Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/bellman_ford.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/bellman_ford.h1116
1 files changed, 1116 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/bellman_ford.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/bellman_ford.h
new file mode 100644
index 00000000000..310758ebb59
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/bellman_ford.h
@@ -0,0 +1,1116 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_BELLMAN_FORD_H
+#define LEMON_BELLMAN_FORD_H
+
+/// \ingroup shortest_path
+/// \file
+/// \brief Bellman-Ford algorithm.
+
+#include <lemon/list_graph.h>
+#include <lemon/bits/path_dump.h>
+#include <lemon/core.h>
+#include <lemon/error.h>
+#include <lemon/maps.h>
+#include <lemon/path.h>
+
+#include <limits>
+
+namespace lemon {
+
+ /// \brief Default OperationTraits for the BellmanFord algorithm class.
+ ///
+ /// This operation traits class defines all computational operations
+ /// and constants that are used in the Bellman-Ford algorithm.
+ /// The default implementation is based on the \c numeric_limits class.
+ /// If the numeric type does not have infinity value, then the maximum
+ /// value is used as extremal infinity value.
+ template <
+ typename V,
+ bool has_inf = std::numeric_limits<V>::has_infinity>
+ struct BellmanFordDefaultOperationTraits {
+ /// \e
+ typedef V Value;
+ /// \brief Gives back the zero value of the type.
+ static Value zero() {
+ return static_cast<Value>(0);
+ }
+ /// \brief Gives back the positive infinity value of the type.
+ static Value infinity() {
+ return std::numeric_limits<Value>::infinity();
+ }
+ /// \brief Gives back the sum of the given two elements.
+ static Value plus(const Value& left, const Value& right) {
+ return left + right;
+ }
+ /// \brief Gives back \c true only if the first value is less than
+ /// the second.
+ static bool less(const Value& left, const Value& right) {
+ return left < right;
+ }
+ };
+
+ template <typename V>
+ struct BellmanFordDefaultOperationTraits<V, false> {
+ typedef V Value;
+ static Value zero() {
+ return static_cast<Value>(0);
+ }
+ static Value infinity() {
+ return std::numeric_limits<Value>::max();
+ }
+ static Value plus(const Value& left, const Value& right) {
+ if (left == infinity() || right == infinity()) return infinity();
+ return left + right;
+ }
+ static bool less(const Value& left, const Value& right) {
+ return left < right;
+ }
+ };
+
+ /// \brief Default traits class of BellmanFord class.
+ ///
+ /// Default traits class of BellmanFord class.
+ /// \param GR The type of the digraph.
+ /// \param LEN The type of the length map.
+ template<typename GR, typename LEN>
+ struct BellmanFordDefaultTraits {
+ /// The type of the digraph the algorithm runs on.
+ typedef GR Digraph;
+
+ /// \brief The type of the map that stores the arc lengths.
+ ///
+ /// The type of the map that stores the arc lengths.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+ typedef LEN LengthMap;
+
+ /// The type of the arc lengths.
+ typedef typename LEN::Value Value;
+
+ /// \brief Operation traits for Bellman-Ford algorithm.
+ ///
+ /// It defines the used operations and the infinity value for the
+ /// given \c Value type.
+ /// \see BellmanFordDefaultOperationTraits
+ typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
+
+ /// \brief The type of the map that stores the last arcs of the
+ /// shortest paths.
+ ///
+ /// The type of the map that stores the last
+ /// arcs of the shortest paths.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
+
+ /// \brief Instantiates a \c PredMap.
+ ///
+ /// This function instantiates a \ref PredMap.
+ /// \param g is the digraph to which we would like to define the
+ /// \ref PredMap.
+ static PredMap *createPredMap(const GR& g) {
+ return new PredMap(g);
+ }
+
+ /// \brief The type of the map that stores the distances of the nodes.
+ ///
+ /// The type of the map that stores the distances of the nodes.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
+
+ /// \brief Instantiates a \c DistMap.
+ ///
+ /// This function instantiates a \ref DistMap.
+ /// \param g is the digraph to which we would like to define the
+ /// \ref DistMap.
+ static DistMap *createDistMap(const GR& g) {
+ return new DistMap(g);
+ }
+
+ };
+
+ /// \brief %BellmanFord algorithm class.
+ ///
+ /// \ingroup shortest_path
+ /// This class provides an efficient implementation of the Bellman-Ford
+ /// algorithm. The maximum time complexity of the algorithm is
+ /// <tt>O(nm)</tt>.
