Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/adaptors.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/adaptors.h3638
1 files changed, 3638 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/adaptors.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/adaptors.h
new file mode 100644
index 00000000000..1a40f8ea2c6
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/adaptors.h
@@ -0,0 +1,3638 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_ADAPTORS_H
+#define LEMON_ADAPTORS_H
+
+/// \ingroup graph_adaptors
+/// \file
+/// \brief Adaptor classes for digraphs and graphs
+///
+/// This file contains several useful adaptors for digraphs and graphs.
+
+#include <lemon/core.h>
+#include <lemon/maps.h>
+#include <lemon/bits/variant.h>
+
+#include <lemon/bits/graph_adaptor_extender.h>
+#include <lemon/bits/map_extender.h>
+#include <lemon/tolerance.h>
+
+#include <algorithm>
+
+namespace lemon {
+
+#ifdef _MSC_VER
+#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
+#else
+#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
+#endif
+
+ template<typename DGR>
+ class DigraphAdaptorBase {
+ public:
+ typedef DGR Digraph;
+ typedef DigraphAdaptorBase Adaptor;
+
+ protected:
+ DGR* _digraph;
+ DigraphAdaptorBase() : _digraph(0) { }
+ void initialize(DGR& digraph) { _digraph = &digraph; }
+
+ public:
+ DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
+
+ typedef typename DGR::Node Node;
+ typedef typename DGR::Arc Arc;
+
+ void first(Node& i) const { _digraph->first(i); }
+ void first(Arc& i) const { _digraph->first(i); }
+ void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
+ void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
+
+ void next(Node& i) const { _digraph->next(i); }
+ void next(Arc& i) const { _digraph->next(i); }
+ void nextIn(Arc& i) const { _digraph->nextIn(i); }
+ void nextOut(Arc& i) const { _digraph->nextOut(i); }
+
+ Node source(const Arc& a) const { return _digraph->source(a); }
+ Node target(const Arc& a) const { return _digraph->target(a); }
+
+ typedef NodeNumTagIndicator<DGR> NodeNumTag;
+ int nodeNum() const { return _digraph->nodeNum(); }
+
+ typedef ArcNumTagIndicator<DGR> ArcNumTag;
+ int arcNum() const { return _digraph->arcNum(); }
+
+ typedef FindArcTagIndicator<DGR> FindArcTag;
+ Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
+ return _digraph->findArc(u, v, prev);
+ }
+
+ Node addNode() { return _digraph->addNode(); }
+ Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
+
+ void erase(const Node& n) { _digraph->erase(n); }
+ void erase(const Arc& a) { _digraph->erase(a); }
+
+ void clear() { _digraph->clear(); }
+
+ int id(const Node& n) const { return _digraph->id(n); }
+ int id(const Arc& a) const { return _digraph->id(a); }
+
+ Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
+ Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
+
+ int maxNodeId() const { return _digraph->maxNodeId(); }
+ int maxArcId() const { return _digraph->maxArcId(); }
+
+ typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
+ NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
+
+ typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
+ ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
+
+ template <typename V>
+ class NodeMap : public DGR::template NodeMap<V> {
+ typedef typename DGR::template NodeMap<V> Parent;
+
+ public:
+ explicit NodeMap(const Adaptor& adaptor)
+ : Parent(*adaptor._digraph) {}
+ NodeMap(const Adaptor& adaptor, const V& value)
+ : Parent(*adaptor._digraph, value) { }
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+
+ };
+
+ template <typename V>
+ class ArcMap : public DGR::template ArcMap<V> {
+ typedef typename DGR::template ArcMap<V> Parent;
+
+ public:
+ explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
+ : Parent(*adaptor._digraph) {}
+ ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
+ : Parent(*adaptor._digraph, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+
+ };
+
+ };
+
+ template<typename GR>
+ class GraphAdaptorBase {
+ public:
+ typedef GR Graph;
+
+ protected:
+ GR* _graph;
+
+ GraphAdaptorBase() : _graph(0) {}
+
+ void initialize(GR& graph) { _graph = &graph; }
+
+ public:
+ GraphAdaptorBase(GR& graph) : _graph(&graph) {}
+
+ typedef typename GR::Node Node;
+ typedef typename GR::Arc Arc;
+ typedef typename GR::Edge Edge;
+
+ void first(Node& i) const { _graph->first(i); }
+ void first(Arc& i) const { _graph->first(i); }
+ void first(Edge& i) const { _graph->first(i); }
+ void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
+ void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
+ void firstInc(Edge &i, bool &d, const Node &n) const {
+ _graph->firstInc(i, d, n);
+ }
+
+ void next(Node& i) const { _graph->next(i); }
+ void next(Arc& i) const { _graph->next(i); }
+ void next(Edge& i) const { _graph->next(i); }
+ void nextIn(Arc& i) const { _graph->nextIn(i); }
+ void nextOut(Arc& i) const { _graph->nextOut(i); }
+ void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
+
+ Node u(const Edge& e) const { return _graph->u(e); }
+ Node v(const Edge& e) const { return _graph->v(e); }
+
+ Node source(const Arc& a) const { return _graph->source(a); }
+ Node target(const Arc& a) const { return _graph->target(a); }
+
+ typedef NodeNumTagIndicator<Graph> NodeNumTag;
+ int nodeNum() const { return _graph->nodeNum(); }
+
+ typedef ArcNumTagIndicator<Graph> ArcNumTag;
+ int arcNum() const { return _graph->arcNum(); }
+
+ typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
+ int edgeNum() const { return _graph->edgeNum(); }
+
+ typedef FindArcTagIndicator<Graph> FindArcTag;
+ Arc findArc(const Node& u, const Node& v,
+ const Arc& prev = INVALID) const {
+ return _graph->findArc(u, v, prev);
+ }
+
+ typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
+ Edge findEdge(const Node& u, const Node& v,
+ const Edge& prev = INVALID) const {
+ return _graph->findEdge(u, v, prev);
+ }
+
+ Node addNode() { return _graph->addNode(); }
+ Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
+
+ void erase(const Node& i) { _graph->erase(i); }
+ void erase(const Edge& i) { _graph->erase(i); }
+
+ void clear() { _graph->clear(); }
+
+ bool direction(const Arc& a) const { return _graph->direction(a); }
+ Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
+
+ int id(const Node& v) const { return _graph->id(v); }
+ int id(const Arc& a) const { return _graph->id(a); }
+ int id(const Edge& e) const { return _graph->id(e); }
+
+ Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
+ Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
+ Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
+
+ int maxNodeId() const { return _graph->maxNodeId(); }
+ int maxArcId() const { return _graph->maxArcId(); }
+ int maxEdgeId() const { return _graph->maxEdgeId(); }
+
+ typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
+ NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
+
+ typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
+ ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
+
+ typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
+ EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
+
+ template <typename V>
+ class NodeMap : public GR::template NodeMap<V> {
+ typedef typename GR::template NodeMap<V> Parent;
+
+ public:
+ explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
+ : Parent(*adapter._graph) {}
+ NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
+ : Parent(*adapter._graph, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+
+ };
+
+ template <typename V>
+ class ArcMap : public GR::template ArcMap<V> {
+ typedef typename GR::template ArcMap<V> Parent;
+
+ public:
+ explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
+ : Parent(*adapter._graph) {}
+ ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
+ : Parent(*adapter._graph, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class EdgeMap : public GR::template EdgeMap<V> {
+ typedef typename GR::template EdgeMap<V> Parent;
+
+ public:
+ explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
+ : Parent(*adapter._graph) {}
+ EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
+ : Parent(*adapter._graph, value) {}
+
+ private:
+ EdgeMap& operator=(const EdgeMap& cmap) {
+ return operator=<EdgeMap>(cmap);
+ }
+
+ template <typename CMap>
+ EdgeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ };
+
+ template <typename DGR>
+ class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
+ typedef DigraphAdaptorBase<DGR> Parent;
+ public:
+ typedef DGR Digraph;
+ protected:
+ ReverseDigraphBase() : Parent() { }
+ public:
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+
+ void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
+ void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
+
+ void nextIn(Arc& a) const { Parent::nextOut(a); }
+ void nextOut(Arc& a) const { Parent::nextIn(a); }
+
+ Node source(const Arc& a) const { return Parent::target(a); }
+ Node target(const Arc& a) const { return Parent::source(a); }
+
+ Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
+
+ typedef FindArcTagIndicator<DGR> FindArcTag;
+ Arc findArc(const Node& u, const Node& v,
+ const Arc& prev = INVALID) const {
+ return Parent::findArc(v, u, prev);
+ }
+
+ };
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for reversing the orientation of the arcs in
+ /// a digraph.
+ ///
+ /// ReverseDigraph can be used for reversing the arcs in a digraph.
+ /// It conforms to the \ref concepts::Digraph "Digraph" concept.
+ ///
+ /// The adapted digraph can also be modified through this adaptor
+ /// by adding or removing nodes or arcs, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides item counting in the same time as the adapted
+ /// digraph structure.
+ ///
+ /// \tparam DGR The type of the adapted digraph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept.
+ /// It can also be specified to be \c const.
+ ///
+ /// \note The \c Node and \c Arc types of this adaptor and the adapted
+ /// digraph are convertible to each other.
+ template<typename DGR>
+#ifdef DOXYGEN
+ class ReverseDigraph {
+#else
+ class ReverseDigraph :
+ public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
+#endif
+ typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
+ public:
+ /// The type of the adapted digraph.
+ typedef DGR Digraph;
+ protected:
+ ReverseDigraph() { }
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates a reverse digraph adaptor for the given digraph.
