Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/binomial_heap.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/binomial_heap.h445
1 files changed, 445 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/binomial_heap.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/binomial_heap.h
new file mode 100644
index 00000000000..5bc13787058
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/binomial_heap.h
@@ -0,0 +1,445 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2010
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_BINOMIAL_HEAP_H
+#define LEMON_BINOMIAL_HEAP_H
+
+///\file
+///\ingroup heaps
+///\brief Binomial Heap implementation.
+
+#include <vector>
+#include <utility>
+#include <functional>
+#include <lemon/math.h>
+#include <lemon/counter.h>
+
+namespace lemon {
+
+ /// \ingroup heaps
+ ///
+ ///\brief Binomial heap data structure.
+ ///
+ /// This class implements the \e binomial \e heap data structure.
+ /// It fully conforms to the \ref concepts::Heap "heap concept".
+ ///
+ /// The methods \ref increase() and \ref erase() are not efficient
+ /// in a binomial heap. In case of many calls of these operations,
+ /// it is better to use other heap structure, e.g. \ref BinHeap
+ /// "binary heap".
+ ///
+ /// \tparam PR Type of the priorities of the items.
+ /// \tparam IM A read-writable item map with \c int values, used
+ /// internally to handle the cross references.
+ /// \tparam CMP A functor class for comparing the priorities.
+ /// The default is \c std::less<PR>.
+#ifdef DOXYGEN
+ template <typename PR, typename IM, typename CMP>
+#else
+ template <typename PR, typename IM, typename CMP = std::less<PR> >
+#endif
+ class BinomialHeap {
+ public:
+ /// Type of the item-int map.
+ typedef IM ItemIntMap;
+ /// Type of the priorities.
+ typedef PR Prio;
+ /// Type of the items stored in the heap.
+ typedef typename ItemIntMap::Key Item;
+ /// Functor type for comparing the priorities.
+ typedef CMP Compare;
+
+ /// \brief Type to represent the states of the items.
+ ///
+ /// Each item has a state associated to it. It can be "in heap",
+ /// "pre-heap" or "post-heap". The latter two are indifferent from the
+ /// heap's point of view, but may be useful to the user.
+ ///
+ /// The item-int map must be initialized in such way that it assigns
+ /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
+ enum State {
+ IN_HEAP = 0, ///< = 0.
+ PRE_HEAP = -1, ///< = -1.
+ POST_HEAP = -2 ///< = -2.
+ };
+
+ private:
+ class Store;
+
+ std::vector<Store> _data;
+ int _min, _head;
+ ItemIntMap &_iim;
+ Compare _comp;
+ int _num_items;
+
+ public:
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param map A map that assigns \c int values to the items.
+ /// It is used internally to handle the cross references.
+ /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
+ explicit BinomialHeap(ItemIntMap &map)
+ : _min(0), _head(-1), _iim(map), _num_items(0) {}
+
+ /// \brief Constructor.
+ ///
+ /// Constructor.
+ /// \param map A map that assigns \c int values to the items.
+ /// It is used internally to handle the cross references.
+ /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
+ /// \param comp The function object used for comparing the priorities.
+ BinomialHeap(ItemIntMap &map, const Compare &comp)
+ : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
+
+ /// \brief The number of items stored in the heap.
+ ///
+ /// This function returns the number of items stored in the heap.
+ int size() const { return _num_items; }
+
+ /// \brief Check if the heap is empty.
+ ///
+ /// This function returns \c true if the heap is empty.
+ bool empty() const { return _num_items==0; }
+
+ /// \brief Make the heap empty.
+ ///
+ /// This functon makes the heap empty.
+ /// It does not change the cross reference map. If you want to reuse
+ /// a heap that is not surely empty, you should first clear it and
+ /// then you should set the cross reference map to \c PRE_HEAP
+ /// for each item.
+ void clear() {
+ _data.clear(); _min=0; _num_items=0; _head=-1;
+ }
+
+ /// \brief Set the priority of an item or insert it, if it is
+ /// not stored in the heap.
+ ///
+ /// This method sets the priority of the given item if it is
+ /// already stored in the heap. Otherwise it inserts the given
+ /// item into the heap with the given priority.
+ /// \param item The item.
+ /// \param value The priority.
+ void set (const Item& item, const Prio& value) {
+ int i=_iim[item];
+ if ( i >= 0 && _data[i].in ) {
+ if ( _comp(value, _data[i].prio) ) decrease(item, value);
+ if ( _comp(_data[i].prio, value) ) increase(item, value);
+ } else push(item, value);
+ }
+
+ /// \brief Insert an item into the heap with the given priority.