+ ///
+ /// The Bellman-Ford algorithm solves the single-source shortest path
+ /// problem when the arcs can have negative lengths, but the digraph
+ /// should not contain directed cycles with negative total length.
+ /// If all arc costs are non-negative, consider to use the Dijkstra
+ /// algorithm instead, since it is more efficient.
+ ///
+ /// The arc lengths are passed to the algorithm using a
+ /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
+ /// kind of length. The type of the length values is determined by the
+ /// \ref concepts::ReadMap::Value "Value" type of the length map.
+ ///
+ /// There is also a \ref bellmanFord() "function-type interface" for the
+ /// Bellman-Ford algorithm, which is convenient in the simplier cases and
+ /// it can be used easier.
+ ///
+ /// \tparam GR The type of the digraph the algorithm runs on.
+ /// The default type is \ref ListDigraph.
+ /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
+ /// the lengths of the arcs. The default map type is
+ /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ /// \tparam TR The traits class that defines various types used by the
+ /// algorithm. By default, it is \ref BellmanFordDefaultTraits
+ /// "BellmanFordDefaultTraits<GR, LEN>".
+ /// In most cases, this parameter should not be set directly,
+ /// consider to use the named template parameters instead.
+#ifdef DOXYGEN
+ template <typename GR, typename LEN, typename TR>
+#else
+ template <typename GR=ListDigraph,
+ typename LEN=typename GR::template ArcMap<int>,
+ typename TR=BellmanFordDefaultTraits<GR,LEN> >
+#endif
+ class BellmanFord {
+ public:
+
+ ///The type of the underlying digraph.
+ typedef typename TR::Digraph Digraph;
+
+ /// \brief The type of the arc lengths.
+ typedef typename TR::LengthMap::Value Value;
+ /// \brief The type of the map that stores the arc lengths.
+ typedef typename TR::LengthMap LengthMap;
+ /// \brief The type of the map that stores the last
+ /// arcs of the shortest paths.
+ typedef typename TR::PredMap PredMap;
+ /// \brief The type of the map that stores the distances of the nodes.
+ typedef typename TR::DistMap DistMap;
+ /// The type of the paths.
+ typedef PredMapPath<Digraph, PredMap> Path;
+ ///\brief The \ref lemon::BellmanFordDefaultOperationTraits
+ /// "operation traits class" of the algorithm.
+ typedef typename TR::OperationTraits OperationTraits;
+
+ ///\brief The \ref lemon::BellmanFordDefaultTraits "traits class"
+ ///of the algorithm.
+ typedef TR Traits;
+
+ private:
+
+ typedef typename Digraph::Node Node;
+ typedef typename Digraph::NodeIt NodeIt;
+ typedef typename Digraph::Arc Arc;
+ typedef typename Digraph::OutArcIt OutArcIt;
+
+ // Pointer to the underlying digraph.
+ const Digraph *_gr;
+ // Pointer to the length map
+ const LengthMap *_length;
+ // Pointer to the map of predecessors arcs.
+ PredMap *_pred;
+ // Indicates if _pred is locally allocated (true) or not.
+ bool _local_pred;
+ // Pointer to the map of distances.
+ DistMap *_dist;
+ // Indicates if _dist is locally allocated (true) or not.
+ bool _local_dist;
+
+ typedef typename Digraph::template NodeMap<bool> MaskMap;
+ MaskMap *_mask;
+
+ std::vector<Node> _process;
+
+ // Creates the maps if necessary.
+ void create_maps() {
+ if(!_pred) {
+ _local_pred = true;
+ _pred = Traits::createPredMap(*_gr);
+ }
+ if(!_dist) {
+ _local_dist = true;
+ _dist = Traits::createDistMap(*_gr);
+ }
+ if(!_mask) {
+ _mask = new MaskMap(*_gr);
+ }
+ }
+
+ public :
+
+ typedef BellmanFord Create;
+
+ /// \name Named Template Parameters
+
+ ///@{
+
+ template <class T>
+ struct SetPredMapTraits : public Traits {
+ typedef T PredMap;
+ static PredMap *createPredMap(const Digraph&) {
+ LEMON_ASSERT(false, "PredMap is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c PredMap type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// \c PredMap type.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ template <class T>
+ struct SetPredMap
+ : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
+ typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
+ };
+
+ template <class T>
+ struct SetDistMapTraits : public Traits {
+ typedef T DistMap;
+ static DistMap *createDistMap(const Digraph&) {
+ LEMON_ASSERT(false, "DistMap is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c DistMap type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// \c DistMap type.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ template <class T>
+ struct SetDistMap
+ : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
+ typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
+ };
+
+ template <class T>
+ struct SetOperationTraitsTraits : public Traits {
+ typedef T OperationTraits;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c OperationTraits type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// \c OperationTraits type.
