Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/libmv/third_party/ceres/internal/ceres/schur_complement_solver.cc')
-rw-r--r--extern/libmv/third_party/ceres/internal/ceres/schur_complement_solver.cc664
1 files changed, 0 insertions, 664 deletions
diff --git a/extern/libmv/third_party/ceres/internal/ceres/schur_complement_solver.cc b/extern/libmv/third_party/ceres/internal/ceres/schur_complement_solver.cc
deleted file mode 100644
index 33f812b8c96..00000000000
--- a/extern/libmv/third_party/ceres/internal/ceres/schur_complement_solver.cc
+++ /dev/null
@@ -1,664 +0,0 @@
-// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2014 Google Inc. All rights reserved.
-// http://code.google.com/p/ceres-solver/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of Google Inc. nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-// POSSIBILITY OF SUCH DAMAGE.
-//
-// Author: sameeragarwal@google.com (Sameer Agarwal)
-
-#include "ceres/internal/port.h"
-
-#include <algorithm>
-#include <ctime>
-#include <set>
-#include <vector>
-
-#include "ceres/block_random_access_dense_matrix.h"
-#include "ceres/block_random_access_matrix.h"
-#include "ceres/block_random_access_sparse_matrix.h"
-#include "ceres/block_sparse_matrix.h"
-#include "ceres/block_structure.h"
-#include "ceres/conjugate_gradients_solver.h"
-#include "ceres/cxsparse.h"
-#include "ceres/detect_structure.h"
-#include "ceres/internal/eigen.h"
-#include "ceres/internal/scoped_ptr.h"
-#include "ceres/lapack.h"
-#include "ceres/linear_solver.h"
-#include "ceres/schur_complement_solver.h"
-#include "ceres/suitesparse.h"
-#include "ceres/triplet_sparse_matrix.h"
-#include "ceres/types.h"
-#include "ceres/wall_time.h"
-#include "Eigen/Dense"
-#include "Eigen/SparseCore"
-
-namespace ceres {
-namespace internal {
-namespace {
-
-class BlockRandomAccessSparseMatrixAdapter : public LinearOperator {
- public:
- explicit BlockRandomAccessSparseMatrixAdapter(
- const BlockRandomAccessSparseMatrix& m)
- : m_(m) {
- }
-
- virtual ~BlockRandomAccessSparseMatrixAdapter() {}
-
- // y = y + Ax;
- virtual void RightMultiply(const double* x, double* y) const {
- m_.SymmetricRightMultiply(x, y);
- }
-
- // y = y + A'x;
- virtual void LeftMultiply(const double* x, double* y) const {
- m_.SymmetricRightMultiply(x, y);
- }
-
- virtual int num_rows() const { return m_.num_rows(); }
- virtual int num_cols() const { return m_.num_rows(); }
-
- private:
- const BlockRandomAccessSparseMatrix& m_;
-};
-
-class BlockRandomAccessDiagonalMatrixAdapter : public LinearOperator {
- public:
- explicit BlockRandomAccessDiagonalMatrixAdapter(
- const BlockRandomAccessDiagonalMatrix& m)
- : m_(m) {
- }
-
- virtual ~BlockRandomAccessDiagonalMatrixAdapter() {}
-
- // y = y + Ax;
- virtual void RightMultiply(const double* x, double* y) const {
- m_.RightMultiply(x, y);
- }
-
- // y = y + A'x;
- virtual void LeftMultiply(const double* x, double* y) const {
- m_.RightMultiply(x, y);
- }
-
- virtual int num_rows() const { return m_.num_rows(); }
- virtual int num_cols() const { return m_.num_rows(); }
-
- private:
- const BlockRandomAccessDiagonalMatrix& m_;
-};
-
-} // namespace
-
-LinearSolver::Summary SchurComplementSolver::SolveImpl(
- BlockSparseMatrix* A,
- const double* b,
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* x) {
- EventLogger event_logger("SchurComplementSolver::Solve");
-
- if (eliminator_.get() == NULL) {
- InitStorage(A->block_structure());
- DetectStructure(*A->block_structure(),
- options_.elimination_groups[0],
- &options_.row_block_size,
- &options_.e_block_size,
- &options_.f_block_size);
- eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
- eliminator_->Init(options_.elimination_groups[0], A->block_structure());
- };
- fill(x, x + A->num_cols(), 0.0);
- event_logger.AddEvent("Setup");
-
- eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
- event_logger.AddEvent("Eliminate");
-
- double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
- const LinearSolver::Summary summary =
- SolveReducedLinearSystem(per_solve_options, reduced_solution);
- event_logger.AddEvent("ReducedSolve");
-
- if (summary.termination_type == LINEAR_SOLVER_SUCCESS) {
- eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
- event_logger.AddEvent("BackSubstitute");
- }
-
- return summary;
-}
-
-// Initialize a BlockRandomAccessDenseMatrix to store the Schur
-// complement.