+ explicit ReverseDigraph(DGR& digraph) {
+ Parent::initialize(digraph);
+ }
+ };
+
+ /// \brief Returns a read-only ReverseDigraph adaptor
+ ///
+ /// This function just returns a read-only \ref ReverseDigraph adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates ReverseDigraph
+ template<typename DGR>
+ ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
+ return ReverseDigraph<const DGR>(digraph);
+ }
+
+
+ template <typename DGR, typename NF, typename AF, bool ch = true>
+ class SubDigraphBase : public DigraphAdaptorBase<DGR> {
+ typedef DigraphAdaptorBase<DGR> Parent;
+ public:
+ typedef DGR Digraph;
+ typedef NF NodeFilterMap;
+ typedef AF ArcFilterMap;
+
+ typedef SubDigraphBase Adaptor;
+ protected:
+ NF* _node_filter;
+ AF* _arc_filter;
+ SubDigraphBase()
+ : Parent(), _node_filter(0), _arc_filter(0) { }
+
+ void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
+ Parent::initialize(digraph);
+ _node_filter = &node_filter;
+ _arc_filter = &arc_filter;
+ }
+
+ public:
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+
+ void first(Node& i) const {
+ Parent::first(i);
+ while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+
+ void first(Arc& i) const {
+ Parent::first(i);
+ while (i != INVALID && (!(*_arc_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::next(i);
+ }
+
+ void firstIn(Arc& i, const Node& n) const {
+ Parent::firstIn(i, n);
+ while (i != INVALID && (!(*_arc_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]))
+ Parent::nextIn(i);
+ }
+
+ void firstOut(Arc& i, const Node& n) const {
+ Parent::firstOut(i, n);
+ while (i != INVALID && (!(*_arc_filter)[i]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::nextOut(i);
+ }
+
+ void next(Node& i) const {
+ Parent::next(i);
+ while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+
+ void next(Arc& i) const {
+ Parent::next(i);
+ while (i != INVALID && (!(*_arc_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::next(i);
+ }
+
+ void nextIn(Arc& i) const {
+ Parent::nextIn(i);
+ while (i != INVALID && (!(*_arc_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]))
+ Parent::nextIn(i);
+ }
+
+ void nextOut(Arc& i) const {
+ Parent::nextOut(i);
+ while (i != INVALID && (!(*_arc_filter)[i]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::nextOut(i);
+ }
+
+ void status(const Node& n, bool v) const { _node_filter->set(n, v); }
+ void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
+
+ bool status(const Node& n) const { return (*_node_filter)[n]; }
+ bool status(const Arc& a) const { return (*_arc_filter)[a]; }
+
+ typedef False NodeNumTag;
+ typedef False ArcNumTag;
+
+ typedef FindArcTagIndicator<DGR> FindArcTag;
+ Arc findArc(const Node& source, const Node& target,
+ const Arc& prev = INVALID) const {
+ if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
+ return INVALID;
+ }
+ Arc arc = Parent::findArc(source, target, prev);
+ while (arc != INVALID && !(*_arc_filter)[arc]) {
+ arc = Parent::findArc(source, target, arc);
+ }
+ return arc;
+ }
+
+ public:
+
+ template <typename V>
+ class NodeMap
+ : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
+ typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
+ : Parent(adaptor) {}
+ NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class ArcMap
+ : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
+ typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
+ : Parent(adaptor) {}
+ ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ };
+
+ template <typename DGR, typename NF, typename AF>
+ class SubDigraphBase<DGR, NF, AF, false>
+ : public DigraphAdaptorBase<DGR> {
+ typedef DigraphAdaptorBase<DGR> Parent;
+ public:
+ typedef DGR Digraph;
+ typedef NF NodeFilterMap;
+ typedef AF ArcFilterMap;
+
+ typedef SubDigraphBase Adaptor;
+ protected:
+ NF* _node_filter;
+ AF* _arc_filter;
+ SubDigraphBase()
+ : Parent(), _node_filter(0), _arc_filter(0) { }
+
+ void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
+ Parent::initialize(digraph);
+ _node_filter = &node_filter;
+ _arc_filter = &arc_filter;
+ }
+
+ public:
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+
+ void first(Node& i) const {
+ Parent::first(i);
+ while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+
+ void first(Arc& i) const {
+ Parent::first(i);
+ while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
+ }
+
+ void firstIn(Arc& i, const Node& n) const {
+ Parent::firstIn(i, n);
+ while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
+ }
+
+ void firstOut(Arc& i, const Node& n) const {
+ Parent::firstOut(i, n);
+ while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
+ }
+
+ void next(Node& i) const {
+ Parent::next(i);
+ while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+ void next(Arc& i) const {
+ Parent::next(i);
+ while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
+ }
+ void nextIn(Arc& i) const {
+ Parent::nextIn(i);
+ while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
+ }
+
+ void nextOut(Arc& i) const {
+ Parent::nextOut(i);
+ while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
+ }
+
+ void status(const Node& n, bool v) const { _node_filter->set(n, v); }
+ void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
+
+ bool status(const Node& n) const { return (*_node_filter)[n]; }
+ bool status(const Arc& a) const { return (*_arc_filter)[a]; }
+
+ typedef False NodeNumTag;
+ typedef False ArcNumTag;
+
+ typedef FindArcTagIndicator<DGR> FindArcTag;
+ Arc findArc(const Node& source, const Node& target,
+ const Arc& prev = INVALID) const {
+ if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
+ return INVALID;
+ }
+ Arc arc = Parent::findArc(source, target, prev);
+ while (arc != INVALID && !(*_arc_filter)[arc]) {
+ arc = Parent::findArc(source, target, arc);
+ }
+ return arc;
+ }
+
+ template <typename V>
+ class NodeMap
+ : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
+ typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
+ : Parent(adaptor) {}
+ NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class ArcMap
+ : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
+ typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
+ LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
+ : Parent(adaptor) {}
+ ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ };
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for hiding nodes and arcs in a digraph
+ ///
+ /// SubDigraph can be used for hiding nodes and arcs in a digraph.
+ /// A \c bool node map and a \c bool arc map must be specified, which
+ /// define the filters for nodes and arcs.
+ /// Only the nodes and arcs with \c true filter value are
+ /// shown in the subdigraph. The arcs that are incident to hidden
+ /// nodes are also filtered out.
+ /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
+ ///
+ /// The adapted digraph can also be modified through this adaptor
+ /// by adding or removing nodes or arcs, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides only linear time counting for nodes and arcs.
+ ///
+ /// \tparam DGR The type of the adapted digraph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept.
+ /// It can also be specified to be \c const.
+ /// \tparam NF The type of the node filter map.
+ /// It must be a \c bool (or convertible) node map of the
+ /// adapted digraph. The default type is
+ /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
+ /// \tparam AF The type of the arc filter map.
+ /// It must be \c bool (or convertible) arc map of the
+ /// adapted digraph. The default type is
+ /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
+ ///
+ /// \note The \c Node and \c Arc types of this adaptor and the adapted
+ /// digraph are convertible to each other.
+ ///
+ /// \see FilterNodes
+ /// \see FilterArcs
+#ifdef DOXYGEN
+ template<typename DGR, typename NF, typename AF>
+ class SubDigraph {
+#else
+ template<typename DGR,
+ typename NF = typename DGR::template NodeMap<bool>,
+ typename AF = typename DGR::template ArcMap<bool> >
+ class SubDigraph :
+ public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
+#endif
+ public:
+ /// The type of the adapted digraph.
+ typedef DGR Digraph;
+ /// The type of the node filter map.
+ typedef NF NodeFilterMap;
+ /// The type of the arc filter map.
+ typedef AF ArcFilterMap;
+
+ typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
+ Parent;
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+
+ protected:
+ SubDigraph() { }
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates a subdigraph for the given digraph with the
+ /// given node and arc filter maps.
+ SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
+ Parent::initialize(digraph, node_filter, arc_filter);
+ }
+
+ /// \brief Sets the status of the given node
+ ///
+ /// This function sets the status of the given node.
+ /// It is done by simply setting the assigned value of \c n
+ /// to \c v in the node filter map.
+ void status(const Node& n, bool v) const { Parent::status(n, v); }
+
+ /// \brief Sets the status of the given arc
+ ///
+ /// This function sets the status of the given arc.
+ /// It is done by simply setting the assigned value of \c a
+ /// to \c v in the arc filter map.
+ void status(const Arc& a, bool v) const { Parent::status(a, v); }
+
+ /// \brief Returns the status of the given node
+ ///
+ /// This function returns the status of the given node.
+ /// It is \c true if the given node is enabled (i.e. not hidden).
+ bool status(const Node& n) const { return Parent::status(n); }
+
+ /// \brief Returns the status of the given arc
+ ///
+ /// This function returns the status of the given arc.
+ /// It is \c true if the given arc is enabled (i.e. not hidden).
+ bool status(const Arc& a) const { return Parent::status(a); }
+
+ /// \brief Disables the given node
+ ///
+ /// This function disables the given node in the subdigraph,
+ /// so the iteration jumps over it.
+ /// It is the same as \ref status() "status(n, false)".
+ void disable(const Node& n) const { Parent::status(n, false); }
+
+ /// \brief Disables the given arc
+ ///
+ /// This function disables the given arc in the subdigraph,
+ /// so the iteration jumps over it.
+ /// It is the same as \ref status() "status(a, false)".
+ void disable(const Arc& a) const { Parent::status(a, false); }
+
+ /// \brief Enables the given node
+ ///
+ /// This function enables the given node in the subdigraph.
+ /// It is the same as \ref status() "status(n, true)".
+ void enable(const Node& n) const { Parent::status(n, true); }
+
+ /// \brief Enables the given arc
+ ///
+ /// This function enables the given arc in the subdigraph.
+ /// It is the same as \ref status() "status(a, true)".
+ void enable(const Arc& a) const { Parent::status(a, true); }
+
+ };
+
+ /// \brief Returns a read-only SubDigraph adaptor
+ ///
+ /// This function just returns a read-only \ref SubDigraph adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates SubDigraph
+ template<typename DGR, typename NF, typename AF>
+ SubDigraph<const DGR, NF, AF>
+ subDigraph(const DGR& digraph,
+ NF& node_filter, AF& arc_filter) {
+ return SubDigraph<const DGR, NF, AF>
+ (digraph, node_filter, arc_filter);
+ }
+
+ template<typename DGR, typename NF, typename AF>
+ SubDigraph<const DGR, const NF, AF>
+ subDigraph(const DGR& digraph,
+ const NF& node_filter, AF& arc_filter) {
+ return SubDigraph<const DGR, const NF, AF>
+ (digraph, node_filter, arc_filter);
+ }
+
+ template<typename DGR, typename NF, typename AF>
+ SubDigraph<const DGR, NF, const AF>
+ subDigraph(const DGR& digraph,
+ NF& node_filter, const AF& arc_filter) {
+ return SubDigraph<const DGR, NF, const AF>
+ (digraph, node_filter, arc_filter);
+ }
+
+ template<typename DGR, typename NF, typename AF>
+ SubDigraph<const DGR, const NF, const AF>
+ subDigraph(const DGR& digraph,
+ const NF& node_filter, const AF& arc_filter) {
+ return SubDigraph<const DGR, const NF, const AF>
+ (digraph, node_filter, arc_filter);
+ }
+
+
+ template <typename GR, typename NF, typename EF, bool ch = true>
+ class SubGraphBase : public GraphAdaptorBase<GR> {
+ typedef GraphAdaptorBase<GR> Parent;
+ public:
+ typedef GR Graph;
+ typedef NF NodeFilterMap;
+ typedef EF EdgeFilterMap;
+
+ typedef SubGraphBase Adaptor;
+ protected:
+
+ NF* _node_filter;
+ EF* _edge_filter;
+
+ SubGraphBase()
+ : Parent(), _node_filter(0), _edge_filter(0) { }
+
+ void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
+ Parent::initialize(graph);
+ _node_filter = &node_filter;
+ _edge_filter = &edge_filter;
+ }
+
+ public:
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+ typedef typename Parent::Edge Edge;
+
+ void first(Node& i) const {
+ Parent::first(i);
+ while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+
+ void first(Arc& i) const {
+ Parent::first(i);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::next(i);
+ }
+
+ void first(Edge& i) const {
+ Parent::first(i);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::u(i)]
+ || !(*_node_filter)[Parent::v(i)]))
+ Parent::next(i);
+ }
+
+ void firstIn(Arc& i, const Node& n) const {
+ Parent::firstIn(i, n);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]))
+ Parent::nextIn(i);
+ }
+
+ void firstOut(Arc& i, const Node& n) const {
+ Parent::firstOut(i, n);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::nextOut(i);
+ }
+
+ void firstInc(Edge& i, bool& d, const Node& n) const {
+ Parent::firstInc(i, d, n);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::u(i)]
+ || !(*_node_filter)[Parent::v(i)]))
+ Parent::nextInc(i, d);
+ }
+
+ void next(Node& i) const {
+ Parent::next(i);
+ while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+
+ void next(Arc& i) const {
+ Parent::next(i);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::next(i);
+ }
+
+ void next(Edge& i) const {
+ Parent::next(i);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::u(i)]
+ || !(*_node_filter)[Parent::v(i)]))
+ Parent::next(i);
+ }
+
+ void nextIn(Arc& i) const {
+ Parent::nextIn(i);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::source(i)]))
