Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/internal/ceres/line_search.cc')
-rw-r--r--extern/libmv/third_party/ceres/internal/ceres/line_search.cc821
1 files changed, 0 insertions, 821 deletions
diff --git a/extern/libmv/third_party/ceres/internal/ceres/line_search.cc b/extern/libmv/third_party/ceres/internal/ceres/line_search.cc
deleted file mode 100644
index 7ff11646dd3..00000000000
--- a/extern/libmv/third_party/ceres/internal/ceres/line_search.cc
+++ /dev/null
@@ -1,821 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2012 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: sameeragarwal@google.com (Sameer Agarwal)
-
-#include <iomanip>
-#include <iostream> // NOLINT
-
-#include "ceres/line_search.h"
-
-#include "ceres/fpclassify.h"
-#include "ceres/evaluator.h"
-#include "ceres/internal/eigen.h"
-#include "ceres/polynomial.h"
-#include "ceres/stringprintf.h"
-#include "glog/logging.h"
-
-namespace ceres {
-namespace internal {
-namespace {
-// Precision used for floating point values in error message output.
-const int kErrorMessageNumericPrecision = 8;
-
-FunctionSample ValueSample(const double x, const double value) {
- FunctionSample sample;
- sample.x = x;
- sample.value = value;
- sample.value_is_valid = true;
- return sample;
-};
-
-FunctionSample ValueAndGradientSample(const double x,
- const double value,
- const double gradient) {
- FunctionSample sample;
- sample.x = x;
- sample.value = value;
- sample.gradient = gradient;
- sample.value_is_valid = true;
- sample.gradient_is_valid = true;
- return sample;
-};
-
-} // namespace
-
-
-std::ostream& operator<<(std::ostream &os, const FunctionSample& sample);
-
-// Convenience stream operator for pushing FunctionSamples into log messages.
-std::ostream& operator<<(std::ostream &os, const FunctionSample& sample) {
- os << sample.ToDebugString();
- return os;
-}
-
-LineSearch::LineSearch(const LineSearch::Options& options)
- : options_(options) {}
-
-LineSearch* LineSearch::Create(const LineSearchType line_search_type,
- const LineSearch::Options& options,
- string* error) {
- LineSearch* line_search = NULL;
- switch (line_search_type) {
- case ceres::ARMIJO:
- line_search = new ArmijoLineSearch(options);
- break;
- case ceres::WOLFE:
- line_search = new WolfeLineSearch(options);
- break;
- default:
- *error = string("Invalid line search algorithm type: ") +
- LineSearchTypeToString(line_search_type) +
- string(", unable to create line search.");
- return NULL;
- }
- return line_search;
-}
-
-LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
- : evaluator_(evaluator),
- position_(evaluator->NumParameters()),
- direction_(evaluator->NumEffectiveParameters()),
- evaluation_point_(evaluator->NumParameters()),
- scaled_direction_(evaluator->NumEffectiveParameters()),
- gradient_(evaluator->NumEffectiveParameters()) {
-}
-
-void LineSearchFunction::Init(const Vector& position,
- const Vector& direction) {
- position_ = position;
- direction_ = direction;
-}
-
-bool LineSearchFunction::Evaluate(double x, double* f, double* g) {
- scaled_direction_ = x * direction_;
- if (!evaluator_->Plus(position_.data(),
- scaled_direction_.data(),
- evaluation_point_.data())) {
- return false;
- }
-
- if (g == NULL) {
- return (evaluator_->Evaluate(evaluation_point_.data(),
- f, NULL, NULL, NULL) &&
- IsFinite(*f));
- }
-
- if (!evaluator_->Evaluate(evaluation_point_.data(),
- f,
- NULL,
- gradient_.data(), NULL)) {
- return false;
- }
-
- *g = direction_.dot(gradient_);
- return IsFinite(*f) && IsFinite(*g);
-}
-
-double LineSearchFunction::DirectionInfinityNorm() const {
- return direction_.lpNorm<Eigen::Infinity>();
-}
-
-// Returns step_size \in [min_step_size, max_step_size] which minimizes the
-// polynomial of degree defined by interpolation_type which interpolates all
-// of the provided samples with valid values.