+ /// For more information, see \ref BellmanFordDefaultOperationTraits.
+ template <class T>
+ struct SetOperationTraits
+ : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
+ typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
+ Create;
+ };
+
+ ///@}
+
+ protected:
+
+ BellmanFord() {}
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param g The digraph the algorithm runs on.
+ /// \param length The length map used by the algorithm.
+ BellmanFord(const Digraph& g, const LengthMap& length) :
+ _gr(&g), _length(&length),
+ _pred(0), _local_pred(false),
+ _dist(0), _local_dist(false), _mask(0) {}
+
+ ///Destructor.
+ ~BellmanFord() {
+ if(_local_pred) delete _pred;
+ if(_local_dist) delete _dist;
+ if(_mask) delete _mask;
+ }
+
+ /// \brief Sets the length map.
+ ///
+ /// Sets the length map.
+ /// \return <tt>(*this)</tt>
+ BellmanFord &lengthMap(const LengthMap &map) {
+ _length = &map;
+ return *this;
+ }
+
+ /// \brief Sets the map that stores the predecessor arcs.
+ ///
+ /// Sets the map that stores the predecessor arcs.
+ /// If you don't use this function before calling \ref run()
+ /// or \ref init(), an instance will be allocated automatically.
+ /// The destructor deallocates this automatically allocated map,
+ /// of course.
+ /// \return <tt>(*this)</tt>
+ BellmanFord &predMap(PredMap &map) {
+ if(_local_pred) {
+ delete _pred;
+ _local_pred=false;
+ }
+ _pred = &map;
+ return *this;
+ }
+
+ /// \brief Sets the map that stores the distances of the nodes.
+ ///
+ /// Sets the map that stores the distances of the nodes calculated
+ /// by the algorithm.
+ /// If you don't use this function before calling \ref run()
+ /// or \ref init(), an instance will be allocated automatically.
+ /// The destructor deallocates this automatically allocated map,
+ /// of course.
+ /// \return <tt>(*this)</tt>
+ BellmanFord &distMap(DistMap &map) {
+ if(_local_dist) {
+ delete _dist;
+ _local_dist=false;
+ }
+ _dist = &map;
+ return *this;
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the Bellman-Ford algorithm is to use
+ /// one of the member functions called \ref run().\n
+ /// If you need better control on the execution, you have to call
+ /// \ref init() first, then you can add several source nodes
+ /// with \ref addSource(). Finally the actual path computation can be
+ /// performed with \ref start(), \ref checkedStart() or
+ /// \ref limitedStart().
+
+ ///@{
+
+ /// \brief Initializes the internal data structures.
+ ///
+ /// Initializes the internal data structures. The optional parameter
+ /// is the initial distance of each node.
+ void init(const Value value = OperationTraits::infinity()) {
+ create_maps();
+ for (NodeIt it(*_gr); it != INVALID; ++it) {
+ _pred->set(it, INVALID);
+ _dist->set(it, value);
+ }
+ _process.clear();
+ if (OperationTraits::less(value, OperationTraits::infinity())) {
+ for (NodeIt it(*_gr); it != INVALID; ++it) {
+ _process.push_back(it);
+ _mask->set(it, true);
+ }
+ } else {
+ for (NodeIt it(*_gr); it != INVALID; ++it) {
+ _mask->set(it, false);
+ }
+ }
+ }
+
+ /// \brief Adds a new source node.
+ ///
+ /// This function adds a new source node. The optional second parameter
+ /// is the initial distance of the node.
+ void addSource(Node source, Value dst = OperationTraits::zero()) {
+ _dist->set(source, dst);
+ if (!(*_mask)[source]) {
+ _process.push_back(source);
+ _mask->set(source, true);
+ }
+ }
+
+ /// \brief Executes one round from the Bellman-Ford algorithm.
