Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/internal/ceres/polynomial.cc')
-rw-r--r--extern/libmv/third_party/ceres/internal/ceres/polynomial.cc394
1 files changed, 0 insertions, 394 deletions
diff --git a/extern/libmv/third_party/ceres/internal/ceres/polynomial.cc b/extern/libmv/third_party/ceres/internal/ceres/polynomial.cc
deleted file mode 100644
index 75f43de409a..00000000000
--- a/extern/libmv/third_party/ceres/internal/ceres/polynomial.cc
+++ /dev/null
@@ -1,394 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2012 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: moll.markus@arcor.de (Markus Moll)
-// sameeragarwal@google.com (Sameer Agarwal)
-
-#include "ceres/polynomial.h"
-
-#include <cmath>
-#include <cstddef>
-#include <vector>
-
-#include "Eigen/Dense"
-#include "ceres/internal/port.h"
-#include "ceres/stringprintf.h"
-#include "glog/logging.h"
-
-namespace ceres {
-namespace internal {
-namespace {
-
-// Balancing function as described by B. N. Parlett and C. Reinsch,
-// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
-// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
-// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
-void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
- CHECK_NOTNULL(companion_matrix_ptr);
- Matrix& companion_matrix = *companion_matrix_ptr;
- Matrix companion_matrix_offdiagonal = companion_matrix;
- companion_matrix_offdiagonal.diagonal().setZero();
-
- const int degree = companion_matrix.rows();
-
- // gamma <= 1 controls how much a change in the scaling has to
- // lower the 1-norm of the companion matrix to be accepted.
- //
- // gamma = 1 seems to lead to cycles (numerical issues?), so
- // we set it slightly lower.
- const double gamma = 0.9;
-
- // Greedily scale row/column pairs until there is no change.
- bool scaling_has_changed;
- do {
- scaling_has_changed = false;
-
- for (int i = 0; i < degree; ++i) {
- const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
- const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
-
- // Decompose row_norm/col_norm into mantissa * 2^exponent,
- // where 0.5 <= mantissa < 1. Discard mantissa (return value
- // of frexp), as only the exponent is needed.
- int exponent = 0;
- std::frexp(row_norm / col_norm, &exponent);
- exponent /= 2;
-
- if (exponent != 0) {
- const double scaled_col_norm = std::ldexp(col_norm, exponent);
- const double scaled_row_norm = std::ldexp(row_norm, -exponent);
- if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
- // Accept the new scaling. (Multiplication by powers of 2 should not
- // introduce rounding errors (ignoring non-normalized numbers and
- // over- or underflow))
- scaling_has_changed = true;
- companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
- companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
- }
- }
- }
- } while (scaling_has_changed);
-
- companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
- companion_matrix = companion_matrix_offdiagonal;
- VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
-}
-
-void BuildCompanionMatrix(const Vector& polynomial,
- Matrix* companion_matrix_ptr) {
- CHECK_NOTNULL(companion_matrix_ptr);
- Matrix& companion_matrix = *companion_matrix_ptr;
-
- const int degree = polynomial.size() - 1;
-
- companion_matrix.resize(degree, degree);
- companion_matrix.setZero();
- companion_matrix.diagonal(-1).setOnes();
- companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
-}
-
-// Remove leading terms with zero coefficients.
-Vector RemoveLeadingZeros(const Vector& polynomial_in) {
- int i = 0;
- while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
- ++i;
- }
- return polynomial_in.tail(polynomial_in.size() - i);
-}
-
-void FindLinearPolynomialRoots(const Vector& polynomial,
- Vector* real,
- Vector* imaginary) {
- CHECK_EQ(polynomial.size(), 2);
- if (real != NULL) {
- real->resize(1);
- (*real)(0) = -polynomial(1) / polynomial(0);
- }
-
- if (imaginary != NULL) {
- imaginary->setZero(1);
- }
-}
-
-void FindQuadraticPolynomialRoots(const Vector& polynomial,
- Vector* real,
- Vector* imaginary) {
- CHECK_EQ(polynomial.size(), 3);
- const double a = polynomial(0);
- const double b = polynomial(1);
- const double c = polynomial(2);
- const double D = b * b - 4 * a * c;
- const double sqrt_D = sqrt(fabs(D));
- if (real != NULL) {
- real->setZero(2);
- }
- if (imaginary != NULL) {
- imaginary->setZero(2);
- }
-
- // Real roots.
- if (D >= 0) {
- if (real != NULL) {
- // Stable quadratic roots according to BKP Horn.
- // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
- if (b >= 0) {
- (*real)(0) = (-b - sqrt_D) / (2.0 * a);
- (*real)(1) = (2.0 * c) / (-b - sqrt_D);
- } else {
- (*real)(0) = (2.0 * c) / (-b + sqrt_D);
- (*real)(1) = (-b + sqrt_D) / (2.0 * a);
- }
- }
- return;
- }
-
- // Use the normal quadratic formula for the complex case.
- if (real != NULL) {
- (*real)(0) = -b / (2.0 * a);
- (*real)(1) = -b / (2.0 * a);
- }
- if (imaginary != NULL) {
- (*imaginary)(0) = sqrt_D / (2.0 * a);
- (*imaginary)(1) = -sqrt_D / (2.0 * a);
- }
-}
-} // namespace
-
-bool FindPolynomialRoots(const Vector& polynomial_in,
- Vector* real,
- Vector* imaginary) {
- if (polynomial_in.size() == 0) {
- LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
- return false;
- }
-
- Vector polynomial = RemoveLeadingZeros(polynomial_in);
- const int degree = polynomial.size() - 1;
-
- VLOG(3) << "Input polynomial: " << polynomial_in.transpose();
- if (polynomial.size() != polynomial_in.size()) {
- VLOG(3) << "Trimmed polynomial: " << polynomial.transpose();
- }
-
- // Is the polynomial constant?