-double LineSearch::InterpolatingPolynomialMinimizingStepSize(
- const LineSearchInterpolationType& interpolation_type,
- const FunctionSample& lowerbound,
- const FunctionSample& previous,
- const FunctionSample& current,
- const double min_step_size,
- const double max_step_size) const {
- if (!current.value_is_valid ||
- (interpolation_type == BISECTION &&
- max_step_size <= current.x)) {
- // Either: sample is invalid; or we are using BISECTION and contracting
- // the step size.
- return min(max(current.x * 0.5, min_step_size), max_step_size);
- } else if (interpolation_type == BISECTION) {
- CHECK_GT(max_step_size, current.x);
- // We are expanding the search (during a Wolfe bracketing phase) using
- // BISECTION interpolation. Using BISECTION when trying to expand is
- // strictly speaking an oxymoron, but we define this to mean always taking
- // the maximum step size so that the Armijo & Wolfe implementations are
- // agnostic to the interpolation type.
- return max_step_size;
- }
- // Only check if lower-bound is valid here, where it is required
- // to avoid replicating current.value_is_valid == false
- // behaviour in WolfeLineSearch.
- CHECK(lowerbound.value_is_valid)
- << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Ceres bug: lower-bound sample for interpolation is invalid, "
- << "please contact the developers!, interpolation_type: "
- << LineSearchInterpolationTypeToString(interpolation_type)
- << ", lowerbound: " << lowerbound << ", previous: " << previous
- << ", current: " << current;
-
- // Select step size by interpolating the function and gradient values
- // and minimizing the corresponding polynomial.
- vector<FunctionSample> samples;
- samples.push_back(lowerbound);
-
- if (interpolation_type == QUADRATIC) {
- // Two point interpolation using function values and the
- // gradient at the lower bound.
- samples.push_back(ValueSample(current.x, current.value));
-
- if (previous.value_is_valid) {
- // Three point interpolation, using function values and the
- // gradient at the lower bound.
- samples.push_back(ValueSample(previous.x, previous.value));
- }
- } else if (interpolation_type == CUBIC) {
- // Two point interpolation using the function values and the gradients.
- samples.push_back(current);
-
- if (previous.value_is_valid) {
- // Three point interpolation using the function values and
- // the gradients.
- samples.push_back(previous);
- }
- } else {
- LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
- << LineSearchInterpolationTypeToString(interpolation_type)
- << ", please contact the developers!";
- }
-
- double step_size = 0.0, unused_min_value = 0.0;
- MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
- &step_size, &unused_min_value);
- return step_size;
-}
-
-ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
- : LineSearch(options) {}
-
-void ArmijoLineSearch::Search(const double step_size_estimate,
- const double initial_cost,
- const double initial_gradient,
- Summary* summary) {
- *CHECK_NOTNULL(summary) = LineSearch::Summary();
- CHECK_GE(step_size_estimate, 0.0);
- CHECK_GT(options().sufficient_decrease, 0.0);
- CHECK_LT(options().sufficient_decrease, 1.0);
- CHECK_GT(options().max_num_iterations, 0);
- Function* function = options().function;
-
- // Note initial_cost & initial_gradient are evaluated at step_size = 0,
- // not step_size_estimate, which is our starting guess.
- const FunctionSample initial_position =
- ValueAndGradientSample(0.0, initial_cost, initial_gradient);
-
- FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0);
- previous.value_is_valid = false;
-
- FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
- current.value_is_valid = false;
-
- // As the Armijo line search algorithm always uses the initial point, for
- // which both the function value and derivative are known, when fitting a
- // minimizing polynomial, we can fit up to a quadratic without requiring the
- // gradient at the current query point.
- const bool interpolation_uses_gradient_at_current_sample =
- options().interpolation_type == CUBIC;
- const double descent_direction_max_norm =
- static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
-
- ++summary->num_function_evaluations;
- if (interpolation_uses_gradient_at_current_sample) {
- ++summary->num_gradient_evaluations;
- }
- current.value_is_valid =
- function->Evaluate(current.x,
- &current.value,
- interpolation_uses_gradient_at_current_sample
- ? &current.gradient : NULL);
- current.gradient_is_valid =
- interpolation_uses_gradient_at_current_sample && current.value_is_valid;
- while (!current.value_is_valid ||
- current.value > (initial_cost
- + options().sufficient_decrease
- * initial_gradient
- * current.x)) {
- // If current.value_is_valid is false, we treat it as if the cost at that
- // point is not large enough to satisfy the sufficient decrease condition.