+ Parent::nextIn(i);
+ }
+
+ void nextOut(Arc& i) const {
+ Parent::nextOut(i);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::target(i)]))
+ Parent::nextOut(i);
+ }
+
+ void nextInc(Edge& i, bool& d) const {
+ Parent::nextInc(i, d);
+ while (i!=INVALID && (!(*_edge_filter)[i]
+ || !(*_node_filter)[Parent::u(i)]
+ || !(*_node_filter)[Parent::v(i)]))
+ Parent::nextInc(i, d);
+ }
+
+ void status(const Node& n, bool v) const { _node_filter->set(n, v); }
+ void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
+
+ bool status(const Node& n) const { return (*_node_filter)[n]; }
+ bool status(const Edge& e) const { return (*_edge_filter)[e]; }
+
+ typedef False NodeNumTag;
+ typedef False ArcNumTag;
+ typedef False EdgeNumTag;
+
+ typedef FindArcTagIndicator<Graph> FindArcTag;
+ Arc findArc(const Node& u, const Node& v,
+ const Arc& prev = INVALID) const {
+ if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
+ return INVALID;
+ }
+ Arc arc = Parent::findArc(u, v, prev);
+ while (arc != INVALID && !(*_edge_filter)[arc]) {
+ arc = Parent::findArc(u, v, arc);
+ }
+ return arc;
+ }
+
+ typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
+ Edge findEdge(const Node& u, const Node& v,
+ const Edge& prev = INVALID) const {
+ if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
+ return INVALID;
+ }
+ Edge edge = Parent::findEdge(u, v, prev);
+ while (edge != INVALID && !(*_edge_filter)[edge]) {
+ edge = Parent::findEdge(u, v, edge);
+ }
+ return edge;
+ }
+
+ template <typename V>
+ class NodeMap
+ : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
+ typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
+ : Parent(adaptor) {}
+ NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class ArcMap
+ : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
+ typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
+ : Parent(adaptor) {}
+ ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class EdgeMap
+ : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
+ typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
+ : Parent(adaptor) {}
+
+ EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ EdgeMap& operator=(const EdgeMap& cmap) {
+ return operator=<EdgeMap>(cmap);
+ }
+
+ template <typename CMap>
+ EdgeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ };
+
+ template <typename GR, typename NF, typename EF>
+ class SubGraphBase<GR, NF, EF, false>
+ : public GraphAdaptorBase<GR> {
+ typedef GraphAdaptorBase<GR> Parent;
+ public:
+ typedef GR Graph;
+ typedef NF NodeFilterMap;
+ typedef EF EdgeFilterMap;
+
+ typedef SubGraphBase Adaptor;
+ protected:
+ NF* _node_filter;
+ EF* _edge_filter;
+ SubGraphBase()
+ : Parent(), _node_filter(0), _edge_filter(0) { }
+
+ void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
+ Parent::initialize(graph);
+ _node_filter = &node_filter;
+ _edge_filter = &edge_filter;
+ }
+
+ public:
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+ typedef typename Parent::Edge Edge;
+
+ void first(Node& i) const {
+ Parent::first(i);
+ while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+
+ void first(Arc& i) const {
+ Parent::first(i);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
+ }
+
+ void first(Edge& i) const {
+ Parent::first(i);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
+ }
+
+ void firstIn(Arc& i, const Node& n) const {
+ Parent::firstIn(i, n);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
+ }
+
+ void firstOut(Arc& i, const Node& n) const {
+ Parent::firstOut(i, n);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
+ }
+
+ void firstInc(Edge& i, bool& d, const Node& n) const {
+ Parent::firstInc(i, d, n);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
+ }
+
+ void next(Node& i) const {
+ Parent::next(i);
+ while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
+ }
+ void next(Arc& i) const {
+ Parent::next(i);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
+ }
+ void next(Edge& i) const {
+ Parent::next(i);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
+ }
+ void nextIn(Arc& i) const {
+ Parent::nextIn(i);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
+ }
+
+ void nextOut(Arc& i) const {
+ Parent::nextOut(i);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
+ }
+ void nextInc(Edge& i, bool& d) const {
+ Parent::nextInc(i, d);
+ while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
+ }
+
+ void status(const Node& n, bool v) const { _node_filter->set(n, v); }
+ void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
+
+ bool status(const Node& n) const { return (*_node_filter)[n]; }
+ bool status(const Edge& e) const { return (*_edge_filter)[e]; }
+
+ typedef False NodeNumTag;
+ typedef False ArcNumTag;
+ typedef False EdgeNumTag;
+
+ typedef FindArcTagIndicator<Graph> FindArcTag;
+ Arc findArc(const Node& u, const Node& v,
+ const Arc& prev = INVALID) const {
+ Arc arc = Parent::findArc(u, v, prev);
+ while (arc != INVALID && !(*_edge_filter)[arc]) {
+ arc = Parent::findArc(u, v, arc);
+ }
+ return arc;
+ }
+
+ typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
+ Edge findEdge(const Node& u, const Node& v,
+ const Edge& prev = INVALID) const {
+ Edge edge = Parent::findEdge(u, v, prev);
+ while (edge != INVALID && !(*_edge_filter)[edge]) {
+ edge = Parent::findEdge(u, v, edge);
+ }
+ return edge;
+ }
+
+ template <typename V>
+ class NodeMap
+ : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
+ typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
+ : Parent(adaptor) {}
+ NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class ArcMap
+ : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
+ typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
+ : Parent(adaptor) {}
+ ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class EdgeMap
+ : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
+ typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
+ LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
+
+ public:
+ typedef V Value;
+
+ EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
+ : Parent(adaptor) {}
+
+ EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ EdgeMap& operator=(const EdgeMap& cmap) {
+ return operator=<EdgeMap>(cmap);
+ }
+
+ template <typename CMap>
+ EdgeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ };
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for hiding nodes and edges in an undirected
+ /// graph.
+ ///
+ /// SubGraph can be used for hiding nodes and edges in a graph.
+ /// A \c bool node map and a \c bool edge map must be specified, which
+ /// define the filters for nodes and edges.
+ /// Only the nodes and edges with \c true filter value are
+ /// shown in the subgraph. The edges that are incident to hidden
+ /// nodes are also filtered out.
+ /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
+ ///
+ /// The adapted graph can also be modified through this adaptor
+ /// by adding or removing nodes or edges, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides only linear time counting for nodes, edges and arcs.
+ ///
+ /// \tparam GR The type of the adapted graph.
+ /// It must conform to the \ref concepts::Graph "Graph" concept.
+ /// It can also be specified to be \c const.
+ /// \tparam NF The type of the node filter map.
+ /// It must be a \c bool (or convertible) node map of the
+ /// adapted graph. The default type is
+ /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
+ /// \tparam EF The type of the edge filter map.
+ /// It must be a \c bool (or convertible) edge map of the
+ /// adapted graph. The default type is
+ /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
+ ///
+ /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
+ /// adapted graph are convertible to each other.
+ ///
+ /// \see FilterNodes
+ /// \see FilterEdges
+#ifdef DOXYGEN
+ template<typename GR, typename NF, typename EF>
+ class SubGraph {
+#else
+ template<typename GR,
+ typename NF = typename GR::template NodeMap<bool>,
+ typename EF = typename GR::template EdgeMap<bool> >
+ class SubGraph :
+ public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
+#endif
+ public:
+ /// The type of the adapted graph.
+ typedef GR Graph;
+ /// The type of the node filter map.
+ typedef NF NodeFilterMap;
+ /// The type of the edge filter map.
+ typedef EF EdgeFilterMap;
+
+ typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
+ Parent;
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Edge Edge;
+
+ protected:
+ SubGraph() { }
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates a subgraph for the given graph with the given node
+ /// and edge filter maps.
+ SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
+ this->initialize(graph, node_filter, edge_filter);
+ }
+
+ /// \brief Sets the status of the given node
+ ///
+ /// This function sets the status of the given node.
+ /// It is done by simply setting the assigned value of \c n
+ /// to \c v in the node filter map.
+ void status(const Node& n, bool v) const { Parent::status(n, v); }
+
+ /// \brief Sets the status of the given edge
+ ///
+ /// This function sets the status of the given edge.
+ /// It is done by simply setting the assigned value of \c e
+ /// to \c v in the edge filter map.
+ void status(const Edge& e, bool v) const { Parent::status(e, v); }
+
+ /// \brief Returns the status of the given node
+ ///
+ /// This function returns the status of the given node.
+ /// It is \c true if the given node is enabled (i.e. not hidden).
+ bool status(const Node& n) const { return Parent::status(n); }
+
+ /// \brief Returns the status of the given edge
+ ///
+ /// This function returns the status of the given edge.
+ /// It is \c true if the given edge is enabled (i.e. not hidden).
+ bool status(const Edge& e) const { return Parent::status(e); }
+
+ /// \brief Disables the given node
+ ///
+ /// This function disables the given node in the subdigraph,
+ /// so the iteration jumps over it.
+ /// It is the same as \ref status() "status(n, false)".
+ void disable(const Node& n) const { Parent::status(n, false); }
+
+ /// \brief Disables the given edge
+ ///
+ /// This function disables the given edge in the subgraph,
+ /// so the iteration jumps over it.
+ /// It is the same as \ref status() "status(e, false)".
+ void disable(const Edge& e) const { Parent::status(e, false); }
+
+ /// \brief Enables the given node
+ ///
+ /// This function enables the given node in the subdigraph.
+ /// It is the same as \ref status() "status(n, true)".
+ void enable(const Node& n) const { Parent::status(n, true); }
+
+ /// \brief Enables the given edge
+ ///
+ /// This function enables the given edge in the subgraph.
+ /// It is the same as \ref status() "status(e, true)".
+ void enable(const Edge& e) const { Parent::status(e, true); }
+
+ };
+
+ /// \brief Returns a read-only SubGraph adaptor
+ ///
+ /// This function just returns a read-only \ref SubGraph adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates SubGraph
+ template<typename GR, typename NF, typename EF>
+ SubGraph<const GR, NF, EF>
+ subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
+ return SubGraph<const GR, NF, EF>
+ (graph, node_filter, edge_filter);
+ }
+
+ template<typename GR, typename NF, typename EF>
+ SubGraph<const GR, const NF, EF>
+ subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
+ return SubGraph<const GR, const NF, EF>
+ (graph, node_filter, edge_filter);
+ }
+
+ template<typename GR, typename NF, typename EF>
+ SubGraph<const GR, NF, const EF>
+ subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
+ return SubGraph<const GR, NF, const EF>
+ (graph, node_filter, edge_filter);
+ }
+
+ template<typename GR, typename NF, typename EF>
+ SubGraph<const GR, const NF, const EF>
+ subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
+ return SubGraph<const GR, const NF, const EF>
+ (graph, node_filter, edge_filter);
+ }
+
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for hiding nodes in a digraph or a graph.
+ ///
+ /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
+ /// graph. A \c bool node map must be specified, which defines the filter
+ /// for the nodes. Only the nodes with \c true filter value and the
+ /// arcs/edges incident to nodes both with \c true filter value are shown
+ /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
+ /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
+ /// depending on the \c GR template parameter.
+ ///
+ /// The adapted (di)graph can also be modified through this adaptor
+ /// by adding or removing nodes or arcs/edges, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides only linear time item counting.
+ ///
+ /// \tparam GR The type of the adapted digraph or graph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept
+ /// or the \ref concepts::Graph "Graph" concept.
+ /// It can also be specified to be \c const.
+ /// \tparam NF The type of the node filter map.
+ /// It must be a \c bool (or convertible) node map of the
+ /// adapted (di)graph. The default type is
+ /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
+ ///
+ /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
+ /// adapted (di)graph are convertible to each other.
+#ifdef DOXYGEN
+ template<typename GR, typename NF>
+ class FilterNodes {
+#else
+ template<typename GR,
+ typename NF = typename GR::template NodeMap<bool>,
+ typename Enable = void>
+ class FilterNodes :
+ public DigraphAdaptorExtender<
+ SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
+ true> > {
+#endif
+ typedef DigraphAdaptorExtender<
+ SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
+ true> > Parent;
+
+ public:
+
+ typedef GR Digraph;
+ typedef NF NodeFilterMap;
+
+ typedef typename Parent::Node Node;
+
+ protected:
+ ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
+
+ FilterNodes() : const_true_map() {}
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates a subgraph for the given digraph or graph with the
+ /// given node filter map.