-void DenseSchurComplementSolver::InitStorage(
- const CompressedRowBlockStructure* bs) {
- const int num_eliminate_blocks = options().elimination_groups[0];
- const int num_col_blocks = bs->cols.size();
-
- vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
- for (int i = num_eliminate_blocks, j = 0;
- i < num_col_blocks;
- ++i, ++j) {
- blocks[j] = bs->cols[i].size;
- }
-
- set_lhs(new BlockRandomAccessDenseMatrix(blocks));
- set_rhs(new double[lhs()->num_rows()]);
-}
-
-// Solve the system Sx = r, assuming that the matrix S is stored in a
-// BlockRandomAccessDenseMatrix. The linear system is solved using
-// Eigen's Cholesky factorization.
-LinearSolver::Summary
-DenseSchurComplementSolver::SolveReducedLinearSystem(
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* solution) {
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_SUCCESS;
- summary.message = "Success.";
-
- const BlockRandomAccessDenseMatrix* m =
- down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
- const int num_rows = m->num_rows();
-
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- return summary;
- }
-
- summary.num_iterations = 1;
-
- if (options().dense_linear_algebra_library_type == EIGEN) {
- Eigen::LLT<Matrix, Eigen::Upper> llt =
- ConstMatrixRef(m->values(), num_rows, num_rows)
- .selfadjointView<Eigen::Upper>()
- .llt();
- if (llt.info() != Eigen::Success) {
- summary.termination_type = LINEAR_SOLVER_FAILURE;
- summary.message =
- "Eigen failure. Unable to perform dense Cholesky factorization.";
- return summary;
- }
-
- VectorRef(solution, num_rows) = llt.solve(ConstVectorRef(rhs(), num_rows));
- } else {
- VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
- summary.termination_type =
- LAPACK::SolveInPlaceUsingCholesky(num_rows,
- m->values(),
- solution,
- &summary.message);
- }
-
- return summary;
-}
-
-SparseSchurComplementSolver::SparseSchurComplementSolver(
- const LinearSolver::Options& options)
- : SchurComplementSolver(options),
- factor_(NULL),
- cxsparse_factor_(NULL) {
-}
-
-SparseSchurComplementSolver::~SparseSchurComplementSolver() {
- if (factor_ != NULL) {
- ss_.Free(factor_);
- factor_ = NULL;
- }
-
- if (cxsparse_factor_ != NULL) {
- cxsparse_.Free(cxsparse_factor_);
- cxsparse_factor_ = NULL;
- }
-}
-
-// Determine the non-zero blocks in the Schur Complement matrix, and
-// initialize a BlockRandomAccessSparseMatrix object.
-void SparseSchurComplementSolver::InitStorage(
- const CompressedRowBlockStructure* bs) {
- const int num_eliminate_blocks = options().elimination_groups[0];
- const int num_col_blocks = bs->cols.size();
- const int num_row_blocks = bs->rows.size();
-
- blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
- for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
- blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
- }
-
- set<pair<int, int> > block_pairs;
- for (int i = 0; i < blocks_.size(); ++i) {
- block_pairs.insert(make_pair(i, i));
- }
-
- int r = 0;
- while (r < num_row_blocks) {
- int e_block_id = bs->rows[r].cells.front().block_id;
- if (e_block_id >= num_eliminate_blocks) {
- break;
- }
- vector<int> f_blocks;
-
- // Add to the chunk until the first block in the row is
- // different than the one in the first row for the chunk.
- for (; r < num_row_blocks; ++r) {
- const CompressedRow& row = bs->rows[r];
- if (row.cells.front().block_id != e_block_id) {
- break;
- }
-
- // Iterate over the blocks in the row, ignoring the first
- // block since it is the one to be eliminated.