- ++summary->num_iterations;
- if (summary->num_iterations >= options().max_num_iterations) {
- summary->error =
- StringPrintf("Line search failed: Armijo failed to find a point "
- "satisfying the sufficient decrease condition within "
- "specified max_num_iterations: %d.",
- options().max_num_iterations);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- return;
- }
-
- const double step_size =
- this->InterpolatingPolynomialMinimizingStepSize(
- options().interpolation_type,
- initial_position,
- previous,
- current,
- (options().max_step_contraction * current.x),
- (options().min_step_contraction * current.x));
-
- if (step_size * descent_direction_max_norm < options().min_step_size) {
- summary->error =
- StringPrintf("Line search failed: step_size too small: %.5e "
- "with descent_direction_max_norm: %.5e.", step_size,
- descent_direction_max_norm);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- return;
- }
-
- previous = current;
- current.x = step_size;
-
- ++summary->num_function_evaluations;
- if (interpolation_uses_gradient_at_current_sample) {
- ++summary->num_gradient_evaluations;
- }
- current.value_is_valid =
- function->Evaluate(current.x,
- &current.value,
- interpolation_uses_gradient_at_current_sample
- ? &current.gradient : NULL);
- current.gradient_is_valid =
- interpolation_uses_gradient_at_current_sample && current.value_is_valid;
- }
-
- summary->optimal_step_size = current.x;
- summary->success = true;
-}
-
-WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
- : LineSearch(options) {}
-
-void WolfeLineSearch::Search(const double step_size_estimate,
- const double initial_cost,
- const double initial_gradient,
- Summary* summary) {
- *CHECK_NOTNULL(summary) = LineSearch::Summary();
- // All parameters should have been validated by the Solver, but as
- // invalid values would produce crazy nonsense, hard check them here.
- CHECK_GE(step_size_estimate, 0.0);
- CHECK_GT(options().sufficient_decrease, 0.0);
- CHECK_GT(options().sufficient_curvature_decrease,
- options().sufficient_decrease);
- CHECK_LT(options().sufficient_curvature_decrease, 1.0);
- CHECK_GT(options().max_step_expansion, 1.0);
-
- // Note initial_cost & initial_gradient are evaluated at step_size = 0,
- // not step_size_estimate, which is our starting guess.
- const FunctionSample initial_position =
- ValueAndGradientSample(0.0, initial_cost, initial_gradient);
-
- bool do_zoom_search = false;
- // Important: The high/low in bracket_high & bracket_low refer to their
- // _function_ values, not their step sizes i.e. it is _not_ required that
- // bracket_low.x < bracket_high.x.
- FunctionSample solution, bracket_low, bracket_high;
-
- // Wolfe bracketing phase: Increases step_size until either it finds a point
- // that satisfies the (strong) Wolfe conditions, or an interval that brackets
- // step sizes which satisfy the conditions. From Nocedal & Wright [1] p61 the
- // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
- // the strong Wolfe conditions if one of the following conditions are met:
- //
- // 1. step_size_{k} violates the sufficient decrease (Armijo) condition.
- // 2. f(step_size_{k}) >= f(step_size_{k-1}).
- // 3. f'(step_size_{k}) >= 0.
- //
- // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
- // this special case, step_size monotonically increases during bracketing.
- if (!this->BracketingPhase(initial_position,
- step_size_estimate,
- &bracket_low,
- &bracket_high,
- &do_zoom_search,
- summary)) {
- // Failed to find either a valid point, a valid bracket satisfying the Wolfe
- // conditions, or even a step size > minimum tolerance satisfying the Armijo
- // condition.
- return;
- }
-
- if (!do_zoom_search) {
- // Either: Bracketing phase already found a point satisfying the strong
- // Wolfe conditions, thus no Zoom required.
- //
- // Or: Bracketing failed to find a valid bracket or a point satisfying the
- // strong Wolfe conditions within max_num_iterations, or whilst searching
- // shrank the bracket width until it was below our minimum tolerance.