+ FilterNodes(GR& graph, NF& node_filter)
+ : Parent(), const_true_map()
+ {
+ Parent::initialize(graph, node_filter, const_true_map);
+ }
+
+ /// \brief Sets the status of the given node
+ ///
+ /// This function sets the status of the given node.
+ /// It is done by simply setting the assigned value of \c n
+ /// to \c v in the node filter map.
+ void status(const Node& n, bool v) const { Parent::status(n, v); }
+
+ /// \brief Returns the status of the given node
+ ///
+ /// This function returns the status of the given node.
+ /// It is \c true if the given node is enabled (i.e. not hidden).
+ bool status(const Node& n) const { return Parent::status(n); }
+
+ /// \brief Disables the given node
+ ///
+ /// This function disables the given node, so the iteration
+ /// jumps over it.
+ /// It is the same as \ref status() "status(n, false)".
+ void disable(const Node& n) const { Parent::status(n, false); }
+
+ /// \brief Enables the given node
+ ///
+ /// This function enables the given node.
+ /// It is the same as \ref status() "status(n, true)".
+ void enable(const Node& n) const { Parent::status(n, true); }
+
+ };
+
+ template<typename GR, typename NF>
+ class FilterNodes<GR, NF,
+ typename enable_if<UndirectedTagIndicator<GR> >::type> :
+ public GraphAdaptorExtender<
+ SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
+ true> > {
+
+ typedef GraphAdaptorExtender<
+ SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
+ true> > Parent;
+
+ public:
+
+ typedef GR Graph;
+ typedef NF NodeFilterMap;
+
+ typedef typename Parent::Node Node;
+
+ protected:
+ ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
+
+ FilterNodes() : const_true_map() {}
+
+ public:
+
+ FilterNodes(GR& graph, NodeFilterMap& node_filter) :
+ Parent(), const_true_map() {
+ Parent::initialize(graph, node_filter, const_true_map);
+ }
+
+ void status(const Node& n, bool v) const { Parent::status(n, v); }
+ bool status(const Node& n) const { return Parent::status(n); }
+ void disable(const Node& n) const { Parent::status(n, false); }
+ void enable(const Node& n) const { Parent::status(n, true); }
+
+ };
+
+
+ /// \brief Returns a read-only FilterNodes adaptor
+ ///
+ /// This function just returns a read-only \ref FilterNodes adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates FilterNodes
+ template<typename GR, typename NF>
+ FilterNodes<const GR, NF>
+ filterNodes(const GR& graph, NF& node_filter) {
+ return FilterNodes<const GR, NF>(graph, node_filter);
+ }
+
+ template<typename GR, typename NF>
+ FilterNodes<const GR, const NF>
+ filterNodes(const GR& graph, const NF& node_filter) {
+ return FilterNodes<const GR, const NF>(graph, node_filter);
+ }
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for hiding arcs in a digraph.
+ ///
+ /// FilterArcs adaptor can be used for hiding arcs in a digraph.
+ /// A \c bool arc map must be specified, which defines the filter for
+ /// the arcs. Only the arcs with \c true filter value are shown in the
+ /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
+ /// "Digraph" concept.
+ ///
+ /// The adapted digraph can also be modified through this adaptor
+ /// by adding or removing nodes or arcs, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides only linear time counting for nodes and arcs.
+ ///
+ /// \tparam DGR The type of the adapted digraph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept.
+ /// It can also be specified to be \c const.
+ /// \tparam AF The type of the arc filter map.
+ /// It must be a \c bool (or convertible) arc map of the
+ /// adapted digraph. The default type is
+ /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
+ ///
+ /// \note The \c Node and \c Arc types of this adaptor and the adapted
+ /// digraph are convertible to each other.
+#ifdef DOXYGEN
+ template<typename DGR,
+ typename AF>
+ class FilterArcs {
+#else
+ template<typename DGR,
+ typename AF = typename DGR::template ArcMap<bool> >
+ class FilterArcs :
+ public DigraphAdaptorExtender<
+ SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
+ AF, false> > {
+#endif
+ typedef DigraphAdaptorExtender<
+ SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
+ AF, false> > Parent;
+
+ public:
+
+ /// The type of the adapted digraph.
+ typedef DGR Digraph;
+ /// The type of the arc filter map.
+ typedef AF ArcFilterMap;
+
+ typedef typename Parent::Arc Arc;
+
+ protected:
+ ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
+
+ FilterArcs() : const_true_map() {}
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates a subdigraph for the given digraph with the given arc
+ /// filter map.
+ FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
+ : Parent(), const_true_map() {
+ Parent::initialize(digraph, const_true_map, arc_filter);
+ }
+
+ /// \brief Sets the status of the given arc
+ ///
+ /// This function sets the status of the given arc.
+ /// It is done by simply setting the assigned value of \c a
+ /// to \c v in the arc filter map.
+ void status(const Arc& a, bool v) const { Parent::status(a, v); }
+
+ /// \brief Returns the status of the given arc
+ ///
+ /// This function returns the status of the given arc.
+ /// It is \c true if the given arc is enabled (i.e. not hidden).
+ bool status(const Arc& a) const { return Parent::status(a); }
+
+ /// \brief Disables the given arc
+ ///
+ /// This function disables the given arc in the subdigraph,
+ /// so the iteration jumps over it.
+ /// It is the same as \ref status() "status(a, false)".
+ void disable(const Arc& a) const { Parent::status(a, false); }
+
+ /// \brief Enables the given arc
+ ///
+ /// This function enables the given arc in the subdigraph.
+ /// It is the same as \ref status() "status(a, true)".
+ void enable(const Arc& a) const { Parent::status(a, true); }
+
+ };
+
+ /// \brief Returns a read-only FilterArcs adaptor
+ ///
+ /// This function just returns a read-only \ref FilterArcs adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates FilterArcs
+ template<typename DGR, typename AF>
+ FilterArcs<const DGR, AF>
+ filterArcs(const DGR& digraph, AF& arc_filter) {
+ return FilterArcs<const DGR, AF>(digraph, arc_filter);
+ }
+
+ template<typename DGR, typename AF>
+ FilterArcs<const DGR, const AF>
+ filterArcs(const DGR& digraph, const AF& arc_filter) {
+ return FilterArcs<const DGR, const AF>(digraph, arc_filter);
+ }
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for hiding edges in a graph.
+ ///
+ /// FilterEdges adaptor can be used for hiding edges in a graph.
+ /// A \c bool edge map must be specified, which defines the filter for
+ /// the edges. Only the edges with \c true filter value are shown in the
+ /// subgraph. This adaptor conforms to the \ref concepts::Graph
+ /// "Graph" concept.
+ ///
+ /// The adapted graph can also be modified through this adaptor
+ /// by adding or removing nodes or edges, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides only linear time counting for nodes, edges and arcs.
+ ///
+ /// \tparam GR The type of the adapted graph.
+ /// It must conform to the \ref concepts::Graph "Graph" concept.
+ /// It can also be specified to be \c const.
+ /// \tparam EF The type of the edge filter map.
+ /// It must be a \c bool (or convertible) edge map of the
+ /// adapted graph. The default type is
+ /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
+ ///
+ /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
+ /// adapted graph are convertible to each other.
+#ifdef DOXYGEN
+ template<typename GR,
+ typename EF>
+ class FilterEdges {
+#else
+ template<typename GR,
+ typename EF = typename GR::template EdgeMap<bool> >
+ class FilterEdges :
+ public GraphAdaptorExtender<
+ SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
+ EF, false> > {
+#endif
+ typedef GraphAdaptorExtender<
+ SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
+ EF, false> > Parent;
+
+ public:
+
+ /// The type of the adapted graph.
+ typedef GR Graph;
+ /// The type of the edge filter map.
+ typedef EF EdgeFilterMap;
+
+ typedef typename Parent::Edge Edge;
+
+ protected:
+ ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
+
+ FilterEdges() : const_true_map(true) {
+ Parent::setNodeFilterMap(const_true_map);
+ }
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates a subgraph for the given graph with the given edge
+ /// filter map.
+ FilterEdges(GR& graph, EF& edge_filter)
+ : Parent(), const_true_map() {
+ Parent::initialize(graph, const_true_map, edge_filter);
+ }
+
+ /// \brief Sets the status of the given edge
+ ///
+ /// This function sets the status of the given edge.
+ /// It is done by simply setting the assigned value of \c e
+ /// to \c v in the edge filter map.
+ void status(const Edge& e, bool v) const { Parent::status(e, v); }
+
+ /// \brief Returns the status of the given edge
+ ///
+ /// This function returns the status of the given edge.
+ /// It is \c true if the given edge is enabled (i.e. not hidden).
+ bool status(const Edge& e) const { return Parent::status(e); }
+
+ /// \brief Disables the given edge
+ ///
+ /// This function disables the given edge in the subgraph,
+ /// so the iteration jumps over it.
+ /// It is the same as \ref status() "status(e, false)".
+ void disable(const Edge& e) const { Parent::status(e, false); }
+
+ /// \brief Enables the given edge
+ ///
+ /// This function enables the given edge in the subgraph.
+ /// It is the same as \ref status() "status(e, true)".
