Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.h')
-rw-r--r--extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.h165
1 files changed, 0 insertions, 165 deletions
diff --git a/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.h b/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.h
deleted file mode 100644
index 71c785cc3f7..00000000000
--- a/extern/libmv/third_party/ceres/internal/ceres/dogleg_strategy.h
+++ /dev/null
@@ -1,165 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2012 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: sameeragarwal@google.com (Sameer Agarwal)
-
-#ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_
-#define CERES_INTERNAL_DOGLEG_STRATEGY_H_
-
-#include "ceres/linear_solver.h"
-#include "ceres/trust_region_strategy.h"
-
-namespace ceres {
-namespace internal {
-
-// Dogleg step computation and trust region sizing strategy based on
-// on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen
-// and O. Tingleff. Available to download from
-//
-// http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
-//
-// One minor modification is that instead of computing the pure
-// Gauss-Newton step, we compute a regularized version of it. This is
-// because the Jacobian is often rank-deficient and in such cases
-// using a direct solver leads to numerical failure.
-//
-// If SUBSPACE is passed as the type argument to the constructor, the
-// DoglegStrategy follows the approach by Shultz, Schnabel, Byrd.
-// This finds the exact optimum over the two-dimensional subspace
-// spanned by the two Dogleg vectors.
-class DoglegStrategy : public TrustRegionStrategy {
- public:
- explicit DoglegStrategy(const TrustRegionStrategy::Options& options);
- virtual ~DoglegStrategy() {}
-
- // TrustRegionStrategy interface
- virtual Summary ComputeStep(const PerSolveOptions& per_solve_options,
- SparseMatrix* jacobian,
- const double* residuals,
- double* step);
- virtual void StepAccepted(double step_quality);
- virtual void StepRejected(double step_quality);
- virtual void StepIsInvalid();
-
- virtual double Radius() const;
-
- // These functions are predominantly for testing.
- Vector gradient() const { return gradient_; }
- Vector gauss_newton_step() const { return gauss_newton_step_; }
- Matrix subspace_basis() const { return subspace_basis_; }
- Vector subspace_g() const { return subspace_g_; }
- Matrix subspace_B() const { return subspace_B_; }
-
- private:
- typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vector2d;
- typedef Eigen::Matrix<double, 2, 2, Eigen::DontAlign> Matrix2d;
-
- LinearSolver::Summary ComputeGaussNewtonStep(
- const PerSolveOptions& per_solve_options,
- SparseMatrix* jacobian,
- const double* residuals);
- void ComputeCauchyPoint(SparseMatrix* jacobian);
- void ComputeGradient(SparseMatrix* jacobian, const double* residuals);
- void ComputeTraditionalDoglegStep(double* step);
- bool ComputeSubspaceModel(SparseMatrix* jacobian);
- void ComputeSubspaceDoglegStep(double* step);
-
- bool FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const;
- Vector MakePolynomialForBoundaryConstrainedProblem() const;
- Vector2d ComputeSubspaceStepFromRoot(double lambda) const;
- double EvaluateSubspaceModel(const Vector2d& x) const;
-
- LinearSolver* linear_solver_;
- double radius_;
- const double max_radius_;
-
- const double min_diagonal_;
- const double max_diagonal_;
-
- // mu is used to scale the diagonal matrix used to make the
- // Gauss-Newton solve full rank. In each solve, the strategy starts
- // out with mu = min_mu, and tries values upto max_mu. If the user
- // reports an invalid step, the value of mu_ is increased so that
- // the next solve starts with a stronger regularization.
- //
- // If a successful step is reported, then the value of mu_ is
- // decreased with a lower bound of min_mu_.
- double mu_;
- const double min_mu_;
- const double max_mu_;
- const double mu_increase_factor_;
- const double increase_threshold_;
- const double decrease_threshold_;
-
- Vector diagonal_; // sqrt(diag(J^T J))
- Vector lm_diagonal_;
-
- Vector gradient_;
- Vector gauss_newton_step_;
-
- // cauchy_step = alpha * gradient
- double alpha_;
- double dogleg_step_norm_;
-
- // When, ComputeStep is called, reuse_ indicates whether the
- // Gauss-Newton and Cauchy steps from the last call to ComputeStep
- // can be reused or not.
- //
- // If the user called StepAccepted, then it is expected that the
- // user has recomputed the Jacobian matrix and new Gauss-Newton
- // solve is needed and reuse is set to false.
- //
- // If the user called StepRejected, then it is expected that the
- // user wants to solve the trust region problem with the same matrix
- // but a different trust region radius and the Gauss-Newton and
- // Cauchy steps can be reused to compute the Dogleg, thus reuse is
- // set to true.
- //
- // If the user called StepIsInvalid, then there was a numerical
- // problem with the step computed in the last call to ComputeStep,
- // and the regularization used to do the Gauss-Newton solve is
- // increased and a new solve should be done when ComputeStep is
- // called again, thus reuse is set to false.
- bool reuse_;
-
- // The dogleg type determines how the minimum of the local
- // quadratic model is found.
- DoglegType dogleg_type_;
-
- // If the type is SUBSPACE_DOGLEG, the two-dimensional
- // model 1/2 x^T B x + g^T x has to be computed and stored.
- bool subspace_is_one_dimensional_;
- Matrix subspace_basis_;
- Vector2d subspace_g_;
- Matrix2d subspace_B_;
-};
-
-} // namespace internal
-} // namespace ceres
-
-#endif // CERES_INTERNAL_DOGLEG_STRATEGY_H_