- // As these are 'artificial' constraints, and we would otherwise fail to
- // produce a valid point when ArmijoLineSearch would succeed, we return the
- // point with the lowest cost found thus far which satsifies the Armijo
- // condition (but not the Wolfe conditions).
- summary->optimal_step_size = bracket_low.x;
- summary->success = true;
- return;
- }
-
- VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Starting line search zoom phase with bracket_low: "
- << bracket_low << ", bracket_high: " << bracket_high
- << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
- << ", bracket abs delta cost: "
- << fabs(bracket_low.value - bracket_high.value);
-
- // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
- // non-zero, finite width that should bracket step sizes which satisfy the
- // (strong) Wolfe conditions (before finding a step size that satisfies the
- // conditions). Zoom successively decreases the size of the interval until a
- // step size which satisfies the Wolfe conditions is found. The interval is
- // defined by bracket_low & bracket_high, which satisfy:
- //
- // 1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
- // contains step sizes that satsify the strong Wolfe conditions.
- // 2. bracket_low.x is of all the step sizes evaluated *which satisifed the
- // Armijo sufficient decrease condition*, the one which generated the
- // smallest function value, i.e. bracket_low.value <
- // f(all other steps satisfying Armijo).
- // - Note that this does _not_ (necessarily) mean that initially
- // bracket_low.value < bracket_high.value (although this is typical)
- // e.g. when bracket_low = initial_position, and bracket_high is the
- // first sample, and which does not satisfy the Armijo condition,
- // but still has bracket_high.value < initial_position.value.
- // 3. bracket_high is chosen after bracket_low, s.t.
- // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
- if (!this->ZoomPhase(initial_position,
- bracket_low,
- bracket_high,
- &solution,
- summary) && !solution.value_is_valid) {
- // Failed to find a valid point (given the specified decrease parameters)
- // within the specified bracket.
- return;
- }
- // Ensure that if we ran out of iterations whilst zooming the bracket, or
- // shrank the bracket width to < tolerance and failed to find a point which
- // satisfies the strong Wolfe curvature condition, that we return the point
- // amongst those found thus far, which minimizes f() and satisfies the Armijo
- // condition.
- solution =
- solution.value_is_valid && solution.value <= bracket_low.value
- ? solution : bracket_low;
-
- summary->optimal_step_size = solution.x;
- summary->success = true;
-}
-
-// Returns true if either:
-//
-// A termination condition satisfying the (strong) Wolfe bracketing conditions
-// is found:
-//
-// - A valid point, defined as a bracket of zero width [zoom not required].
-// - A valid bracket (of width > tolerance), [zoom required].
-//
-// Or, searching was stopped due to an 'artificial' constraint, i.e. not
-// a condition imposed / required by the underlying algorithm, but instead an
-// engineering / implementation consideration. But a step which exceeds the
-// minimum step size, and satsifies the Armijo condition was still found,
-// and should thus be used [zoom not required].
-//
-// Returns false if no step size > minimum step size was found which
-// satisfies at least the Armijo condition.
-bool WolfeLineSearch::BracketingPhase(
- const FunctionSample& initial_position,
- const double step_size_estimate,
- FunctionSample* bracket_low,
- FunctionSample* bracket_high,
- bool* do_zoom_search,
- Summary* summary) {
- Function* function = options().function;
-
- FunctionSample previous = initial_position;
- FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
- current.value_is_valid = false;
-
- const double descent_direction_max_norm =
- static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
-
- *do_zoom_search = false;
- *bracket_low = initial_position;
-
- // As we require the gradient to evaluate the Wolfe condition, we always
- // calculate it together with the value, irrespective of the interpolation
- // type. As opposed to only calculating the gradient after the Armijo
- // condition is satisifed, as the computational saving from this approach
- // would be slight (perhaps even negative due to the extra call). Also,
- // always calculating the value & gradient together protects against us
- // reporting invalid solutions if the cost function returns slightly different
- // function values when evaluated with / without gradients (due to numerical
- // issues).