+ void enable(const Edge& e) const { Parent::status(e, true); }
+
+ };
+
+ /// \brief Returns a read-only FilterEdges adaptor
+ ///
+ /// This function just returns a read-only \ref FilterEdges adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates FilterEdges
+ template<typename GR, typename EF>
+ FilterEdges<const GR, EF>
+ filterEdges(const GR& graph, EF& edge_filter) {
+ return FilterEdges<const GR, EF>(graph, edge_filter);
+ }
+
+ template<typename GR, typename EF>
+ FilterEdges<const GR, const EF>
+ filterEdges(const GR& graph, const EF& edge_filter) {
+ return FilterEdges<const GR, const EF>(graph, edge_filter);
+ }
+
+
+ template <typename DGR>
+ class UndirectorBase {
+ public:
+ typedef DGR Digraph;
+ typedef UndirectorBase Adaptor;
+
+ typedef True UndirectedTag;
+
+ typedef typename Digraph::Arc Edge;
+ typedef typename Digraph::Node Node;
+
+ class Arc {
+ friend class UndirectorBase;
+ protected:
+ Edge _edge;
+ bool _forward;
+
+ Arc(const Edge& edge, bool forward)
+ : _edge(edge), _forward(forward) {}
+
+ public:
+ Arc() {}
+
+ Arc(Invalid) : _edge(INVALID), _forward(true) {}
+
+ operator const Edge&() const { return _edge; }
+
+ bool operator==(const Arc &other) const {
+ return _forward == other._forward && _edge == other._edge;
+ }
+ bool operator!=(const Arc &other) const {
+ return _forward != other._forward || _edge != other._edge;
+ }
+ bool operator<(const Arc &other) const {
+ return _forward < other._forward ||
+ (_forward == other._forward && _edge < other._edge);
+ }
+ };
+
+ void first(Node& n) const {
+ _digraph->first(n);
+ }
+
+ void next(Node& n) const {
+ _digraph->next(n);
+ }
+
+ void first(Arc& a) const {
+ _digraph->first(a._edge);
+ a._forward = true;
+ }
+
+ void next(Arc& a) const {
+ if (a._forward) {
+ a._forward = false;
+ } else {
+ _digraph->next(a._edge);
+ a._forward = true;
+ }
+ }
+
+ void first(Edge& e) const {
+ _digraph->first(e);
+ }
+
+ void next(Edge& e) const {
+ _digraph->next(e);
+ }
+
+ void firstOut(Arc& a, const Node& n) const {
+ _digraph->firstIn(a._edge, n);
+ if (a._edge != INVALID ) {
+ a._forward = false;
+ } else {
+ _digraph->firstOut(a._edge, n);
+ a._forward = true;
+ }
+ }
+ void nextOut(Arc &a) const {
+ if (!a._forward) {
+ Node n = _digraph->target(a._edge);
+ _digraph->nextIn(a._edge);
+ if (a._edge == INVALID) {
+ _digraph->firstOut(a._edge, n);
+ a._forward = true;
+ }
+ }
+ else {
+ _digraph->nextOut(a._edge);
+ }
+ }
+
+ void firstIn(Arc &a, const Node &n) const {
+ _digraph->firstOut(a._edge, n);
+ if (a._edge != INVALID ) {
+ a._forward = false;
+ } else {
+ _digraph->firstIn(a._edge, n);
+ a._forward = true;
+ }
+ }
+ void nextIn(Arc &a) const {
+ if (!a._forward) {
+ Node n = _digraph->source(a._edge);
+ _digraph->nextOut(a._edge);
+ if (a._edge == INVALID ) {
+ _digraph->firstIn(a._edge, n);
+ a._forward = true;
+ }
+ }
+ else {
+ _digraph->nextIn(a._edge);
+ }
+ }
+
+ void firstInc(Edge &e, bool &d, const Node &n) const {
+ d = true;
+ _digraph->firstOut(e, n);
+ if (e != INVALID) return;
+ d = false;
+ _digraph->firstIn(e, n);
+ }
+
+ void nextInc(Edge &e, bool &d) const {
+ if (d) {
+ Node s = _digraph->source(e);
+ _digraph->nextOut(e);
+ if (e != INVALID) return;
+ d = false;
+ _digraph->firstIn(e, s);
+ } else {
+ _digraph->nextIn(e);
+ }
+ }
+
+ Node u(const Edge& e) const {
+ return _digraph->source(e);
+ }
+
+ Node v(const Edge& e) const {
+ return _digraph->target(e);
+ }
+
+ Node source(const Arc &a) const {
+ return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
+ }
+
+ Node target(const Arc &a) const {
+ return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
+ }
+
+ static Arc direct(const Edge &e, bool d) {
+ return Arc(e, d);
+ }
+
+ static bool direction(const Arc &a) { return a._forward; }
+
+ Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
+ Arc arcFromId(int ix) const {
+ return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
+ }
+ Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
+
+ int id(const Node &n) const { return _digraph->id(n); }
+ int id(const Arc &a) const {
+ return (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
+ }
+ int id(const Edge &e) const { return _digraph->id(e); }
+
+ int maxNodeId() const { return _digraph->maxNodeId(); }
+ int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
+ int maxEdgeId() const { return _digraph->maxArcId(); }
+
+ Node addNode() { return _digraph->addNode(); }
+ Edge addEdge(const Node& u, const Node& v) {
+ return _digraph->addArc(u, v);
+ }
+
+ void erase(const Node& i) { _digraph->erase(i); }
+ void erase(const Edge& i) { _digraph->erase(i); }
+
+ void clear() { _digraph->clear(); }
+
+ typedef NodeNumTagIndicator<Digraph> NodeNumTag;
+ int nodeNum() const { return _digraph->nodeNum(); }
+
+ typedef ArcNumTagIndicator<Digraph> ArcNumTag;
+ int arcNum() const { return 2 * _digraph->arcNum(); }
+
+ typedef ArcNumTag EdgeNumTag;
+ int edgeNum() const { return _digraph->arcNum(); }
+
+ typedef FindArcTagIndicator<Digraph> FindArcTag;
+ Arc findArc(Node s, Node t, Arc p = INVALID) const {
+ if (p == INVALID) {
+ Edge arc = _digraph->findArc(s, t);
+ if (arc != INVALID) return direct(arc, true);
+ arc = _digraph->findArc(t, s);
+ if (arc != INVALID) return direct(arc, false);
+ } else if (direction(p)) {
+ Edge arc = _digraph->findArc(s, t, p);
+ if (arc != INVALID) return direct(arc, true);
+ arc = _digraph->findArc(t, s);
+ if (arc != INVALID) return direct(arc, false);
+ } else {
+ Edge arc = _digraph->findArc(t, s, p);
+ if (arc != INVALID) return direct(arc, false);
+ }
+ return INVALID;
+ }
+
+ typedef FindArcTag FindEdgeTag;
+ Edge findEdge(Node s, Node t, Edge p = INVALID) const {
+ if (s != t) {
+ if (p == INVALID) {
+ Edge arc = _digraph->findArc(s, t);
+ if (arc != INVALID) return arc;
+ arc = _digraph->findArc(t, s);
+ if (arc != INVALID) return arc;
+ } else if (_digraph->source(p) == s) {
+ Edge arc = _digraph->findArc(s, t, p);
+ if (arc != INVALID) return arc;
+ arc = _digraph->findArc(t, s);
+ if (arc != INVALID) return arc;
+ } else {
+ Edge arc = _digraph->findArc(t, s, p);
+ if (arc != INVALID) return arc;
+ }
+ } else {
+ return _digraph->findArc(s, t, p);
+ }
+ return INVALID;
+ }
+
+ private:
+
+ template <typename V>
+ class ArcMapBase {
+ private:
+
+ typedef typename DGR::template ArcMap<V> MapImpl;
+
+ public:
+
+ typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
+
+ typedef V Value;
+ typedef Arc Key;
+ typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
+ typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
+ typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
+ typedef typename MapTraits<MapImpl>::ReturnValue Reference;
+
+ ArcMapBase(const UndirectorBase<DGR>& adaptor) :
+ _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
+
+ ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
+ : _forward(*adaptor._digraph, value),
+ _backward(*adaptor._digraph, value) {}
+
+ void set(const Arc& a, const V& value) {
+ if (direction(a)) {
+ _forward.set(a, value);
+ } else {
+ _backward.set(a, value);
+ }
+ }
+
+ ConstReturnValue operator[](const Arc& a) const {
+ if (direction(a)) {
+ return _forward[a];
+ } else {
+ return _backward[a];
+ }
+ }
+
+ ReturnValue operator[](const Arc& a) {
+ if (direction(a)) {
+ return _forward[a];
+ } else {
+ return _backward[a];
+ }
+ }
+
+ protected:
+
+ MapImpl _forward, _backward;
+
+ };
+
+ public:
+
+ template <typename V>
+ class NodeMap : public DGR::template NodeMap<V> {
+ typedef typename DGR::template NodeMap<V> Parent;
+
+ public:
+ typedef V Value;
+
+ explicit NodeMap(const UndirectorBase<DGR>& adaptor)
+ : Parent(*adaptor._digraph) {}
+
+ NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
+ : Parent(*adaptor._digraph, value) { }
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+
+ };
+
+ template <typename V>
+ class ArcMap
+ : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
+ typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
+
+ public:
+ typedef V Value;
+
+ explicit ArcMap(const UndirectorBase<DGR>& adaptor)
+ : Parent(adaptor) {}
+
+ ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class EdgeMap : public Digraph::template ArcMap<V> {
+ typedef typename Digraph::template ArcMap<V> Parent;
+
+ public:
+ typedef V Value;
+
+ explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
+ : Parent(*adaptor._digraph) {}
+
+ EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
+ : Parent(*adaptor._digraph, value) {}
+
+ private:
+ EdgeMap& operator=(const EdgeMap& cmap) {
+ return operator=<EdgeMap>(cmap);
+ }
+
+ template <typename CMap>
+ EdgeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+
+ };
+
+ typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
+ NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
+
+ typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
+ EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
+
+ typedef EdgeNotifier ArcNotifier;
+ ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
+
+ protected:
+
+ UndirectorBase() : _digraph(0) {}
+
+ DGR* _digraph;
+
+ void initialize(DGR& digraph) {
+ _digraph = &digraph;
+ }
+
+ };
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for viewing a digraph as an undirected graph.
+ ///
+ /// Undirector adaptor can be used for viewing a digraph as an undirected
+ /// graph. All arcs of the underlying digraph are showed in the
+ /// adaptor as an edge (and also as a pair of arcs, of course).
+ /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
+ ///
+ /// The adapted digraph can also be modified through this adaptor
+ /// by adding or removing nodes or edges, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides item counting in the same time as the adapted
+ /// digraph structure.
+ ///
+ /// \tparam DGR The type of the adapted digraph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept.
+ /// It can also be specified to be \c const.
+ ///
+ /// \note The \c Node type of this adaptor and the adapted digraph are
+ /// convertible to each other, moreover the \c Edge type of the adaptor
+ /// and the \c Arc type of the adapted digraph are also convertible to
+ /// each other.
+ /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
+ /// of the adapted digraph.)
+ template<typename DGR>
+#ifdef DOXYGEN
+ class Undirector {
+#else
+ class Undirector :
+ public GraphAdaptorExtender<UndirectorBase<DGR> > {
+#endif
+ typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
+ public:
+ /// The type of the adapted digraph.
+ typedef DGR Digraph;
+ protected:
+ Undirector() { }
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Creates an undirected graph from the given digraph.
+ Undirector(DGR& digraph) {
+ this->initialize(digraph);
+ }
+
+ /// \brief Arc map combined from two original arc maps
+ ///
+ /// This map adaptor class adapts two arc maps of the underlying
+ /// digraph to get an arc map of the undirected graph.
+ /// Its value type is inherited from the first arc map type (\c FW).
+ /// \tparam FW The type of the "foward" arc map.
+ /// \tparam BK The type of the "backward" arc map.
+ template <typename FW, typename BK>
+ class CombinedArcMap {
+ public:
+
+ /// The key type of the map
+ typedef typename Parent::Arc Key;
+ /// The value type of the map
+ typedef typename FW::Value Value;
+
+ typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
+
+ typedef typename MapTraits<FW>::ReturnValue ReturnValue;
+ typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
+ typedef typename MapTraits<FW>::ReturnValue Reference;
+ typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
+
+ /// Constructor
+ CombinedArcMap(FW& forward, BK& backward)
+ : _forward(&forward), _backward(&backward) {}
+
+ /// Sets the value associated with the given key.
+ void set(const Key& e, const Value& a) {
+ if (Parent::direction(e)) {
+ _forward->set(e, a);
+ } else {
+ _backward->set(e, a);
+ }
+ }
+
+ /// Returns the value associated with the given key.
+ ConstReturnValue operator[](const Key& e) const {
+ if (Parent::direction(e)) {
+ return (*_forward)[e];
+ } else {
+ return (*_backward)[e];
+ }
+ }
+
+ /// Returns a reference to the value associated with the given key.
+ ReturnValue operator[](const Key& e) {
+ if (Parent::direction(e)) {
+ return (*_forward)[e];
+ } else {
+ return (*_backward)[e];
+ }
+ }
+
+ protected:
+
+ FW* _forward;
+ BK* _backward;
+
+ };
+
+ /// \brief Returns a combined arc map
+ ///
+ /// This function just returns a combined arc map.