- for (int c = 1; c < row.cells.size(); ++c) {
- const Cell& cell = row.cells[c];
- f_blocks.push_back(cell.block_id - num_eliminate_blocks);
- }
- }
-
- sort(f_blocks.begin(), f_blocks.end());
- f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
- for (int i = 0; i < f_blocks.size(); ++i) {
- for (int j = i + 1; j < f_blocks.size(); ++j) {
- block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
- }
- }
- }
-
- // Remaing rows do not contribute to the chunks and directly go
- // into the schur complement via an outer product.
- for (; r < num_row_blocks; ++r) {
- const CompressedRow& row = bs->rows[r];
- CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
- for (int i = 0; i < row.cells.size(); ++i) {
- int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
- for (int j = 0; j < row.cells.size(); ++j) {
- int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
- if (r_block1_id <= r_block2_id) {
- block_pairs.insert(make_pair(r_block1_id, r_block2_id));
- }
- }
- }
- }
-
- set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
- set_rhs(new double[lhs()->num_rows()]);
-}
-
-LinearSolver::Summary
-SparseSchurComplementSolver::SolveReducedLinearSystem(
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* solution) {
- if (options().type == ITERATIVE_SCHUR) {
- CHECK(options().use_explicit_schur_complement);
- return SolveReducedLinearSystemUsingConjugateGradients(per_solve_options,
- solution);
- }
-
- switch (options().sparse_linear_algebra_library_type) {
- case SUITE_SPARSE:
- return SolveReducedLinearSystemUsingSuiteSparse(per_solve_options,
- solution);
- case CX_SPARSE:
- return SolveReducedLinearSystemUsingCXSparse(per_solve_options,
- solution);
- case EIGEN_SPARSE:
- return SolveReducedLinearSystemUsingEigen(per_solve_options,
- solution);
- default:
- LOG(FATAL) << "Unknown sparse linear algebra library : "
- << options().sparse_linear_algebra_library_type;
- }
-
- return LinearSolver::Summary();
-}
-
-// Solve the system Sx = r, assuming that the matrix S is stored in a
-// BlockRandomAccessSparseMatrix. The linear system is solved using
-// CHOLMOD's sparse cholesky factorization routines.
-LinearSolver::Summary
-SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* solution) {
-#ifdef CERES_NO_SUITESPARSE
-
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
- summary.message = "Ceres was not built with SuiteSparse support. "
- "Therefore, SPARSE_SCHUR cannot be used with SUITE_SPARSE";
- return summary;
-
-#else
-
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_SUCCESS;
- summary.message = "Success.";
-
- TripletSparseMatrix* tsm =
- const_cast<TripletSparseMatrix*>(
- down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
- const int num_rows = tsm->num_rows();
-
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- return summary;
- }
-
- summary.num_iterations = 1;
- cholmod_sparse* cholmod_lhs = NULL;
- if (options().use_postordering) {
- // If we are going to do a full symbolic analysis of the schur
- // complement matrix from scratch and not rely on the
- // pre-ordering, then the fastest path in cholmod_factorize is the
- // one corresponding to upper triangular matrices.
-
- // Create a upper triangular symmetric matrix.
- cholmod_lhs = ss_.CreateSparseMatrix(tsm);
- cholmod_lhs->stype = 1;
-
- if (factor_ == NULL) {
- factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs,
- blocks_,
- blocks_,
- &summary.message);
- }
- } else {
- // If we are going to use the natural ordering (i.e. rely on the
- // pre-ordering computed by solver_impl.cc), then the fastest
- // path in cholmod_factorize is the one corresponding to lower
- // triangular matrices.
-
- // Create a upper triangular symmetric matrix.
- cholmod_lhs = ss_.CreateSparseMatrixTranspose(tsm);
- cholmod_lhs->stype = -1;
-
- if (factor_ == NULL) {
- factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(cholmod_lhs,
- &summary.message);
- }
- }
-
- if (factor_ == NULL) {
- ss_.Free(cholmod_lhs);
- summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
- // No need to set message as it has already been set by the
- // symbolic analysis routines above.
- return summary;
- }
-
- summary.termination_type =
- ss_.Cholesky(cholmod_lhs, factor_, &summary.message);
-
- ss_.Free(cholmod_lhs);
-
- if (summary.termination_type != LINEAR_SOLVER_SUCCESS) {
- // No need to set message as it has already been set by the
- // numeric factorization routine above.