- ++summary->num_function_evaluations;
- ++summary->num_gradient_evaluations;
- current.value_is_valid =
- function->Evaluate(current.x,
- &current.value,
- &current.gradient);
- current.gradient_is_valid = current.value_is_valid;
-
- while (true) {
- ++summary->num_iterations;
-
- if (current.value_is_valid &&
- (current.value > (initial_position.value
- + options().sufficient_decrease
- * initial_position.gradient
- * current.x) ||
- (previous.value_is_valid && current.value > previous.value))) {
- // Bracket found: current step size violates Armijo sufficient decrease
- // condition, or has stepped past an inflection point of f() relative to
- // previous step size.
- *do_zoom_search = true;
- *bracket_low = previous;
- *bracket_high = current;
- VLOG(3) << std::scientific
- << std::setprecision(kErrorMessageNumericPrecision)
- << "Bracket found: current step (" << current.x
- << ") violates Armijo sufficient condition, or has passed an "
- << "inflection point of f() based on value.";
- break;
- }
-
- if (current.value_is_valid &&
- fabs(current.gradient) <=
- -options().sufficient_curvature_decrease * initial_position.gradient) {
- // Current step size satisfies the strong Wolfe conditions, and is thus a
- // valid termination point, therefore a Zoom not required.
- *bracket_low = current;
- *bracket_high = current;
- VLOG(3) << std::scientific
- << std::setprecision(kErrorMessageNumericPrecision)
- << "Bracketing phase found step size: " << current.x
- << ", satisfying strong Wolfe conditions, initial_position: "
- << initial_position << ", current: " << current;
- break;
-
- } else if (current.value_is_valid && current.gradient >= 0) {
- // Bracket found: current step size has stepped past an inflection point
- // of f(), but Armijo sufficient decrease is still satisfied and
- // f(current) is our best minimum thus far. Remember step size
- // monotonically increases, thus previous_step_size < current_step_size
- // even though f(previous) > f(current).
- *do_zoom_search = true;
- // Note inverse ordering from first bracket case.
- *bracket_low = current;
- *bracket_high = previous;
- VLOG(3) << "Bracket found: current step (" << current.x
- << ") satisfies Armijo, but has gradient >= 0, thus have passed "
- << "an inflection point of f().";
- break;
-
- } else if (current.value_is_valid &&
- fabs(current.x - previous.x) * descent_direction_max_norm
- < options().min_step_size) {
- // We have shrunk the search bracket to a width less than our tolerance,
- // and still not found either a point satisfying the strong Wolfe
- // conditions, or a valid bracket containing such a point. Stop searching
- // and set bracket_low to the size size amongst all those tested which
- // minimizes f() and satisfies the Armijo condition.
- LOG_IF(WARNING, !options().is_silent)
- << "Line search failed: Wolfe bracketing phase shrank "
- << "bracket width: " << fabs(current.x - previous.x)
- << ", to < tolerance: " << options().min_step_size
- << ", with descent_direction_max_norm: "
- << descent_direction_max_norm << ", and failed to find "
- << "a point satisfying the strong Wolfe conditions or a "
- << "bracketing containing such a point. Accepting "
- << "point found satisfying Armijo condition only, to "
- << "allow continuation.";
- *bracket_low = current;
- break;
-
- } else if (summary->num_iterations >= options().max_num_iterations) {
- // Check num iterations bound here so that we always evaluate the
- // max_num_iterations-th iteration against all conditions, and
- // then perform no additional (unused) evaluations.
- summary->error =
- StringPrintf("Line search failed: Wolfe bracketing phase failed to "
- "find a point satisfying strong Wolfe conditions, or a "
- "bracket containing such a point within specified "
- "max_num_iterations: %d", options().max_num_iterations);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- // Ensure that bracket_low is always set to the step size amongst all
- // those tested which minimizes f() and satisfies the Armijo condition
- // when we terminate due to the 'artificial' max_num_iterations condition.
- *bracket_low =
- current.value_is_valid && current.value < bracket_low->value
- ? current : *bracket_low;
- break;
- }
- // Either: f(current) is invalid; or, f(current) is valid, but does not
- // satisfy the strong Wolfe conditions itself, or the conditions for
- // being a boundary of a bracket.
-
- // If f(current) is valid, (but meets no criteria) expand the search by
- // increasing the step size.