+ ///
+ /// If the algoritm calculated the distances in the previous round
+ /// exactly for the paths of at most \c k arcs, then this function
+ /// will calculate the distances exactly for the paths of at most
+ /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
+ /// calculates the shortest path distances exactly for the paths
+ /// consisting of at most \c k arcs.
+ ///
+ /// \warning The paths with limited arc number cannot be retrieved
+ /// easily with \ref path() or \ref predArc() functions. If you also
+ /// need the shortest paths and not only the distances, you should
+ /// store the \ref predMap() "predecessor map" after each iteration
+ /// and build the path manually.
+ ///
+ /// \return \c true when the algorithm have not found more shorter
+ /// paths.
+ ///
+ /// \see ActiveIt
+ bool processNextRound() {
+ for (int i = 0; i < int(_process.size()); ++i) {
+ _mask->set(_process[i], false);
+ }
+ std::vector<Node> nextProcess;
+ std::vector<Value> values(_process.size());
+ for (int i = 0; i < int(_process.size()); ++i) {
+ values[i] = (*_dist)[_process[i]];
+ }
+ for (int i = 0; i < int(_process.size()); ++i) {
+ for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
+ Node target = _gr->target(it);
+ Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
+ if (OperationTraits::less(relaxed, (*_dist)[target])) {
+ _pred->set(target, it);
+ _dist->set(target, relaxed);
+ if (!(*_mask)[target]) {
+ _mask->set(target, true);
+ nextProcess.push_back(target);
+ }
+ }
+ }
+ }
+ _process.swap(nextProcess);
+ return _process.empty();
+ }
+
+ /// \brief Executes one weak round from the Bellman-Ford algorithm.
+ ///
+ /// If the algorithm calculated the distances in the previous round
+ /// at least for the paths of at most \c k arcs, then this function
+ /// will calculate the distances at least for the paths of at most
+ /// <tt>k+1</tt> arcs.
+ /// This function does not make it possible to calculate the shortest
+ /// path distances exactly for paths consisting of at most \c k arcs,
+ /// this is why it is called weak round.
+ ///
+ /// \return \c true when the algorithm have not found more shorter
+ /// paths.
+ ///
+ /// \see ActiveIt
+ bool processNextWeakRound() {
+ for (int i = 0; i < int(_process.size()); ++i) {
+ _mask->set(_process[i], false);
+ }
+ std::vector<Node> nextProcess;
+ for (int i = 0; i < int(_process.size()); ++i) {
+ for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
+ Node target = _gr->target(it);
+ Value relaxed =
+ OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
+ if (OperationTraits::less(relaxed, (*_dist)[target])) {
+ _pred->set(target, it);
+ _dist->set(target, relaxed);
+ if (!(*_mask)[target]) {
+ _mask->set(target, true);
+ nextProcess.push_back(target);
+ }
+ }
+ }
+ }
+ _process.swap(nextProcess);
+ return _process.empty();
+ }
+
+ /// \brief Executes the algorithm.
+ ///
+ /// Executes the algorithm.
+ ///
+ /// This method runs the Bellman-Ford algorithm from the root node(s)
+ /// in order to compute the shortest path to each node.
+ ///
+ /// The algorithm computes
+ /// - the shortest path tree (forest),
+ /// - the distance of each node from the root(s).
+ ///
+ /// \pre init() must be called and at least one root node should be
+ /// added with addSource() before using this function.
+ void start() {
+ int num = countNodes(*_gr) - 1;
+ for (int i = 0; i < num; ++i) {
+ if (processNextWeakRound()) break;
+ }
+ }
+
+ /// \brief Executes the algorithm and checks the negative cycles.
+ ///
+ /// Executes the algorithm and checks the negative cycles.
+ ///
+ /// This method runs the Bellman-Ford algorithm from the root node(s)
+ /// in order to compute the shortest path to each node and also checks
+ /// if the digraph contains cycles with negative total length.
+ ///
+ /// The algorithm computes
+ /// - the shortest path tree (forest),
+ /// - the distance of each node from the root(s).
+ ///
+ /// \return \c false if there is a negative cycle in the digraph.
+ ///
+ /// \pre init() must be called and at least one root node should be
+ /// added with addSource() before using this function.
+ bool checkedStart() {
+ int num = countNodes(*_gr);
+ for (int i = 0; i < num; ++i) {
+ if (processNextWeakRound()) return true;
+ }
+ return _process.empty();
+ }
+
+ /// \brief Executes the algorithm with arc number limit.