+ template <typename FW, typename BK>
+ static CombinedArcMap<FW, BK>
+ combinedArcMap(FW& forward, BK& backward) {
+ return CombinedArcMap<FW, BK>(forward, backward);
+ }
+
+ template <typename FW, typename BK>
+ static CombinedArcMap<const FW, BK>
+ combinedArcMap(const FW& forward, BK& backward) {
+ return CombinedArcMap<const FW, BK>(forward, backward);
+ }
+
+ template <typename FW, typename BK>
+ static CombinedArcMap<FW, const BK>
+ combinedArcMap(FW& forward, const BK& backward) {
+ return CombinedArcMap<FW, const BK>(forward, backward);
+ }
+
+ template <typename FW, typename BK>
+ static CombinedArcMap<const FW, const BK>
+ combinedArcMap(const FW& forward, const BK& backward) {
+ return CombinedArcMap<const FW, const BK>(forward, backward);
+ }
+
+ };
+
+ /// \brief Returns a read-only Undirector adaptor
+ ///
+ /// This function just returns a read-only \ref Undirector adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates Undirector
+ template<typename DGR>
+ Undirector<const DGR> undirector(const DGR& digraph) {
+ return Undirector<const DGR>(digraph);
+ }
+
+
+ template <typename GR, typename DM>
+ class OrienterBase {
+ public:
+
+ typedef GR Graph;
+ typedef DM DirectionMap;
+
+ typedef typename GR::Node Node;
+ typedef typename GR::Edge Arc;
+
+ void reverseArc(const Arc& arc) {
+ _direction->set(arc, !(*_direction)[arc]);
+ }
+
+ void first(Node& i) const { _graph->first(i); }
+ void first(Arc& i) const { _graph->first(i); }
+ void firstIn(Arc& i, const Node& n) const {
+ bool d = true;
+ _graph->firstInc(i, d, n);
+ while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
+ }
+ void firstOut(Arc& i, const Node& n ) const {
+ bool d = true;
+ _graph->firstInc(i, d, n);
+ while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
+ }
+
+ void next(Node& i) const { _graph->next(i); }
+ void next(Arc& i) const { _graph->next(i); }
+ void nextIn(Arc& i) const {
+ bool d = !(*_direction)[i];
+ _graph->nextInc(i, d);
+ while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
+ }
+ void nextOut(Arc& i) const {
+ bool d = (*_direction)[i];
+ _graph->nextInc(i, d);
+ while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
+ }
+
+ Node source(const Arc& e) const {
+ return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
+ }
+ Node target(const Arc& e) const {
+ return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
+ }
+
+ typedef NodeNumTagIndicator<Graph> NodeNumTag;
+ int nodeNum() const { return _graph->nodeNum(); }
+
+ typedef EdgeNumTagIndicator<Graph> ArcNumTag;
+ int arcNum() const { return _graph->edgeNum(); }
+
+ typedef FindEdgeTagIndicator<Graph> FindArcTag;
+ Arc findArc(const Node& u, const Node& v,
+ const Arc& prev = INVALID) const {
+ Arc arc = _graph->findEdge(u, v, prev);
+ while (arc != INVALID && source(arc) != u) {
+ arc = _graph->findEdge(u, v, arc);
+ }
+ return arc;
+ }
+
+ Node addNode() {
+ return Node(_graph->addNode());
+ }
+
+ Arc addArc(const Node& u, const Node& v) {
+ Arc arc = _graph->addEdge(u, v);
+ _direction->set(arc, _graph->u(arc) == u);
+ return arc;
+ }
+
+ void erase(const Node& i) { _graph->erase(i); }
+ void erase(const Arc& i) { _graph->erase(i); }
+
+ void clear() { _graph->clear(); }
+
+ int id(const Node& v) const { return _graph->id(v); }
+ int id(const Arc& e) const { return _graph->id(e); }
+
+ Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
+ Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
+
+ int maxNodeId() const { return _graph->maxNodeId(); }
+ int maxArcId() const { return _graph->maxEdgeId(); }
+
+ typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
+ NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
+
+ typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
+ ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
+
+ template <typename V>
+ class NodeMap : public GR::template NodeMap<V> {
+ typedef typename GR::template NodeMap<V> Parent;
+
+ public:
+
+ explicit NodeMap(const OrienterBase<GR, DM>& adapter)
+ : Parent(*adapter._graph) {}
+
+ NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
+ : Parent(*adapter._graph, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+
+ };
+
+ template <typename V>
+ class ArcMap : public GR::template EdgeMap<V> {
+ typedef typename Graph::template EdgeMap<V> Parent;
+
+ public:
+
+ explicit ArcMap(const OrienterBase<GR, DM>& adapter)
+ : Parent(*adapter._graph) { }
+
+ ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
+ : Parent(*adapter._graph, value) { }
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+
+
+ protected:
+ Graph* _graph;
+ DM* _direction;
+
+ void initialize(GR& graph, DM& direction) {
+ _graph = &graph;
+ _direction = &direction;
+ }
+
+ };
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for orienting the edges of a graph to get a digraph
+ ///
+ /// Orienter adaptor can be used for orienting the edges of a graph to
+ /// get a digraph. A \c bool edge map of the underlying graph must be
+ /// specified, which define the direction of the arcs in the adaptor.
+ /// The arcs can be easily reversed by the \c reverseArc() member function
+ /// of the adaptor.
+ /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
+ ///
+ /// The adapted graph can also be modified through this adaptor
+ /// by adding or removing nodes or arcs, unless the \c GR template
+ /// parameter is set to be \c const.
+ ///
+ /// This class provides item counting in the same time as the adapted
+ /// graph structure.
+ ///
+ /// \tparam GR The type of the adapted graph.
+ /// It must conform to the \ref concepts::Graph "Graph" concept.
+ /// It can also be specified to be \c const.
+ /// \tparam DM The type of the direction map.
+ /// It must be a \c bool (or convertible) edge map of the
+ /// adapted graph. The default type is
+ /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
+ ///
+ /// \note The \c Node type of this adaptor and the adapted graph are
+ /// convertible to each other, moreover the \c Arc type of the adaptor
+ /// and the \c Edge type of the adapted graph are also convertible to
+ /// each other.
+#ifdef DOXYGEN
+ template<typename GR,
+ typename DM>
+ class Orienter {
+#else
+ template<typename GR,
+ typename DM = typename GR::template EdgeMap<bool> >
+ class Orienter :
+ public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
+#endif
+ typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
+ public:
+
+ /// The type of the adapted graph.
+ typedef GR Graph;
+ /// The type of the direction edge map.
+ typedef DM DirectionMap;
+
+ typedef typename Parent::Arc Arc;
+
+ protected:
+ Orienter() { }
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor of the adaptor.
+ Orienter(GR& graph, DM& direction) {
+ Parent::initialize(graph, direction);
+ }
+
+ /// \brief Reverses the given arc
+ ///
+ /// This function reverses the given arc.
+ /// It is done by simply negate the assigned value of \c a
+ /// in the direction map.
+ void reverseArc(const Arc& a) {
+ Parent::reverseArc(a);
+ }
+ };
+
+ /// \brief Returns a read-only Orienter adaptor
+ ///
+ /// This function just returns a read-only \ref Orienter adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates Orienter
+ template<typename GR, typename DM>
+ Orienter<const GR, DM>
+ orienter(const GR& graph, DM& direction) {
+ return Orienter<const GR, DM>(graph, direction);
+ }
+
+ template<typename GR, typename DM>
+ Orienter<const GR, const DM>
+ orienter(const GR& graph, const DM& direction) {
+ return Orienter<const GR, const DM>(graph, direction);
+ }
+
+ namespace _adaptor_bits {
+
+ template <typename DGR, typename CM, typename FM, typename TL>
+ class ResForwardFilter {
+ public:
+
+ typedef typename DGR::Arc Key;
+ typedef bool Value;
+
+ private:
+
+ const CM* _capacity;
+ const FM* _flow;
+ TL _tolerance;
+
+ public:
+
+ ResForwardFilter(const CM& capacity, const FM& flow,
+ const TL& tolerance = TL())
+ : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
+
+ bool operator[](const typename DGR::Arc& a) const {
+ return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
+ }
+ };
+
+ template<typename DGR,typename CM, typename FM, typename TL>
+ class ResBackwardFilter {
+ public:
+
+ typedef typename DGR::Arc Key;
+ typedef bool Value;
+
+ private:
+
+ const CM* _capacity;
+ const FM* _flow;
+ TL _tolerance;
+
+ public:
+
+ ResBackwardFilter(const CM& capacity, const FM& flow,
+ const TL& tolerance = TL())
+ : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
+
+ bool operator[](const typename DGR::Arc& a) const {
+ return _tolerance.positive((*_flow)[a]);
+ }
+ };
+
+ }
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for composing the residual digraph for directed
+ /// flow and circulation problems.
+ ///
+ /// ResidualDigraph can be used for composing the \e residual digraph
+ /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
+ /// be a directed graph and let \f$ F \f$ be a number type.
+ /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
+ /// This adaptor implements a digraph structure with node set \f$ V \f$
+ /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
+ /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
+ /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
+ /// called residual digraph.
+ /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
+ /// multiplicities are counted, i.e. the adaptor has exactly
+ /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
+ /// arcs).
+ /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
+ ///
+ /// This class provides only linear time counting for nodes and arcs.
+ ///
+ /// \tparam DGR The type of the adapted digraph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept.
+ /// It is implicitly \c const.
+ /// \tparam CM The type of the capacity map.
+ /// It must be an arc map of some numerical type, which defines
+ /// the capacities in the flow problem. It is implicitly \c const.
+ /// The default type is
+ /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ /// \tparam FM The type of the flow map.
+ /// It must be an arc map of some numerical type, which defines
+ /// the flow values in the flow problem. The default type is \c CM.
+ /// \tparam TL The tolerance type for handling inexact computation.
+ /// The default tolerance type depends on the value type of the
+ /// capacity map.
+ ///
+ /// \note This adaptor is implemented using Undirector and FilterArcs
+ /// adaptors.
+ ///
+ /// \note The \c Node type of this adaptor and the adapted digraph are
+ /// convertible to each other, moreover the \c Arc type of the adaptor
+ /// is convertible to the \c Arc type of the adapted digraph.
+#ifdef DOXYGEN
+ template<typename DGR, typename CM, typename FM, typename TL>
+ class ResidualDigraph
+#else
+ template<typename DGR,
+ typename CM = typename DGR::template ArcMap<int>,
+ typename FM = CM,
+ typename TL = Tolerance<typename CM::Value> >
+ class ResidualDigraph
+ : public SubDigraph<
+ Undirector<const DGR>,
+ ConstMap<typename DGR::Node, Const<bool, true> >,
+ typename Undirector<const DGR>::template CombinedArcMap<
+ _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
+ _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
+#endif
+ {
+ public:
+
+ /// The type of the underlying digraph.
+ typedef DGR Digraph;
+ /// The type of the capacity map.
+ typedef CM CapacityMap;
+ /// The type of the flow map.
+ typedef FM FlowMap;
+ /// The tolerance type.
+ typedef TL Tolerance;
+
+ typedef typename CapacityMap::Value Value;
+ typedef ResidualDigraph Adaptor;
+
+ protected:
+
+ typedef Undirector<const Digraph> Undirected;
+
+ typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
+
+ typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
+ FM, TL> ForwardFilter;
+
+ typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
+ FM, TL> BackwardFilter;
+
+ typedef typename Undirected::
+ template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
+
+ typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
+
+ const CapacityMap* _capacity;
+ FlowMap* _flow;
+
+ Undirected _graph;
+ NodeFilter _node_filter;
+ ForwardFilter _forward_filter;
+ BackwardFilter _backward_filter;
+ ArcFilter _arc_filter;
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor of the residual digraph adaptor. The parameters are the
+ /// digraph, the capacity map, the flow map, and a tolerance object.
+ ResidualDigraph(const DGR& digraph, const CM& capacity,
+ FM& flow, const TL& tolerance = Tolerance())
+ : Parent(), _capacity(&capacity), _flow(&flow),
+ _graph(digraph), _node_filter(),
+ _forward_filter(capacity, flow, tolerance),
+ _backward_filter(capacity, flow, tolerance),
+ _arc_filter(_forward_filter, _backward_filter)
+ {
+ Parent::initialize(_graph, _node_filter, _arc_filter);
+ }
+
+ typedef typename Parent::Arc Arc;
+
+ /// \brief Returns the residual capacity of the given arc.
+ ///
+ /// Returns the residual capacity of the given arc.
