_STIEFEL,
-};
-
-enum LineSearchType {
- // Backtracking line search with polynomial interpolation or
- // bisection.
- ARMIJO,
- WOLFE,
-};
-
-// Ceres supports different strategies for computing the trust region
-// step.
-enum TrustRegionStrategyType {
- // The default trust region strategy is to use the step computation
- // used in the Levenberg-Marquardt algorithm. For more details see
- // levenberg_marquardt_strategy.h
- LEVENBERG_MARQUARDT,
-
- // Powell's dogleg algorithm interpolates between the Cauchy point
- // and the Gauss-Newton step. It is particularly useful if the
- // LEVENBERG_MARQUARDT algorithm is making a large number of
- // unsuccessful steps. For more details see dogleg_strategy.h.
- //
- // NOTES:
- //
- // 1. This strategy has not been experimented with or tested as
- // extensively as LEVENBERG_MARQUARDT, and therefore it should be
- // considered EXPERIMENTAL for now.
- //
- // 2. For now this strategy should only be used with exact
- // factorization based linear solvers, i.e., SPARSE_SCHUR,
- // DENSE_SCHUR, DENSE_QR and SPARSE_NORMAL_CHOLESKY.
- DOGLEG
-};
-
-// Ceres supports two different dogleg strategies.
-// The "traditional" dogleg method by Powell and the
-// "subspace" method described in
-// R. H. Byrd, R. B. Schnabel, and G. A. Shultz,
-// "Approximate solution of the trust region problem by minimization
-// over two-dimensional subspaces", Mathematical Programming,
-// 40 (1988), pp. 247--263
-enum DoglegType {
- // The traditional approach constructs a dogleg path
- // consisting of two line segments and finds the furthest
- // point on that path that is still inside the trust region.
- TRADITIONAL_DOGLEG,
-
- // The subspace approach finds the exact minimum of the model
- // constrained to the subspace spanned by the dogleg path.
- SUBSPACE_DOGLEG
-};
-
-enum TerminationType {
- // Minimizer terminated because one of the convergence criterion set
- // by the user was satisfied.
- //
- // 1. (new_cost - old_cost) < function_tolerance * old_cost;
- // 2. max_i |gradient_i| < gradient_tolerance
- // 3. |step|_2 <= parameter_tolerance * ( |x|_2 + parameter_tolerance)
- //
- // The user's parameter blocks will be updated with the solution.
- CONVERGENCE,
-
- // The solver ran for maximum number of iterations or maximum amount
- // of time specified by the user, but none of the convergence
- // criterion specified by the user were met. The user's parameter
- // blocks will be updated with the solution found so far.
- NO_CONVERGENCE,
-
- // The minimizer terminated because of an error. The user's
- // parameter blocks will not be updated.
- FAILURE,
-
- // Using an IterationCallback object, user code can control the
- // minimizer. The following enums indicate that the user code was
- // responsible for termination.
- //
- // Minimizer terminated successfully because a user
- // IterationCallback returned SOLVER_TERMINATE_SUCCESSFULLY.
- //
- // The user's parameter blocks will be updated with the solution.
- USER_SUCCESS,
-
- // Minimizer terminated because because a user IterationCallback
- // returned SOLVER_ABORT.
- //
- // The user's parameter blocks will not be updated.
- USER_FAILURE
-};
-
-// Enums used by the IterationCallback instances to indicate to the
-// solver whether it should continue solving, the user detected an
-// error or the solution is good enough and the solver should
-// terminate.
-enum CallbackReturnType {
- // Continue solving to next iteration.
- SOLVER_CONTINUE,
-
- // Terminate solver, and do not update the parameter blocks upon
- // return. Unless the user has set
- // Solver:Options:::update_state_every_iteration, in which case the
- // state would have been updated every iteration
- // anyways. Solver::Summary::termination_type is set to USER_ABORT.
- SOLVER_ABORT,
-
- // Terminate solver, update state and
- // return. Solver::Summary::termination_type is set to USER_SUCCESS.
- SOLVER_TERMINATE_SUCCESSFULLY
-};
-
-// The format in which linear least squares problems should be logged
-// when Solver::Options::lsqp_iterations_to_dump is non-empty.
-enum DumpFormatType {
- // Print the linear least squares problem in a human readable format
- // to stderr. The Jacobian is printed as a dense matrix. The vectors
- // D, x and f are printed as dense vectors. This should only be used
- // for small problems.