+ ///
+ /// Executes the algorithm with arc number limit.
+ ///
+ /// This method runs the Bellman-Ford algorithm from the root node(s)
+ /// in order to compute the shortest path distance for each node
+ /// using only the paths consisting of at most \c num arcs.
+ ///
+ /// The algorithm computes
+ /// - the limited distance of each node from the root(s),
+ /// - the predecessor arc for each node.
+ ///
+ /// \warning The paths with limited arc number cannot be retrieved
+ /// easily with \ref path() or \ref predArc() functions. If you also
+ /// need the shortest paths and not only the distances, you should
+ /// store the \ref predMap() "predecessor map" after each iteration
+ /// and build the path manually.
+ ///
+ /// \pre init() must be called and at least one root node should be
+ /// added with addSource() before using this function.
+ void limitedStart(int num) {
+ for (int i = 0; i < num; ++i) {
+ if (processNextRound()) break;
+ }
+ }
+
+ /// \brief Runs the algorithm from the given root node.
+ ///
+ /// This method runs the Bellman-Ford algorithm from the given root
+ /// node \c s in order to compute the shortest path to each node.
+ ///
+ /// The algorithm computes
+ /// - the shortest path tree (forest),
+ /// - the distance of each node from the root(s).
+ ///
+ /// \note bf.run(s) is just a shortcut of the following code.
+ /// \code
+ /// bf.init();
+ /// bf.addSource(s);
+ /// bf.start();
+ /// \endcode
+ void run(Node s) {
+ init();
+ addSource(s);
+ start();
+ }
+
+ /// \brief Runs the algorithm from the given root node with arc
+ /// number limit.
+ ///
+ /// This method runs the Bellman-Ford algorithm from the given root
+ /// node \c s in order to compute the shortest path distance for each
+ /// node using only the paths consisting of at most \c num arcs.
+ ///
+ /// The algorithm computes
+ /// - the limited distance of each node from the root(s),
+ /// - the predecessor arc for each node.
+ ///
+ /// \warning The paths with limited arc number cannot be retrieved
+ /// easily with \ref path() or \ref predArc() functions. If you also
+ /// need the shortest paths and not only the distances, you should
+ /// store the \ref predMap() "predecessor map" after each iteration
+ /// and build the path manually.
+ ///
+ /// \note bf.run(s, num) is just a shortcut of the following code.
+ /// \code
+ /// bf.init();
+ /// bf.addSource(s);
+ /// bf.limitedStart(num);
+ /// \endcode
+ void run(Node s, int num) {
+ init();
+ addSource(s);
+ limitedStart(num);
+ }
+
+ ///@}
+
+ /// \brief LEMON iterator for getting the active nodes.
+ ///
+ /// This class provides a common style LEMON iterator that traverses
+ /// the active nodes of the Bellman-Ford algorithm after the last
+ /// phase. These nodes should be checked in the next phase to
+ /// find augmenting arcs outgoing from them.
+ class ActiveIt {
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// Constructor for getting the active nodes of the given BellmanFord
+ /// instance.
+ ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
+ {
+ _index = _algorithm->_process.size() - 1;
+ }
+
+ /// \brief Invalid constructor.
+ ///
+ /// Invalid constructor.
+ ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
+
+ /// \brief Conversion to \c Node.
+ ///
+ /// Conversion to \c Node.
+ operator Node() const {
+ return _index >= 0 ? _algorithm->_process[_index] : INVALID;
+ }
+
+ /// \brief Increment operator.
+ ///
+ /// Increment operator.
+ ActiveIt& operator++() {
+ --_index;
+ return *this;
+ }
+
+ bool operator==(const ActiveIt& it) const {
+ return static_cast<Node>(*this) == static_cast<Node>(it);
+ }
+ bool operator!=(const ActiveIt& it) const {
+ return static_cast<Node>(*this) != static_cast<Node>(it);
+ }
+ bool operator<(const ActiveIt& it) const {
+ return static_cast<Node>(*this) < static_cast<Node>(it);
+ }
+
+ private:
+ const BellmanFord* _algorithm;
+ int _index;
+ };
+
+ /// \name Query Functions
+ /// The result of the Bellman-Ford algorithm can be obtained using these
+ /// functions.\n
+ /// Either \ref run() or \ref init() should be called before using them.