- return summary;
- }
-
- cholmod_dense* cholmod_rhs =
- ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
- cholmod_dense* cholmod_solution = ss_.Solve(factor_,
- cholmod_rhs,
- &summary.message);
- ss_.Free(cholmod_rhs);
-
- if (cholmod_solution == NULL) {
- summary.message =
- "SuiteSparse failure. Unable to perform triangular solve.";
- summary.termination_type = LINEAR_SOLVER_FAILURE;
- return summary;
- }
-
- VectorRef(solution, num_rows)
- = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
- ss_.Free(cholmod_solution);
- return summary;
-#endif // CERES_NO_SUITESPARSE
-}
-
-// Solve the system Sx = r, assuming that the matrix S is stored in a
-// BlockRandomAccessSparseMatrix. The linear system is solved using
-// CXSparse's sparse cholesky factorization routines.
-LinearSolver::Summary
-SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* solution) {
-#ifdef CERES_NO_CXSPARSE
-
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
- summary.message = "Ceres was not built with CXSparse support. "
- "Therefore, SPARSE_SCHUR cannot be used with CX_SPARSE";
- return summary;
-
-#else
-
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_SUCCESS;
- summary.message = "Success.";
-
- // Extract the TripletSparseMatrix that is used for actually storing S.
- TripletSparseMatrix* tsm =
- const_cast<TripletSparseMatrix*>(
- down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
- const int num_rows = tsm->num_rows();
-
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- return summary;
- }
-
- cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
- VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
-
- // Compute symbolic factorization if not available.
- if (cxsparse_factor_ == NULL) {
- cxsparse_factor_ = cxsparse_.BlockAnalyzeCholesky(lhs, blocks_, blocks_);
- }
-
- if (cxsparse_factor_ == NULL) {
- summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
- summary.message =
- "CXSparse failure. Unable to find symbolic factorization.";
- } else if (!cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution)) {
- summary.termination_type = LINEAR_SOLVER_FAILURE;
- summary.message = "CXSparse::SolveCholesky failed.";
- }
-
- cxsparse_.Free(lhs);
- return summary;
-#endif // CERES_NO_CXPARSE
-}
-
-// Solve the system Sx = r, assuming that the matrix S is stored in a
-// BlockRandomAccessSparseMatrix. The linear system is solved using
-// Eigen's sparse cholesky factorization routines.
-LinearSolver::Summary
-SparseSchurComplementSolver::SolveReducedLinearSystemUsingEigen(
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* solution) {
-#ifndef CERES_USE_EIGEN_SPARSE
-
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
- summary.message =
- "SPARSE_SCHUR cannot be used with EIGEN_SPARSE. "
- "Ceres was not built with support for "
- "Eigen's SimplicialLDLT decomposition. "
- "This requires enabling building with -DEIGENSPARSE=ON.";
- return summary;
-
-#else
- EventLogger event_logger("SchurComplementSolver::EigenSolve");
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_SUCCESS;
- summary.message = "Success.";
-
- // Extract the TripletSparseMatrix that is used for actually storing S.
- TripletSparseMatrix* tsm =
- const_cast<TripletSparseMatrix*>(
- down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
- const int num_rows = tsm->num_rows();
-
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- return summary;
- }
-
- // This is an upper triangular matrix.
- CompressedRowSparseMatrix crsm(*tsm);
- // Map this to a column major, lower triangular matrix.
- Eigen::MappedSparseMatrix<double, Eigen::ColMajor> eigen_lhs(
- crsm.num_rows(),
- crsm.num_rows(),
- crsm.num_nonzeros(),
- crsm.mutable_rows(),
- crsm.mutable_cols(),
- crsm.mutable_values());
- event_logger.AddEvent("ToCompressedRowSparseMatrix");
-
- // Compute symbolic factorization if one does not exist.
- if (simplicial_ldlt_.get() == NULL) {
- simplicial_ldlt_.reset(new SimplicialLDLT);
- // This ordering is quite bad. The scalar ordering produced by the
- // AMD algorithm is quite bad and can be an order of magnitude
- // worse than the one computed using the block version of the
- // algorithm.