- if (degree == 0) {
- LOG(WARNING) << "Trying to extract roots from a constant "
- << "polynomial in FindPolynomialRoots";
- // We return true with no roots, not false, as if the polynomial is constant
- // it is correct that there are no roots. It is not the case that they were
- // there, but that we have failed to extract them.
- return true;
- }
-
- // Linear
- if (degree == 1) {
- FindLinearPolynomialRoots(polynomial, real, imaginary);
- return true;
- }
-
- // Quadratic
- if (degree == 2) {
- FindQuadraticPolynomialRoots(polynomial, real, imaginary);
- return true;
- }
-
- // The degree is now known to be at least 3. For cubic or higher
- // roots we use the method of companion matrices.
-
- // Divide by leading term
- const double leading_term = polynomial(0);
- polynomial /= leading_term;
-
- // Build and balance the companion matrix to the polynomial.
- Matrix companion_matrix(degree, degree);
- BuildCompanionMatrix(polynomial, &companion_matrix);
- BalanceCompanionMatrix(&companion_matrix);
-
- // Find its (complex) eigenvalues.
- Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
- if (solver.info() != Eigen::Success) {
- LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
- return false;
- }
-
- // Output roots
- if (real != NULL) {
- *real = solver.eigenvalues().real();
- } else {
- LOG(WARNING) << "NULL pointer passed as real argument to "
- << "FindPolynomialRoots. Real parts of the roots will not "
- << "be returned.";
- }
- if (imaginary != NULL) {
- *imaginary = solver.eigenvalues().imag();
- }
- return true;
-}
-
-Vector DifferentiatePolynomial(const Vector& polynomial) {
- const int degree = polynomial.rows() - 1;
- CHECK_GE(degree, 0);
-
- // Degree zero polynomials are constants, and their derivative does
- // not result in a smaller degree polynomial, just a degree zero
- // polynomial with value zero.
- if (degree == 0) {
- return Eigen::VectorXd::Zero(1);
- }
-
- Vector derivative(degree);
- for (int i = 0; i < degree; ++i) {
- derivative(i) = (degree - i) * polynomial(i);
- }
-
- return derivative;
-}
-
-void MinimizePolynomial(const Vector& polynomial,
- const double x_min,
- const double x_max,
- double* optimal_x,
- double* optimal_value) {
- // Find the minimum of the polynomial at the two ends.
- //
- // We start by inspecting the middle of the interval. Technically
- // this is not needed, but we do this to make this code as close to
- // the minFunc package as possible.
- *optimal_x = (x_min + x_max) / 2.0;
- *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
-
- const double x_min_value = EvaluatePolynomial(polynomial, x_min);
- if (x_min_value < *optimal_value) {
- *optimal_value = x_min_value;
- *optimal_x = x_min;
- }
-
- const double x_max_value = EvaluatePolynomial(polynomial, x_max);
- if (x_max_value < *optimal_value) {
- *optimal_value = x_max_value;
- *optimal_x = x_max;
- }
-
- // If the polynomial is linear or constant, we are done.
- if (polynomial.rows() <= 2) {
- return;
- }
-
- const Vector derivative = DifferentiatePolynomial(polynomial);
- Vector roots_real;
- if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
- LOG(WARNING) << "Unable to find the critical points of "
- << "the interpolating polynomial.";
- return;
- }
-
- // This is a bit of an overkill, as some of the roots may actually
- // have a complex part, but its simpler to just check these values.
- for (int i = 0; i < roots_real.rows(); ++i) {
- const double root = roots_real(i);
- if ((root < x_min) || (root > x_max)) {
- continue;
- }
-
- const double value = EvaluatePolynomial(polynomial, root);
- if (value < *optimal_value) {
- *optimal_value = value;
- *optimal_x = root;
- }
- }
-}
-
-string FunctionSample::ToDebugString() const {
- return StringPrintf("[x: %.8e, value: %.8e, gradient: %.8e, "
- "value_is_valid: %d, gradient_is_valid: %d]",
- x, value, gradient, value_is_valid, gradient_is_valid);
-}
-
-Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
- const int num_samples = samples.size();
- int num_constraints = 0;
- for (int i = 0; i < num_samples; ++i) {
- if (samples[i].value_is_valid) {
- ++num_constraints;
- }
- if (samples[i].gradient_is_valid) {
- ++num_constraints;
- }
- }
-
- const int degree = num_constraints - 1;
-
- Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
- Vector rhs = Vector::Zero(num_constraints);
-
- int row = 0;
- for (int i = 0; i < num_samples; ++i) {
- const FunctionSample& sample = samples[i];
- if (sample.value_is_valid) {
- for (int j = 0; j <= degree; ++j) {
- lhs(row, j) = pow(sample.x, degree - j);
- }
- rhs(row) = sample.value;
- ++row;
- }
-
- if (sample.gradient_is_valid) {
- for (int j = 0; j < degree; ++j) {
- lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
- }
- rhs(row) = sample.gradient;
- ++row;
- }
- }
-
- return lhs.fullPivLu().solve(rhs);
-}
-
-void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
- double x_min,
- double x_max,
- double* optimal_x,
- double* optimal_value) {
- const Vector polynomial = FindInterpolatingPolynomial(samples);
- MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
- for (int i = 0; i < samples.size(); ++i) {
- const FunctionSample& sample = samples[i];
- if ((sample.x < x_min) || (sample.x > x_max)) {
- continue;
- }
-
- const double value = EvaluatePolynomial(polynomial, sample.x);
- if (value < *optimal_value) {
- *optimal_x = sample.x;
- *optimal_value = value;
- }
- }
-}
-
-} // namespace internal
-} // namespace ceres