Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.cc')
-rw-r--r--extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.cc18
1 files changed, 9 insertions, 9 deletions
diff --git a/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.cc b/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.cc
index 668fa54b8b8..a330ad2c7a2 100644
--- a/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.cc
+++ b/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.cc
@@ -35,7 +35,7 @@
#include "ceres/array_utils.h"
#include "ceres/internal/eigen.h"
#include "ceres/linear_solver.h"
-#include "ceres/polynomial_solver.h"
+#include "ceres/polynomial.h"
#include "ceres/sparse_matrix.h"
#include "ceres/trust_region_strategy.h"
#include "ceres/types.h"
@@ -87,7 +87,7 @@ TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
// Gauss-Newton and gradient vectors are always available, only a
// new interpolant need to be computed. For the subspace case,
// the subspace and the two-dimensional model are also still valid.
- switch(dogleg_type_) {
+ switch (dogleg_type_) {
case TRADITIONAL_DOGLEG:
ComputeTraditionalDoglegStep(step);
break;
@@ -135,7 +135,7 @@ TrustRegionStrategy::Summary DoglegStrategy::ComputeStep(
summary.termination_type = linear_solver_summary.termination_type;
if (linear_solver_summary.termination_type != FAILURE) {
- switch(dogleg_type_) {
+ switch (dogleg_type_) {
// Interpolate the Cauchy point and the Gauss-Newton step.
case TRADITIONAL_DOGLEG:
ComputeTraditionalDoglegStep(step);
@@ -415,15 +415,15 @@ Vector DoglegStrategy::MakePolynomialForBoundaryConstrainedProblem() const {
const double trB = subspace_B_.trace();
const double r2 = radius_ * radius_;
Matrix2d B_adj;
- B_adj << subspace_B_(1,1) , -subspace_B_(0,1),
- -subspace_B_(1,0) , subspace_B_(0,0);
+ B_adj << subspace_B_(1, 1) , -subspace_B_(0, 1),
+ -subspace_B_(1, 0) , subspace_B_(0, 0);
Vector polynomial(5);
polynomial(0) = r2;
polynomial(1) = 2.0 * r2 * trB;
- polynomial(2) = r2 * ( trB * trB + 2.0 * detB ) - subspace_g_.squaredNorm();
- polynomial(3) = -2.0 * ( subspace_g_.transpose() * B_adj * subspace_g_
- - r2 * detB * trB );
+ polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
+ polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g_
+ - r2 * detB * trB);
polynomial(4) = r2 * detB * detB - (B_adj * subspace_g_).squaredNorm();
return polynomial;
@@ -598,7 +598,7 @@ void DoglegStrategy::StepAccepted(double step_quality) {
// Reduce the regularization multiplier, in the hope that whatever
// was causing the rank deficiency has gone away and we can return
// to doing a pure Gauss-Newton solve.
- mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_ );
+ mu_ = max(min_mu_, 2.0 * mu_ / mu_increase_factor_);
reuse_ = false;
}