- simplicial_ldlt_->analyzePattern(eigen_lhs);
- event_logger.AddEvent("Analysis");
- if (simplicial_ldlt_->info() != Eigen::Success) {
- summary.termination_type = LINEAR_SOLVER_FATAL_ERROR;
- summary.message =
- "Eigen failure. Unable to find symbolic factorization.";
- return summary;
- }
- }
-
- simplicial_ldlt_->factorize(eigen_lhs);
- event_logger.AddEvent("Factorize");
- if (simplicial_ldlt_->info() != Eigen::Success) {
- summary.termination_type = LINEAR_SOLVER_FAILURE;
- summary.message = "Eigen failure. Unable to find numeric factoriztion.";
- return summary;
- }
-
- VectorRef(solution, num_rows) =
- simplicial_ldlt_->solve(ConstVectorRef(rhs(), num_rows));
- event_logger.AddEvent("Solve");
- if (simplicial_ldlt_->info() != Eigen::Success) {
- summary.termination_type = LINEAR_SOLVER_FAILURE;
- summary.message = "Eigen failure. Unable to do triangular solve.";
- }
-
- return summary;
-#endif // CERES_USE_EIGEN_SPARSE
-}
-
-LinearSolver::Summary
-SparseSchurComplementSolver::SolveReducedLinearSystemUsingConjugateGradients(
- const LinearSolver::PerSolveOptions& per_solve_options,
- double* solution) {
- const int num_rows = lhs()->num_rows();
- // The case where there are no f blocks, and the system is block
- // diagonal.
- if (num_rows == 0) {
- LinearSolver::Summary summary;
- summary.num_iterations = 0;
- summary.termination_type = LINEAR_SOLVER_SUCCESS;
- summary.message = "Success.";
- return summary;
- }
-
- // Only SCHUR_JACOBI is supported over here right now.
- CHECK_EQ(options().preconditioner_type, SCHUR_JACOBI);
-
- if (preconditioner_.get() == NULL) {
- preconditioner_.reset(new BlockRandomAccessDiagonalMatrix(blocks_));
- }
-
- BlockRandomAccessSparseMatrix* sc =
- down_cast<BlockRandomAccessSparseMatrix*>(
- const_cast<BlockRandomAccessMatrix*>(lhs()));
-
- // Extract block diagonal from the Schur complement to construct the
- // schur_jacobi preconditioner.
- for (int i = 0; i < blocks_.size(); ++i) {
- const int block_size = blocks_[i];
-
- int sc_r, sc_c, sc_row_stride, sc_col_stride;
- CellInfo* sc_cell_info =
- CHECK_NOTNULL(sc->GetCell(i, i,
- &sc_r, &sc_c,
- &sc_row_stride, &sc_col_stride));
- MatrixRef sc_m(sc_cell_info->values, sc_row_stride, sc_col_stride);
-
- int pre_r, pre_c, pre_row_stride, pre_col_stride;
- CellInfo* pre_cell_info = CHECK_NOTNULL(
- preconditioner_->GetCell(i, i,
- &pre_r, &pre_c,
- &pre_row_stride, &pre_col_stride));
- MatrixRef pre_m(pre_cell_info->values, pre_row_stride, pre_col_stride);
-
- pre_m.block(pre_r, pre_c, block_size, block_size) =
- sc_m.block(sc_r, sc_c, block_size, block_size);
- }
- preconditioner_->Invert();
-
- VectorRef(solution, num_rows).setZero();
-
- scoped_ptr<LinearOperator> lhs_adapter(
- new BlockRandomAccessSparseMatrixAdapter(*sc));
- scoped_ptr<LinearOperator> preconditioner_adapter(
- new BlockRandomAccessDiagonalMatrixAdapter(*preconditioner_));
-
-
- LinearSolver::Options cg_options;
- cg_options.min_num_iterations = options().min_num_iterations;
- cg_options.max_num_iterations = options().max_num_iterations;
- ConjugateGradientsSolver cg_solver(cg_options);
-
- LinearSolver::PerSolveOptions cg_per_solve_options;
- cg_per_solve_options.r_tolerance = per_solve_options.r_tolerance;
- cg_per_solve_options.q_tolerance = per_solve_options.q_tolerance;
- cg_per_solve_options.preconditioner = preconditioner_adapter.get();
-
- return cg_solver.Solve(lhs_adapter.get(),
- rhs(),
- cg_per_solve_options,
- solution);
-}
-
-} // namespace internal
-} // namespace ceres