Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/mantaflow/helper/util/interpolHigh.h')
-rw-r--r--extern/mantaflow/helper/util/interpolHigh.h204
1 files changed, 204 insertions, 0 deletions
diff --git a/extern/mantaflow/helper/util/interpolHigh.h b/extern/mantaflow/helper/util/interpolHigh.h
new file mode 100644
index 00000000000..c2a77442b9c
--- /dev/null
+++ b/extern/mantaflow/helper/util/interpolHigh.h
@@ -0,0 +1,204 @@
+/******************************************************************************
+ *
+ * MantaFlow fluid solver framework
+ * Copyright 2014 Tobias Pfaff, Nils Thuerey
+ *
+ * This program is free software, distributed under the terms of the
+ * Apache License, Version 2.0
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Helper functions for higher order interpolation
+ *
+ ******************************************************************************/
+
+#ifndef _INTERPOLHIGH_H
+#define _INTERPOLHIGH_H
+
+#include "vectorbase.h"
+
+namespace Manta {
+
+template<class T> inline T cubicInterp(const Real interp, const T *points)
+{
+ T d0 = (points[2] - points[0]) * 0.5;
+ T d1 = (points[3] - points[1]) * 0.5;
+ T deltak = (points[2] - points[1]);
+
+ // disabled: if (deltak * d0 < 0.0) d0 = 0;
+ // disabled: if (deltak * d1 < 0.0) d1 = 0;
+
+ T a0 = points[1];
+ T a1 = d0;
+ T a2 = 3.0 * deltak - 2.0 * d0 - d1;
+ T a3 = -2.0 * deltak + d0 + d1;
+
+ Real squared = interp * interp;
+ Real cubed = squared * interp;
+ return a3 * cubed + a2 * squared + a1 * interp + a0;
+}
+
+template<class T> inline T interpolCubic2D(const T *data, const Vec3i &size, const Vec3 &pos)
+{
+ const Real px = pos.x - 0.5f, py = pos.y - 0.5f;
+
+ const int x1 = (int)px;
+ const int x2 = x1 + 1;
+ const int x3 = x1 + 2;
+ const int x0 = x1 - 1;
+
+ const int y1 = (int)py;
+ const int y2 = y1 + 1;
+ const int y3 = y1 + 2;
+ const int y0 = y1 - 1;
+
+ if (x0 < 0 || y0 < 0 || x3 >= size[0] || y3 >= size[1]) {
+ return interpol(data, size, 0, pos);
+ }
+
+ const Real xInterp = px - x1;
+ const Real yInterp = py - y1;
+
+ const int y0x = y0 * size[0];
+ const int y1x = y1 * size[0];
+ const int y2x = y2 * size[0];
+ const int y3x = y3 * size[0];
+
+ const T p0[] = {data[x0 + y0x], data[x1 + y0x], data[x2 + y0x], data[x3 + y0x]};
+ const T p1[] = {data[x0 + y1x], data[x1 + y1x], data[x2 + y1x], data[x3 + y1x]};
+ const T p2[] = {data[x0 + y2x], data[x1 + y2x], data[x2 + y2x], data[x3 + y2x]};
+ const T p3[] = {data[x0 + y3x], data[x1 + y3x], data[x2 + y3x], data[x3 + y3x]};
+
+ const T finalPoints[] = {cubicInterp(xInterp, p0),
+ cubicInterp(xInterp, p1),
+ cubicInterp(xInterp, p2),
+ cubicInterp(xInterp, p3)};
+
+ return cubicInterp(yInterp, finalPoints);
+}
+
+template<class T>
+inline T interpolCubic(const T *data, const Vec3i &size, const int Z, const Vec3 &pos)
+{
+ if (Z == 0)
+ return interpolCubic2D(data, size, pos);
+
+ const Real px = pos.x - 0.5f, py = pos.y - 0.5f, pz = pos.z - 0.5f;
+
+ const int x1 = (int)px;
+ const int x2 = x1 + 1;
+ const int x3 = x1 + 2;
+ const int x0 = x1 - 1;
+
+ const int y1 = (int)py;
+ const int y2 = y1 + 1;
+ const int y3 = y1 + 2;
+ const int y0 = y1 - 1;
+
+ const int z1 = (int)pz;
+ const int z2 = z1 + 1;
+ const int z3 = z1 + 2;
+ const int z0 = z1 - 1;
+
+ if (x0 < 0 || y0 < 0 || z0 < 0 || x3 >= size[0] || y3 >= size[1] || z3 >= size[2]) {
+ return interpol(data, size, Z, pos);
+ }
+
+ const Real xInterp = px - x1;
+ const Real yInterp = py - y1;
+ const Real zInterp = pz - z1;
+
+ const int slabsize = size[0] * size[1];