- const double max_step_size =
- current.value_is_valid
- ? (current.x * options().max_step_expansion) : current.x;
-
- // We are performing 2-point interpolation only here, but the API of
- // InterpolatingPolynomialMinimizingStepSize() allows for up to
- // 3-point interpolation, so pad call with a sample with an invalid
- // value that will therefore be ignored.
- const FunctionSample unused_previous;
- DCHECK(!unused_previous.value_is_valid);
- // Contracts step size if f(current) is not valid.
- const double step_size =
- this->InterpolatingPolynomialMinimizingStepSize(
- options().interpolation_type,
- previous,
- unused_previous,
- current,
- previous.x,
- max_step_size);
- if (step_size * descent_direction_max_norm < options().min_step_size) {
- summary->error =
- StringPrintf("Line search failed: step_size too small: %.5e "
- "with descent_direction_max_norm: %.5e", step_size,
- descent_direction_max_norm);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- return false;
- }
-
- previous = current.value_is_valid ? current : previous;
- current.x = step_size;
-
- ++summary->num_function_evaluations;
- ++summary->num_gradient_evaluations;
- current.value_is_valid =
- function->Evaluate(current.x,
- &current.value,
- &current.gradient);
- current.gradient_is_valid = current.value_is_valid;
- }
-
- // Ensure that even if a valid bracket was found, we will only mark a zoom
- // as required if the bracket's width is greater than our minimum tolerance.
- if (*do_zoom_search &&
- fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm
- < options().min_step_size) {
- *do_zoom_search = false;
- }
-
- return true;
-}
-
-// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
-// on return false, if we stopped searching due to the 'artificial' condition of
-// reaching max_num_iterations, solution is the step size amongst all those
-// tested, which satisfied the Armijo decrease condition and minimized f().
-bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
- FunctionSample bracket_low,
- FunctionSample bracket_high,
- FunctionSample* solution,
- Summary* summary) {
- Function* function = options().function;
-
- CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
- << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
- << "the developers!, initial_position: " << initial_position
- << ", bracket_low: " << bracket_low
- << ", bracket_high: "<< bracket_high;
- // We do not require bracket_high.gradient_is_valid as the gradient condition
- // for a valid bracket is only dependent upon bracket_low.gradient, and
- // in order to minimize jacobian evaluations, bracket_high.gradient may
- // not have been calculated (if bracket_high.value does not satisfy the
- // Armijo sufficient decrease condition and interpolation method does not
- // require it).
- //
- // We also do not require that: bracket_low.value < bracket_high.value,
- // although this is typical. This is to deal with the case when
- // bracket_low = initial_position, bracket_high is the first sample,
- // and bracket_high does not satisfy the Armijo condition, but still has
- // bracket_high.value < initial_position.value.
- CHECK(bracket_high.value_is_valid)
- << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
- << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
- << "contact the developers!, initial_position: " << initial_position
- << ", bracket_low: " << bracket_low
- << ", bracket_high: "<< bracket_high;
-
- if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
- // The third condition for a valid initial bracket:
- //
- // 3. bracket_high is chosen after bracket_low, s.t.
- // bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
- //
- // is not satisfied. As this can happen when the users' cost function
- // returns inconsistent gradient values relative to the function values,
- // we do not CHECK_LT(), but we do stop processing and return an invalid
- // value.
- summary->error =
- StringPrintf("Line search failed: Wolfe zoom phase passed a bracket "
- "which does not satisfy: bracket_low.gradient * "
- "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
- "with initial_position: %s, bracket_low: %s, bracket_high:"
- " %s, the most likely cause of which is the cost function "
- "returning inconsistent gradient & function values.",
- bracket_low.gradient * (bracket_high.x - bracket_low.x),
- initial_position.ToDebugString().c_str(),
- bracket_low.ToDebugString().c_str(),
- bracket_high.ToDebugString().c_str());
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- solution->value_is_valid = false;
- return false;
- }
-
- const int num_bracketing_iterations = summary->num_iterations;
- const double descent_direction_max_norm =
- static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
-
- while (true) {
- // Set solution to bracket_low, as it is our best step size (smallest f())
- // found thus far and satisfies the Armijo condition, even though it does
- // not satisfy the Wolfe condition.