+
+ ///@{
+
+ /// \brief The shortest path to the given node.
+ ///
+ /// Gives back the shortest path to the given node from the root(s).
+ ///
+ /// \warning \c t should be reached from the root(s).
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Path path(Node t) const
+ {
+ return Path(*_gr, *_pred, t);
+ }
+
+ /// \brief The distance of the given node from the root(s).
+ ///
+ /// Returns the distance of the given node from the root(s).
+ ///
+ /// \warning If node \c v is not reached from the root(s), then
+ /// the return value of this function is undefined.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Value dist(Node v) const { return (*_dist)[v]; }
+
+ /// \brief Returns the 'previous arc' of the shortest path tree for
+ /// the given node.
+ ///
+ /// This function returns the 'previous arc' of the shortest path
+ /// tree for node \c v, i.e. it returns the last arc of a
+ /// shortest path from a root to \c v. It is \c INVALID if \c v
+ /// is not reached from the root(s) or if \c v is a root.
+ ///
+ /// The shortest path tree used here is equal to the shortest path
+ /// tree used in \ref predNode() and \ref predMap().
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Arc predArc(Node v) const { return (*_pred)[v]; }
+
+ /// \brief Returns the 'previous node' of the shortest path tree for
+ /// the given node.
+ ///
+ /// This function returns the 'previous node' of the shortest path
+ /// tree for node \c v, i.e. it returns the last but one node of
+ /// a shortest path from a root to \c v. It is \c INVALID if \c v
+ /// is not reached from the root(s) or if \c v is a root.
+ ///
+ /// The shortest path tree used here is equal to the shortest path
+ /// tree used in \ref predArc() and \ref predMap().
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Node predNode(Node v) const {
+ return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
+ }
+
+ /// \brief Returns a const reference to the node map that stores the
+ /// distances of the nodes.
+ ///
+ /// Returns a const reference to the node map that stores the distances
+ /// of the nodes calculated by the algorithm.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ const DistMap &distMap() const { return *_dist;}
+
+ /// \brief Returns a const reference to the node map that stores the
+ /// predecessor arcs.
+ ///
+ /// Returns a const reference to the node map that stores the predecessor
+ /// arcs, which form the shortest path tree (forest).
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ const PredMap &predMap() const { return *_pred; }
+
+ /// \brief Checks if a node is reached from the root(s).
+ ///
+ /// Returns \c true if \c v is reached from the root(s).
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ bool reached(Node v) const {
+ return (*_dist)[v] != OperationTraits::infinity();
+ }
+
+ /// \brief Gives back a negative cycle.
+ ///
+ /// This function gives back a directed cycle with negative total
+ /// length if the algorithm has already found one.
+ /// Otherwise it gives back an empty path.
+ lemon::Path<Digraph> negativeCycle() const {
+ typename Digraph::template NodeMap<int> state(*_gr, -1);
+ lemon::Path<Digraph> cycle;
+ for (int i = 0; i < int(_process.size()); ++i) {
+ if (state[_process[i]] != -1) continue;
+ for (Node v = _process[i]; (*_pred)[v] != INVALID;
+ v = _gr->source((*_pred)[v])) {
+ if (state[v] == i) {
+ cycle.addFront((*_pred)[v]);
+ for (Node u = _gr->source((*_pred)[v]); u != v;
+ u = _gr->source((*_pred)[u])) {
+ cycle.addFront((*_pred)[u]);
+ }
+ return cycle;
+ }
+ else if (state[v] >= 0) {
+ break;
+ }
+ state[v] = i;
+ }
+ }
+ return cycle;
+ }
+
+ ///@}
+ };
+
+ /// \brief Default traits class of bellmanFord() function.
+ ///
+ /// Default traits class of bellmanFord() function.
+ /// \tparam GR The type of the digraph.
+ /// \tparam LEN The type of the length map.
+ template <typename GR, typename LEN>
+ struct BellmanFordWizardDefaultTraits {
+ /// The type of the digraph the algorithm runs on.
+ typedef GR Digraph;
+
+ /// \brief The type of the map that stores the arc lengths.
+ ///
+ /// The type of the map that stores the arc lengths.
+ /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
+ typedef LEN LengthMap;
+
+ /// The type of the arc lengths.
+ typedef typename LEN::Value Value;
+
+ /// \brief Operation traits for Bellman-Ford algorithm.
+ ///
+ /// It defines the used operations and the infinity value for the
+ /// given \c Value type.