+ const int z0Slab = z0 * slabsize;
+ const int z1Slab = z1 * slabsize;
+ const int z2Slab = z2 * slabsize;
+ const int z3Slab = z3 * slabsize;
+
+ const int y0x = y0 * size[0];
+ const int y1x = y1 * size[0];
+ const int y2x = y2 * size[0];
+ const int y3x = y3 * size[0];
+
+ const int y0z0 = y0x + z0Slab;
+ const int y1z0 = y1x + z0Slab;
+ const int y2z0 = y2x + z0Slab;
+ const int y3z0 = y3x + z0Slab;
+
+ const int y0z1 = y0x + z1Slab;
+ const int y1z1 = y1x + z1Slab;
+ const int y2z1 = y2x + z1Slab;
+ const int y3z1 = y3x + z1Slab;
+
+ const int y0z2 = y0x + z2Slab;
+ const int y1z2 = y1x + z2Slab;
+ const int y2z2 = y2x + z2Slab;
+ const int y3z2 = y3x + z2Slab;
+
+ const int y0z3 = y0x + z3Slab;
+ const int y1z3 = y1x + z3Slab;
+ const int y2z3 = y2x + z3Slab;
+ const int y3z3 = y3x + z3Slab;
+
+ // get the z0 slice
+ const T p0[] = {data[x0 + y0z0], data[x1 + y0z0], data[x2 + y0z0], data[x3 + y0z0]};
+ const T p1[] = {data[x0 + y1z0], data[x1 + y1z0], data[x2 + y1z0], data[x3 + y1z0]};
+ const T p2[] = {data[x0 + y2z0], data[x1 + y2z0], data[x2 + y2z0], data[x3 + y2z0]};
+ const T p3[] = {data[x0 + y3z0], data[x1 + y3z0], data[x2 + y3z0], data[x3 + y3z0]};
+
+ // get the z1 slice
+ const T p4[] = {data[x0 + y0z1], data[x1 + y0z1], data[x2 + y0z1], data[x3 + y0z1]};
+ const T p5[] = {data[x0 + y1z1], data[x1 + y1z1], data[x2 + y1z1], data[x3 + y1z1]};
+ const T p6[] = {data[x0 + y2z1], data[x1 + y2z1], data[x2 + y2z1], data[x3 + y2z1]};
+ const T p7[] = {data[x0 + y3z1], data[x1 + y3z1], data[x2 + y3z1], data[x3 + y3z1]};
+
+ // get the z2 slice
+ const T p8[] = {data[x0 + y0z2], data[x1 + y0z2], data[x2 + y0z2], data[x3 + y0z2]};
+ const T p9[] = {data[x0 + y1z2], data[x1 + y1z2], data[x2 + y1z2], data[x3 + y1z2]};
+ const T p10[] = {data[x0 + y2z2], data[x1 + y2z2], data[x2 + y2z2], data[x3 + y2z2]};
+ const T p11[] = {data[x0 + y3z2], data[x1 + y3z2], data[x2 + y3z2], data[x3 + y3z2]};
+
+ // get the z3 slice
+ const T p12[] = {data[x0 + y0z3], data[x1 + y0z3], data[x2 + y0z3], data[x3 + y0z3]};
+ const T p13[] = {data[x0 + y1z3], data[x1 + y1z3], data[x2 + y1z3], data[x3 + y1z3]};
+ const T p14[] = {data[x0 + y2z3], data[x1 + y2z3], data[x2 + y2z3], data[x3 + y2z3]};
+ const T p15[] = {data[x0 + y3z3], data[x1 + y3z3], data[x2 + y3z3], data[x3 + y3z3]};
+
+ // interpolate
+ const T z0Points[] = {cubicInterp(xInterp, p0),
+ cubicInterp(xInterp, p1),
+ cubicInterp(xInterp, p2),
+ cubicInterp(xInterp, p3)};
+ const T z1Points[] = {cubicInterp(xInterp, p4),
+ cubicInterp(xInterp, p5),
+ cubicInterp(xInterp, p6),
+ cubicInterp(xInterp, p7)};
+ const T z2Points[] = {cubicInterp(xInterp, p8),
+ cubicInterp(xInterp, p9),
+ cubicInterp(xInterp, p10),
+ cubicInterp(xInterp, p11)};
+ const T z3Points[] = {cubicInterp(xInterp, p12),
+ cubicInterp(xInterp, p13),
+ cubicInterp(xInterp, p14),
+ cubicInterp(xInterp, p15)};
+
+ const T finalPoints[] = {cubicInterp(yInterp, z0Points),
+ cubicInterp(yInterp, z1Points),
+ cubicInterp(yInterp, z2Points),
+ cubicInterp(yInterp, z3Points)};
+
+ return cubicInterp(zInterp, finalPoints);
+}
+
+inline Vec3 interpolCubicMAC(const Vec3 *data, const Vec3i &size, const int Z, const Vec3 &pos)
+{
+ // warning - not yet optimized...
+ Real vx = interpolCubic<Vec3>(data, size, Z, pos + Vec3(0.5, 0, 0))[0];
+ Real vy = interpolCubic<Vec3>(data, size, Z, pos + Vec3(0, 0.5, 0))[1];
+ Real vz = 0.f;
+ if (Z != 0)
+ vz = interpolCubic<Vec3>(data, size, Z, pos + Vec3(0, 0, 0.5))[2];
+ return Vec3(vx, vy, vz);
+}
+
+} // namespace Manta
+
+#endif