- *solution = bracket_low;
- if (summary->num_iterations >= options().max_num_iterations) {
- summary->error =
- StringPrintf("Line search failed: Wolfe zoom phase failed to "
- "find a point satisfying strong Wolfe conditions "
- "within specified max_num_iterations: %d, "
- "(num iterations taken for bracketing: %d).",
- options().max_num_iterations, num_bracketing_iterations);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- return false;
- }
- if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
- < options().min_step_size) {
- // Bracket width has been reduced below tolerance, and no point satisfying
- // the strong Wolfe conditions has been found.
- summary->error =
- StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
- "too small with descent_direction_max_norm: %.5e.",
- fabs(bracket_high.x - bracket_low.x),
- descent_direction_max_norm);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- return false;
- }
-
- ++summary->num_iterations;
- // Polynomial interpolation requires inputs ordered according to step size,
- // not f(step size).
- const FunctionSample& lower_bound_step =
- bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
- const FunctionSample& upper_bound_step =
- bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
- // We are performing 2-point interpolation only here, but the API of
- // InterpolatingPolynomialMinimizingStepSize() allows for up to
- // 3-point interpolation, so pad call with a sample with an invalid
- // value that will therefore be ignored.
- const FunctionSample unused_previous;
- DCHECK(!unused_previous.value_is_valid);
- solution->x =
- this->InterpolatingPolynomialMinimizingStepSize(
- options().interpolation_type,
- lower_bound_step,
- unused_previous,
- upper_bound_step,
- lower_bound_step.x,
- upper_bound_step.x);
- // No check on magnitude of step size being too small here as it is
- // lower-bounded by the initial bracket start point, which was valid.
- //
- // As we require the gradient to evaluate the Wolfe condition, we always
- // calculate it together with the value, irrespective of the interpolation
- // type. As opposed to only calculating the gradient after the Armijo
- // condition is satisifed, as the computational saving from this approach
- // would be slight (perhaps even negative due to the extra call). Also,
- // always calculating the value & gradient together protects against us
- // reporting invalid solutions if the cost function returns slightly
- // different function values when evaluated with / without gradients (due
- // to numerical issues).
- ++summary->num_function_evaluations;
- ++summary->num_gradient_evaluations;
- solution->value_is_valid =
- function->Evaluate(solution->x,
- &solution->value,
- &solution->gradient);
- solution->gradient_is_valid = solution->value_is_valid;
- if (!solution->value_is_valid) {
- summary->error =
- StringPrintf("Line search failed: Wolfe Zoom phase found "
- "step_size: %.5e, for which function is invalid, "
- "between low_step: %.5e and high_step: %.5e "
- "at which function is valid.",
- solution->x, bracket_low.x, bracket_high.x);
- LOG_IF(WARNING, !options().is_silent) << summary->error;
- return false;
- }
-
- VLOG(3) << "Zoom iteration: "
- << summary->num_iterations - num_bracketing_iterations
- << ", bracket_low: " << bracket_low
- << ", bracket_high: " << bracket_high
- << ", minimizing solution: " << *solution;
-
- if ((solution->value > (initial_position.value
- + options().sufficient_decrease
- * initial_position.gradient
- * solution->x)) ||
- (solution->value >= bracket_low.value)) {
- // Armijo sufficient decrease not satisfied, or not better
- // than current lowest sample, use as new upper bound.
- bracket_high = *solution;
- continue;
- }
-
- // Armijo sufficient decrease satisfied, check strong Wolfe condition.
- if (fabs(solution->gradient) <=
- -options().sufficient_curvature_decrease * initial_position.gradient) {
- // Found a valid termination point satisfying strong Wolfe conditions.
- VLOG(3) << std::scientific
- << std::setprecision(kErrorMessageNumericPrecision)
- << "Zoom phase found step size: " << solution->x
- << ", satisfying strong Wolfe conditions.";
- break;
-
- } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
- bracket_high = bracket_low;
- }
-
- bracket_low = *solution;
- }
- // Solution contains a valid point which satisfies the strong Wolfe
- // conditions.
- return true;
-}
-
-} // namespace internal
-} // namespace ceres