+ Value residualCapacity(const Arc& a) const {
+ if (Undirected::direction(a)) {
+ return (*_capacity)[a] - (*_flow)[a];
+ } else {
+ return (*_flow)[a];
+ }
+ }
+
+ /// \brief Augments on the given arc in the residual digraph.
+ ///
+ /// Augments on the given arc in the residual digraph. It increases
+ /// or decreases the flow value on the original arc according to the
+ /// direction of the residual arc.
+ void augment(const Arc& a, const Value& v) const {
+ if (Undirected::direction(a)) {
+ _flow->set(a, (*_flow)[a] + v);
+ } else {
+ _flow->set(a, (*_flow)[a] - v);
+ }
+ }
+
+ /// \brief Returns \c true if the given residual arc is a forward arc.
+ ///
+ /// Returns \c true if the given residual arc has the same orientation
+ /// as the original arc, i.e. it is a so called forward arc.
+ static bool forward(const Arc& a) {
+ return Undirected::direction(a);
+ }
+
+ /// \brief Returns \c true if the given residual arc is a backward arc.
+ ///
+ /// Returns \c true if the given residual arc has the opposite orientation
+ /// than the original arc, i.e. it is a so called backward arc.
+ static bool backward(const Arc& a) {
+ return !Undirected::direction(a);
+ }
+
+ /// \brief Returns the forward oriented residual arc.
+ ///
+ /// Returns the forward oriented residual arc related to the given
+ /// arc of the underlying digraph.
+ static Arc forward(const typename Digraph::Arc& a) {
+ return Undirected::direct(a, true);
+ }
+
+ /// \brief Returns the backward oriented residual arc.
+ ///
+ /// Returns the backward oriented residual arc related to the given
+ /// arc of the underlying digraph.
+ static Arc backward(const typename Digraph::Arc& a) {
+ return Undirected::direct(a, false);
+ }
+
+ /// \brief Residual capacity map.
+ ///
+ /// This map adaptor class can be used for obtaining the residual
+ /// capacities as an arc map of the residual digraph.
+ /// Its value type is inherited from the capacity map.
+ class ResidualCapacity {
+ protected:
+ const Adaptor* _adaptor;
+ public:
+ /// The key type of the map
+ typedef Arc Key;
+ /// The value type of the map
+ typedef typename CapacityMap::Value Value;
+
+ /// Constructor
+ ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
+ : _adaptor(&adaptor) {}
+
+ /// Returns the value associated with the given residual arc
+ Value operator[](const Arc& a) const {
+ return _adaptor->residualCapacity(a);
+ }
+
+ };
+
+ /// \brief Returns a residual capacity map
+ ///
+ /// This function just returns a residual capacity map.
+ ResidualCapacity residualCapacity() const {
+ return ResidualCapacity(*this);
+ }
+
+ };
+
+ /// \brief Returns a (read-only) Residual adaptor
+ ///
+ /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates ResidualDigraph
+ template<typename DGR, typename CM, typename FM>
+ ResidualDigraph<DGR, CM, FM>
+ residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
+ return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
+ }
+
+
+ template <typename DGR>
+ class SplitNodesBase {
+ typedef DigraphAdaptorBase<const DGR> Parent;
+
+ public:
+
+ typedef DGR Digraph;
+ typedef SplitNodesBase Adaptor;
+
+ typedef typename DGR::Node DigraphNode;
+ typedef typename DGR::Arc DigraphArc;
+
+ class Node;
+ class Arc;
+
+ private:
+
+ template <typename T> class NodeMapBase;
+ template <typename T> class ArcMapBase;
+
+ public:
+
+ class Node : public DigraphNode {
+ friend class SplitNodesBase;
+ template <typename T> friend class NodeMapBase;
+ private:
+
+ bool _in;
+ Node(DigraphNode node, bool in)
+ : DigraphNode(node), _in(in) {}
+
+ public:
+
+ Node() {}
+ Node(Invalid) : DigraphNode(INVALID), _in(true) {}
+
+ bool operator==(const Node& node) const {
+ return DigraphNode::operator==(node) && _in == node._in;
+ }
+
+ bool operator!=(const Node& node) const {
+ return !(*this == node);
+ }
+
+ bool operator<(const Node& node) const {
+ return DigraphNode::operator<(node) ||
+ (DigraphNode::operator==(node) && _in < node._in);
+ }
+ };
+
+ class Arc {
+ friend class SplitNodesBase;
+ template <typename T> friend class ArcMapBase;
+ private:
+ typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
+
+ explicit Arc(const DigraphArc& arc) : _item(arc) {}
+ explicit Arc(const DigraphNode& node) : _item(node) {}
+
+ ArcImpl _item;
+
+ public:
+ Arc() {}
+ Arc(Invalid) : _item(DigraphArc(INVALID)) {}
+
+ bool operator==(const Arc& arc) const {
+ if (_item.firstState()) {
+ if (arc._item.firstState()) {
+ return _item.first() == arc._item.first();
+ }
+ } else {
+ if (arc._item.secondState()) {
+ return _item.second() == arc._item.second();
+ }
+ }
+ return false;
+ }
+
+ bool operator!=(const Arc& arc) const {
+ return !(*this == arc);
+ }
+
+ bool operator<(const Arc& arc) const {
+ if (_item.firstState()) {
+ if (arc._item.firstState()) {
+ return _item.first() < arc._item.first();
+ }
+ return false;
+ } else {
+ if (arc._item.secondState()) {
+ return _item.second() < arc._item.second();
+ }
+ return true;
+ }
+ }
+
+ operator DigraphArc() const { return _item.first(); }
+ operator DigraphNode() const { return _item.second(); }
+
+ };
+
+ void first(Node& n) const {
+ _digraph->first(n);
+ n._in = true;
+ }
+
+ void next(Node& n) const {
+ if (n._in) {
+ n._in = false;
+ } else {
+ n._in = true;
+ _digraph->next(n);
+ }
+ }
+
+ void first(Arc& e) const {
+ e._item.setSecond();
+ _digraph->first(e._item.second());
+ if (e._item.second() == INVALID) {
+ e._item.setFirst();
+ _digraph->first(e._item.first());
+ }
+ }
+
+ void next(Arc& e) const {
+ if (e._item.secondState()) {
+ _digraph->next(e._item.second());
+ if (e._item.second() == INVALID) {
+ e._item.setFirst();
+ _digraph->first(e._item.first());
+ }
+ } else {
+ _digraph->next(e._item.first());
+ }
+ }
+
+ void firstOut(Arc& e, const Node& n) const {
+ if (n._in) {
+ e._item.setSecond(n);
+ } else {
+ e._item.setFirst();
+ _digraph->firstOut(e._item.first(), n);
+ }
+ }
+
+ void nextOut(Arc& e) const {
+ if (!e._item.firstState()) {
+ e._item.setFirst(INVALID);
+ } else {
+ _digraph->nextOut(e._item.first());
+ }
+ }
+
+ void firstIn(Arc& e, const Node& n) const {
+ if (!n._in) {
+ e._item.setSecond(n);
+ } else {
+ e._item.setFirst();
+ _digraph->firstIn(e._item.first(), n);
+ }
+ }
+
+ void nextIn(Arc& e) const {
+ if (!e._item.firstState()) {
+ e._item.setFirst(INVALID);
+ } else {
+ _digraph->nextIn(e._item.first());
+ }
+ }
+
+ Node source(const Arc& e) const {
+ if (e._item.firstState()) {
+ return Node(_digraph->source(e._item.first()), false);
+ } else {
+ return Node(e._item.second(), true);
+ }
+ }
+
+ Node target(const Arc& e) const {
+ if (e._item.firstState()) {
+ return Node(_digraph->target(e._item.first()), true);
+ } else {
+ return Node(e._item.second(), false);
+ }
+ }
+
+ int id(const Node& n) const {
+ return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
+ }
+ Node nodeFromId(int ix) const {
+ return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
+ }
+ int maxNodeId() const {
+ return 2 * _digraph->maxNodeId() + 1;
+ }
+
+ int id(const Arc& e) const {
+ if (e._item.firstState()) {
+ return _digraph->id(e._item.first()) << 1;
+ } else {
+ return (_digraph->id(e._item.second()) << 1) | 1;
+ }
+ }
+ Arc arcFromId(int ix) const {
+ if ((ix & 1) == 0) {
+ return Arc(_digraph->arcFromId(ix >> 1));
+ } else {
+ return Arc(_digraph->nodeFromId(ix >> 1));
+ }
+ }
+ int maxArcId() const {
+ return std::max(_digraph->maxNodeId() << 1,
+ (_digraph->maxArcId() << 1) | 1);
+ }
+
+ static bool inNode(const Node& n) {
+ return n._in;
+ }
+
+ static bool outNode(const Node& n) {
+ return !n._in;
+ }
+
+ static bool origArc(const Arc& e) {
+ return e._item.firstState();
+ }
+
+ static bool bindArc(const Arc& e) {
+ return e._item.secondState();
+ }
+
+ static Node inNode(const DigraphNode& n) {
+ return Node(n, true);
+ }
+
+ static Node outNode(const DigraphNode& n) {
+ return Node(n, false);
+ }
+
+ static Arc arc(const DigraphNode& n) {
+ return Arc(n);
+ }
+
+ static Arc arc(const DigraphArc& e) {
+ return Arc(e);
+ }
+
+ typedef True NodeNumTag;
+ int nodeNum() const {
+ return 2 * countNodes(*_digraph);
+ }
+
+ typedef True ArcNumTag;
+ int arcNum() const {
+ return countArcs(*_digraph) + countNodes(*_digraph);
+ }
+
+ typedef True FindArcTag;
+ Arc findArc(const Node& u, const Node& v,
+ const Arc& prev = INVALID) const {
+ if (inNode(u) && outNode(v)) {
+ if (static_cast<const DigraphNode&>(u) ==
+ static_cast<const DigraphNode&>(v) && prev == INVALID) {
+ return Arc(u);
+ }
+ }
+ else if (outNode(u) && inNode(v)) {
+ return Arc(::lemon::findArc(*_digraph, u, v, prev));
+ }
+ return INVALID;
+ }
+
+ private:
+
+ template <typename V>
+ class NodeMapBase
+ : public MapTraits<typename Parent::template NodeMap<V> > {
+ typedef typename Parent::template NodeMap<V> NodeImpl;
+ public:
+ typedef Node Key;
+ typedef V Value;
+ typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
+ typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
+ typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
+ typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
+ typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
+
+ NodeMapBase(const SplitNodesBase<DGR>& adaptor)
+ : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
+ NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
+ : _in_map(*adaptor._digraph, value),
+ _out_map(*adaptor._digraph, value) {}
+
+ void set(const Node& key, const V& val) {
+ if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
+ else {_out_map.set(key, val); }
+ }
+
+ ReturnValue operator[](const Node& key) {
+ if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
+ else { return _out_map[key]; }
+ }
+
+ ConstReturnValue operator[](const Node& key) const {
+ if (Adaptor::inNode(key)) { return _in_map[key]; }
+ else { return _out_map[key]; }
+ }
+
+ private:
+ NodeImpl _in_map, _out_map;
+ };
+
+ template <typename V>
+ class ArcMapBase
+ : public MapTraits<typename Parent::template ArcMap<V> > {
+ typedef typename Parent::template ArcMap<V> ArcImpl;
+ typedef typename Parent::template NodeMap<V> NodeImpl;
+ public:
+ typedef Arc Key;
+ typedef V Value;
+ typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
+ typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
+ typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
+ typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
+ typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
+
+ ArcMapBase(const SplitNodesBase<DGR>& adaptor)
+ : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
+ ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
+ : _arc_map(*adaptor._digraph, value),
+ _node_map(*adaptor._digraph, value) {}
+
+ void set(const Arc& key, const V& val) {
+ if (SplitNodesBase<DGR>::origArc(key)) {
+ _arc_map.set(static_cast<const DigraphArc&>(key), val);
+ } else {
+ _node_map.set(static_cast<const DigraphNode&>(key), val);
+ }
+ }
+
+ ReturnValue operator[](const Arc& key) {
+ if (SplitNodesBase<DGR>::origArc(key)) {
+ return _arc_map[static_cast<const DigraphArc&>(key)];
+ } else {
+ return _node_map[static_cast<const DigraphNode&>(key)];
+ }
+ }
+
+ ConstReturnValue operator[](const Arc& key) const {
+ if (SplitNodesBase<DGR>::origArc(key)) {
+ return _arc_map[static_cast<const DigraphArc&>(key)];
+ } else {
+ return _node_map[static_cast<const DigraphNode&>(key)];
+ }
+ }
+
+ private:
+ ArcImpl _arc_map;
+ NodeImpl _node_map;
+ };
+
+ public:
+
+ template <typename V>
+ class NodeMap
+ : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
+ typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
+
+ public:
+ typedef V Value;
+
+ NodeMap(const SplitNodesBase<DGR>& adaptor)
+ : Parent(adaptor) {}
+
+ NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ NodeMap& operator=(const NodeMap& cmap) {
+ return operator=<NodeMap>(cmap);
+ }
+
+ template <typename CMap>
+ NodeMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ template <typename V>
+ class ArcMap
+ : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
+ typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
+
+ public:
+ typedef V Value;
+
+ ArcMap(const SplitNodesBase<DGR>& adaptor)
+ : Parent(adaptor) {}
+
+ ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
+ : Parent(adaptor, value) {}
+
+ private:
+ ArcMap& operator=(const ArcMap& cmap) {
+ return operator=<ArcMap>(cmap);
+ }
+
+ template <typename CMap>
+ ArcMap& operator=(const CMap& cmap) {
+ Parent::operator=(cmap);
+ return *this;
+ }
+ };
+
+ protected:
+
+ SplitNodesBase() : _digraph(0) {}
+
+ DGR* _digraph;
+
+ void initialize(Digraph& digraph) {
+ _digraph = &digraph;
+ }
+
+ };
+
+ /// \ingroup graph_adaptors
+ ///
+ /// \brief Adaptor class for splitting the nodes of a digraph.