+ /// \see BellmanFordDefaultOperationTraits
+ typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
+
+ /// \brief The type of the map that stores the last
+ /// arcs of the shortest paths.
+ ///
+ /// The type of the map that stores the last arcs of the shortest paths.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
+
+ /// \brief Instantiates a \c PredMap.
+ ///
+ /// This function instantiates a \ref PredMap.
+ /// \param g is the digraph to which we would like to define the
+ /// \ref PredMap.
+ static PredMap *createPredMap(const GR &g) {
+ return new PredMap(g);
+ }
+
+ /// \brief The type of the map that stores the distances of the nodes.
+ ///
+ /// The type of the map that stores the distances of the nodes.
+ /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
+ typedef typename GR::template NodeMap<Value> DistMap;
+
+ /// \brief Instantiates a \c DistMap.
+ ///
+ /// This function instantiates a \ref DistMap.
+ /// \param g is the digraph to which we would like to define the
+ /// \ref DistMap.
+ static DistMap *createDistMap(const GR &g) {
+ return new DistMap(g);
+ }
+
+ ///The type of the shortest paths.
+
+ ///The type of the shortest paths.
+ ///It must meet the \ref concepts::Path "Path" concept.
+ typedef lemon::Path<Digraph> Path;
+ };
+
+ /// \brief Default traits class used by BellmanFordWizard.
+ ///
+ /// Default traits class used by BellmanFordWizard.
+ /// \tparam GR The type of the digraph.
+ /// \tparam LEN The type of the length map.
+ template <typename GR, typename LEN>
+ class BellmanFordWizardBase
+ : public BellmanFordWizardDefaultTraits<GR, LEN> {
+
+ typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
+ protected:
+ // Type of the nodes in the digraph.
+ typedef typename Base::Digraph::Node Node;
+
+ // Pointer to the underlying digraph.
+ void *_graph;
+ // Pointer to the length map
+ void *_length;
+ // Pointer to the map of predecessors arcs.
+ void *_pred;
+ // Pointer to the map of distances.
+ void *_dist;
+ //Pointer to the shortest path to the target node.
+ void *_path;
+ //Pointer to the distance of the target node.
+ void *_di;
+
+ public:
+ /// Constructor.
+
+ /// This constructor does not require parameters, it initiates
+ /// all of the attributes to default values \c 0.
+ BellmanFordWizardBase() :
+ _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
+
+ /// Constructor.
+
+ /// This constructor requires two parameters,
+ /// others are initiated to \c 0.
+ /// \param gr The digraph the algorithm runs on.
+ /// \param len The length map.
+ BellmanFordWizardBase(const GR& gr,
+ const LEN& len) :
+ _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
+ _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
+ _pred(0), _dist(0), _path(0), _di(0) {}
+
+ };
+
+ /// \brief Auxiliary class for the function-type interface of the
+ /// \ref BellmanFord "Bellman-Ford" algorithm.
+ ///
+ /// This auxiliary class is created to implement the
+ /// \ref bellmanFord() "function-type interface" of the
+ /// \ref BellmanFord "Bellman-Ford" algorithm.
+ /// It does not have own \ref run() method, it uses the
+ /// functions and features of the plain \ref BellmanFord.
+ ///
+ /// This class should only be used through the \ref bellmanFord()
+ /// function, which makes it easier to use the algorithm.
+ ///
+ /// \tparam TR The traits class that defines various types used by the
+ /// algorithm.
+ template<class TR>
+ class BellmanFordWizard : public TR {
+ typedef TR Base;
+
+ typedef typename TR::Digraph Digraph;
+
+ typedef typename Digraph::Node Node;
+ typedef typename Digraph::NodeIt NodeIt;
+ typedef typename Digraph::Arc Arc;
+ typedef typename Digraph::OutArcIt ArcIt;
+
+ typedef typename TR::LengthMap LengthMap;
+ typedef typename LengthMap::Value Value;
+ typedef typename TR::PredMap PredMap;
+ typedef typename TR::DistMap DistMap;
+ typedef typename TR::Path Path;
+
+ public:
+ /// Constructor.
+ BellmanFordWizard() : TR() {}
+
+ /// \brief Constructor that requires parameters.
+ ///
+ /// Constructor that requires parameters.
+ /// These parameters will be the default values for the traits class.
+ /// \param gr The digraph the algorithm runs on.