- CONSOLE,
-
- // Write out the linear least squares problem to the directory
- // pointed to by Solver::Options::lsqp_dump_directory as text files
- // which can be read into MATLAB/Octave. The Jacobian is dumped as a
- // text file containing (i,j,s) triplets, the vectors D, x and f are
- // dumped as text files containing a list of their values.
- //
- // A MATLAB/octave script called lm_iteration_???.m is also output,
- // which can be used to parse and load the problem into memory.
- TEXTFILE
-};
-
-// For SizedCostFunction and AutoDiffCostFunction, DYNAMIC can be
-// specified for the number of residuals. If specified, then the
-// number of residuas for that cost function can vary at runtime.
-enum DimensionType {
- DYNAMIC = -1
-};
-
-enum NumericDiffMethod {
- CENTRAL,
- FORWARD
-};
-
-enum LineSearchInterpolationType {
- BISECTION,
- QUADRATIC,
- CUBIC
-};
-
-enum CovarianceAlgorithmType {
- DENSE_SVD,
- SUITE_SPARSE_QR,
- EIGEN_SPARSE_QR
-};
-
-CERES_EXPORT const char* LinearSolverTypeToString(
- LinearSolverType type);
-CERES_EXPORT bool StringToLinearSolverType(string value,
- LinearSolverType* type);
-
-CERES_EXPORT const char* PreconditionerTypeToString(PreconditionerType type);
-CERES_EXPORT bool StringToPreconditionerType(string value,
- PreconditionerType* type);
-
-CERES_EXPORT const char* VisibilityClusteringTypeToString(
- VisibilityClusteringType type);
-CERES_EXPORT bool StringToVisibilityClusteringType(string value,
- VisibilityClusteringType* type);
-
-CERES_EXPORT const char* SparseLinearAlgebraLibraryTypeToString(
- SparseLinearAlgebraLibraryType type);
-CERES_EXPORT bool StringToSparseLinearAlgebraLibraryType(
- string value,
- SparseLinearAlgebraLibraryType* type);
-
-CERES_EXPORT const char* DenseLinearAlgebraLibraryTypeToString(
- DenseLinearAlgebraLibraryType type);
-CERES_EXPORT bool StringToDenseLinearAlgebraLibraryType(
- string value,
- DenseLinearAlgebraLibraryType* type);
-
-CERES_EXPORT const char* TrustRegionStrategyTypeToString(
- TrustRegionStrategyType type);
-CERES_EXPORT bool StringToTrustRegionStrategyType(string value,
- TrustRegionStrategyType* type);
-
-CERES_EXPORT const char* DoglegTypeToString(DoglegType type);
-CERES_EXPORT bool StringToDoglegType(string value, DoglegType* type);
-
-CERES_EXPORT const char* MinimizerTypeToString(MinimizerType type);
-CERES_EXPORT bool StringToMinimizerType(string value, MinimizerType* type);
-
-CERES_EXPORT const char* LineSearchDirectionTypeToString(
- LineSearchDirectionType type);
-CERES_EXPORT bool StringToLineSearchDirectionType(string value,
- LineSearchDirectionType* type);
-
-CERES_EXPORT const char* LineSearchTypeToString(LineSearchType type);
-CERES_EXPORT bool StringToLineSearchType(string value, LineSearchType* type);
-
-CERES_EXPORT const char* NonlinearConjugateGradientTypeToString(
- NonlinearConjugateGradientType type);
-CERES_EXPORT bool StringToNonlinearConjugateGradientType(
- string value,
- NonlinearConjugateGradientType* type);
-
-CERES_EXPORT const char* LineSearchInterpolationTypeToString(
- LineSearchInterpolationType type);
-CERES_EXPORT bool StringToLineSearchInterpolationType(
- string value,
- LineSearchInterpolationType* type);
-
-CERES_EXPORT const char* CovarianceAlgorithmTypeToString(
- CovarianceAlgorithmType type);
-CERES_EXPORT bool StringToCovarianceAlgorithmType(
- string value,
- CovarianceAlgorithmType* type);
-
-CERES_EXPORT const char* TerminationTypeToString(TerminationType type);
-
-CERES_EXPORT bool IsSchurType(LinearSolverType type);
-CERES_EXPORT bool IsSparseLinearAlgebraLibraryTypeAvailable(
- SparseLinearAlgebraLibraryType type);
-CERES_EXPORT bool IsDenseLinearAlgebraLibraryTypeAvailable(
- DenseLinearAlgebraLibraryType type);
-
-} // namespace ceres
-
-#include "ceres/internal/reenable_warnings.h"
-
-#endif // CERES_PUBLIC_TYPES_H_