+ ///
+ /// SplitNodes adaptor can be used for splitting each node into an
+ /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
+ /// replaces each node \f$ u \f$ in the digraph with two nodes,
+ /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
+ /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
+ /// new target of the arc will be \f$ u_{in} \f$ and similarly the
+ /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
+ /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
+ /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
+ ///
+ /// The aim of this class is running an algorithm with respect to node
+ /// costs or capacities if the algorithm considers only arc costs or
+ /// capacities directly.
+ /// In this case you can use \c SplitNodes adaptor, and set the node
+ /// costs/capacities of the original digraph to the \e bind \e arcs
+ /// in the adaptor.
+ ///
+ /// This class provides item counting in the same time as the adapted
+ /// digraph structure.
+ ///
+ /// \tparam DGR The type of the adapted digraph.
+ /// It must conform to the \ref concepts::Digraph "Digraph" concept.
+ /// It is implicitly \c const.
+ ///
+ /// \note The \c Node type of this adaptor is converible to the \c Node
+ /// type of the adapted digraph.
+ template <typename DGR>
+#ifdef DOXYGEN
+ class SplitNodes {
+#else
+ class SplitNodes
+ : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
+#endif
+ typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
+
+ public:
+ typedef DGR Digraph;
+
+ typedef typename DGR::Node DigraphNode;
+ typedef typename DGR::Arc DigraphArc;
+
+ typedef typename Parent::Node Node;
+ typedef typename Parent::Arc Arc;
+
+ /// \brief Constructor
+ ///
+ /// Constructor of the adaptor.
+ SplitNodes(const DGR& g) {
+ Parent::initialize(g);
+ }
+
+ /// \brief Returns \c true if the given node is an in-node.
+ ///
+ /// Returns \c true if the given node is an in-node.
+ static bool inNode(const Node& n) {
+ return Parent::inNode(n);
+ }
+
+ /// \brief Returns \c true if the given node is an out-node.
+ ///
+ /// Returns \c true if the given node is an out-node.
+ static bool outNode(const Node& n) {
+ return Parent::outNode(n);
+ }
+
+ /// \brief Returns \c true if the given arc is an original arc.
+ ///
+ /// Returns \c true if the given arc is one of the arcs in the
+ /// original digraph.
+ static bool origArc(const Arc& a) {
+ return Parent::origArc(a);
+ }
+
+ /// \brief Returns \c true if the given arc is a bind arc.
+ ///
+ /// Returns \c true if the given arc is a bind arc, i.e. it connects
+ /// an in-node and an out-node.
+ static bool bindArc(const Arc& a) {
+ return Parent::bindArc(a);
+ }
+
+ /// \brief Returns the in-node created from the given original node.
+ ///
+ /// Returns the in-node created from the given original node.
+ static Node inNode(const DigraphNode& n) {
+ return Parent::inNode(n);
+ }
+
+ /// \brief Returns the out-node created from the given original node.
+ ///
+ /// Returns the out-node created from the given original node.
+ static Node outNode(const DigraphNode& n) {
+ return Parent::outNode(n);
+ }
+
+ /// \brief Returns the bind arc that corresponds to the given
+ /// original node.
+ ///
+ /// Returns the bind arc in the adaptor that corresponds to the given
+ /// original node, i.e. the arc connecting the in-node and out-node
+ /// of \c n.
+ static Arc arc(const DigraphNode& n) {
+ return Parent::arc(n);
+ }
+
+ /// \brief Returns the arc that corresponds to the given original arc.
+ ///
+ /// Returns the arc in the adaptor that corresponds to the given
+ /// original arc.
+ static Arc arc(const DigraphArc& a) {
+ return Parent::arc(a);
+ }
+
+ /// \brief Node map combined from two original node maps
+ ///
+ /// This map adaptor class adapts two node maps of the original digraph
+ /// to get a node map of the split digraph.
+ /// Its value type is inherited from the first node map type (\c IN).
+ /// \tparam IN The type of the node map for the in-nodes.
+ /// \tparam OUT The type of the node map for the out-nodes.
+ template <typename IN, typename OUT>
+ class CombinedNodeMap {
+ public:
+
+ /// The key type of the map
+ typedef Node Key;
+ /// The value type of the map
+ typedef typename IN::Value Value;
+
+ typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
+ typedef typename MapTraits<IN>::ReturnValue ReturnValue;
+ typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
+ typedef typename MapTraits<IN>::ReturnValue Reference;
+ typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
+
+ /// Constructor
+ CombinedNodeMap(IN& in_map, OUT& out_map)
+ : _in_map(in_map), _out_map(out_map) {}
+
+ /// Returns the value associated with the given key.
+ Value operator[](const Key& key) const {
+ if (SplitNodesBase<const DGR>::inNode(key)) {
+ return _in_map[key];
+ } else {
+ return _out_map[key];
+ }
+ }
+
+ /// Returns a reference to the value associated with the given key.
+ Value& operator[](const Key& key) {
+ if (SplitNodesBase<const DGR>::inNode(key)) {
+ return _in_map[key];
+ } else {
+ return _out_map[key];
+ }
+ }
+
+ /// Sets the value associated with the given key.
+ void set(const Key& key, const Value& value) {
+ if (SplitNodesBase<const DGR>::inNode(key)) {
+ _in_map.set(key, value);
+ } else {
+ _out_map.set(key, value);
+ }
+ }
+
+ private:
+
+ IN& _in_map;
+ OUT& _out_map;
+
+ };
+
+
+ /// \brief Returns a combined node map
+ ///
+ /// This function just returns a combined node map.
+ template <typename IN, typename OUT>
+ static CombinedNodeMap<IN, OUT>
+ combinedNodeMap(IN& in_map, OUT& out_map) {
+ return CombinedNodeMap<IN, OUT>(in_map, out_map);
+ }
+
+ template <typename IN, typename OUT>
+ static CombinedNodeMap<const IN, OUT>
+ combinedNodeMap(const IN& in_map, OUT& out_map) {
+ return CombinedNodeMap<const IN, OUT>(in_map, out_map);
+ }
+
+ template <typename IN, typename OUT>
+ static CombinedNodeMap<IN, const OUT>
+ combinedNodeMap(IN& in_map, const OUT& out_map) {
+ return CombinedNodeMap<IN, const OUT>(in_map, out_map);
+ }
+
+ template <typename IN, typename OUT>
+ static CombinedNodeMap<const IN, const OUT>
+ combinedNodeMap(const IN& in_map, const OUT& out_map) {
+ return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
+ }
+
+ /// \brief Arc map combined from an arc map and a node map of the
+ /// original digraph.
+ ///
+ /// This map adaptor class adapts an arc map and a node map of the
+ /// original digraph to get an arc map of the split digraph.
+ /// Its value type is inherited from the original arc map type (\c AM).
+ /// \tparam AM The type of the arc map.
+ /// \tparam NM the type of the node map.
+ template <typename AM, typename NM>
+ class CombinedArcMap {
+ public:
+
+ /// The key type of the map
+ typedef Arc Key;
+ /// The value type of the map
+ typedef typename AM::Value Value;
+
+ typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
+ typedef typename MapTraits<AM>::ReturnValue ReturnValue;
+ typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
+ typedef typename MapTraits<AM>::ReturnValue Reference;
+ typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
+
+ /// Constructor
+ CombinedArcMap(AM& arc_map, NM& node_map)
+ : _arc_map(arc_map), _node_map(node_map) {}
+
+ /// Returns the value associated with the given key.
+ Value operator[](const Key& arc) const {
+ if (SplitNodesBase<const DGR>::origArc(arc)) {
+ return _arc_map[arc];
+ } else {
+ return _node_map[arc];
+ }
+ }
+
+ /// Returns a reference to the value associated with the given key.
+ Value& operator[](const Key& arc) {
+ if (SplitNodesBase<const DGR>::origArc(arc)) {
+ return _arc_map[arc];
+ } else {
+ return _node_map[arc];
+ }
+ }
+
+ /// Sets the value associated with the given key.
+ void set(const Arc& arc, const Value& val) {
+ if (SplitNodesBase<const DGR>::origArc(arc)) {
+ _arc_map.set(arc, val);
+ } else {
+ _node_map.set(arc, val);
+ }
+ }
+
+ private:
+
+ AM& _arc_map;
+ NM& _node_map;
+
+ };
+
+ /// \brief Returns a combined arc map
+ ///
+ /// This function just returns a combined arc map.
+ template <typename ArcMap, typename NodeMap>
+ static CombinedArcMap<ArcMap, NodeMap>
+ combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
+ return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
+ }
+
+ template <typename ArcMap, typename NodeMap>
+ static CombinedArcMap<const ArcMap, NodeMap>
+ combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
+ return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
+ }
+
+ template <typename ArcMap, typename NodeMap>
+ static CombinedArcMap<ArcMap, const NodeMap>
+ combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
+ return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
+ }
+
+ template <typename ArcMap, typename NodeMap>
+ static CombinedArcMap<const ArcMap, const NodeMap>
+ combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
+ return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
+ }
+
+ };
+
+ /// \brief Returns a (read-only) SplitNodes adaptor
+ ///
+ /// This function just returns a (read-only) \ref SplitNodes adaptor.
+ /// \ingroup graph_adaptors
+ /// \relates SplitNodes
+ template<typename DGR>
+ SplitNodes<DGR>
+ splitNodes(const DGR& digraph) {
+ return SplitNodes<DGR>(digraph);
+ }
+
+#undef LEMON_SCOPE_FIX
+
+} //namespace lemon
+
+#endif //LEMON_ADAPTORS_H