+ /// \param len The length map.
+ BellmanFordWizard(const Digraph& gr, const LengthMap& len)
+ : TR(gr, len) {}
+
+ /// \brief Copy constructor
+ BellmanFordWizard(const TR &b) : TR(b) {}
+
+ ~BellmanFordWizard() {}
+
+ /// \brief Runs the Bellman-Ford algorithm from the given source node.
+ ///
+ /// This method runs the Bellman-Ford algorithm from the given source
+ /// node in order to compute the shortest path to each node.
+ void run(Node s) {
+ BellmanFord<Digraph,LengthMap,TR>
+ bf(*reinterpret_cast<const Digraph*>(Base::_graph),
+ *reinterpret_cast<const LengthMap*>(Base::_length));
+ if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
+ if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
+ bf.run(s);
+ }
+
+ /// \brief Runs the Bellman-Ford algorithm to find the shortest path
+ /// between \c s and \c t.
+ ///
+ /// This method runs the Bellman-Ford algorithm from node \c s
+ /// in order to compute the shortest path to node \c t.
+ /// Actually, it computes the shortest path to each node, but using
+ /// this function you can retrieve the distance and the shortest path
+ /// for a single target node easier.
+ ///
+ /// \return \c true if \c t is reachable form \c s.
+ bool run(Node s, Node t) {
+ BellmanFord<Digraph,LengthMap,TR>
+ bf(*reinterpret_cast<const Digraph*>(Base::_graph),
+ *reinterpret_cast<const LengthMap*>(Base::_length));
+ if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
+ if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
+ bf.run(s);
+ if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
+ if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
+ return bf.reached(t);
+ }
+
+ template<class T>
+ struct SetPredMapBase : public Base {
+ typedef T PredMap;
+ static PredMap *createPredMap(const Digraph &) { return 0; };
+ SetPredMapBase(const TR &b) : TR(b) {}
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// the predecessor map.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// the map that stores the predecessor arcs of the nodes.
+ template<class T>
+ BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
+ Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
+ return BellmanFordWizard<SetPredMapBase<T> >(*this);
+ }
+
+ template<class T>
+ struct SetDistMapBase : public Base {
+ typedef T DistMap;
+ static DistMap *createDistMap(const Digraph &) { return 0; };
+ SetDistMapBase(const TR &b) : TR(b) {}
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// the distance map.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting
+ /// the map that stores the distances of the nodes calculated
+ /// by the algorithm.
+ template<class T>
+ BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
+ Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
+ return BellmanFordWizard<SetDistMapBase<T> >(*this);
+ }
+
+ template<class T>
+ struct SetPathBase : public Base {
+ typedef T Path;
+ SetPathBase(const TR &b) : TR(b) {}
+ };
+
+ /// \brief \ref named-func-param "Named parameter" for getting
+ /// the shortest path to the target node.
+ ///
+ /// \ref named-func-param "Named parameter" for getting
+ /// the shortest path to the target node.
+ template<class T>
+ BellmanFordWizard<SetPathBase<T> > path(const T &t)
+ {
+ Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
+ return BellmanFordWizard<SetPathBase<T> >(*this);
+ }
+
+ /// \brief \ref named-func-param "Named parameter" for getting
+ /// the distance of the target node.
+ ///
+ /// \ref named-func-param "Named parameter" for getting
+ /// the distance of the target node.
+ BellmanFordWizard dist(const Value &d)
+ {
+ Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
+ return *this;
+ }
+
+ };
+
+ /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
+ /// algorithm.
+ ///
+ /// \ingroup shortest_path
+ /// Function type interface for the \ref BellmanFord "Bellman-Ford"
+ /// algorithm.
+ ///
+ /// This function also has several \ref named-templ-func-param
+ /// "named parameters", they are declared as the members of class
+ /// \ref BellmanFordWizard.
+ /// The following examples show how to use these parameters.
+ /// \code
+ /// // Compute shortest path from node s to each node
+ /// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
+ ///
+ /// // Compute shortest path from s to t
+ /// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
+ /// \endcode
+ /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
+ /// to the end of the parameter list.
+ /// \sa BellmanFordWizard
+ /// \sa BellmanFord
+ template<typename GR, typename LEN>
+ BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
+ bellmanFord(const GR& digraph,
+ const LEN& length)
+ {
+ return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
+ }
+
+} //END OF NAMESPACE LEMON
+
+#endif
+