+ ///
+ /// This function inserts the given item into the heap with the
+ /// given priority.
+ /// \param item The item to insert.
+ /// \param value The priority of the item.
+ /// \pre \e item must not be stored in the heap.
+ void push (const Item& item, const Prio& value) {
+ int i=_iim[item];
+ if ( i<0 ) {
+ int s=_data.size();
+ _iim.set( item,s );
+ Store st;
+ st.name=item;
+ st.prio=value;
+ _data.push_back(st);
+ i=s;
+ }
+ else {
+ _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
+ _data[i].degree=0;
+ _data[i].in=true;
+ _data[i].prio=value;
+ }
+
+ if( 0==_num_items ) {
+ _head=i;
+ _min=i;
+ } else {
+ merge(i);
+ if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
+ }
+ ++_num_items;
+ }
+
+ /// \brief Return the item having minimum priority.
+ ///
+ /// This function returns the item having minimum priority.
+ /// \pre The heap must be non-empty.
+ Item top() const { return _data[_min].name; }
+
+ /// \brief The minimum priority.
+ ///
+ /// This function returns the minimum priority.
+ /// \pre The heap must be non-empty.
+ Prio prio() const { return _data[_min].prio; }
+
+ /// \brief The priority of the given item.
+ ///
+ /// This function returns the priority of the given item.
+ /// \param item The item.
+ /// \pre \e item must be in the heap.
+ const Prio& operator[](const Item& item) const {
+ return _data[_iim[item]].prio;
+ }
+
+ /// \brief Remove the item having minimum priority.
+ ///
+ /// This function removes the item having minimum priority.
+ /// \pre The heap must be non-empty.
+ void pop() {
+ _data[_min].in=false;
+
+ int head_child=-1;
+ if ( _data[_min].child!=-1 ) {
+ int child=_data[_min].child;
+ int neighb;
+ while( child!=-1 ) {
+ neighb=_data[child].right_neighbor;
+ _data[child].parent=-1;
+ _data[child].right_neighbor=head_child;
+ head_child=child;
+ child=neighb;
+ }
+ }
+
+ if ( _data[_head].right_neighbor==-1 ) {
+ // there was only one root
+ _head=head_child;
+ }
+ else {
+ // there were more roots
+ if( _head!=_min ) { unlace(_min); }
+ else { _head=_data[_head].right_neighbor; }
+ merge(head_child);
+ }
+ _min=findMin();
+ --_num_items;
+ }
+
+ /// \brief Remove the given item from the heap.
+ ///
+ /// This function removes the given item from the heap if it is
+ /// already stored.
+ /// \param item The item to delete.
+ /// \pre \e item must be in the heap.
+ void erase (const Item& item) {
+ int i=_iim[item];
+ if ( i >= 0 && _data[i].in ) {
+ decrease( item, _data[_min].prio-1 );
+ pop();
+ }
+ }
+
+ /// \brief Decrease the priority of an item to the given value.
+ ///
+ /// This function decreases the priority of an item to the given value.
+ /// \param item The item.
+ /// \param value The priority.
+ /// \pre \e item must be stored in the heap with priority at least \e value.
+ void decrease (Item item, const Prio& value) {
+ int i=_iim[item];
+ int p=_data[i].parent;
+ _data[i].prio=value;
+
+ while( p!=-1 && _comp(value, _data[p].prio) ) {
+ _data[i].name=_data[p].name;
+ _data[i].prio=_data[p].prio;
+ _data[p].name=item;
+ _data[p].prio=value;
+ _iim[_data[i].name]=i;
+ i=p;
+ p=_data[p].parent;
+ }
+ _iim[item]=i;
+ if ( _comp(value, _data[_min].prio) ) _min=i;
+ }
+
+ /// \brief Increase the priority of an item to the given value.
+ ///
+ /// This function increases the priority of an item to the given value.
+ /// \param item The item.
+ /// \param value The priority.
+ /// \pre \e item must be stored in the heap with priority at most \e value.
+ void increase (Item item, const Prio& value) {
+ erase(item);
+ push(item, value);
+ }
+
+ /// \brief Return the state of an item.
+ ///
+ /// This method returns \c PRE_HEAP if the given item has never
+ /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
+ /// and \c POST_HEAP otherwise.
+ /// In the latter case it is possible that the item will get back
+ /// to the heap again.
+ /// \param item The item.
+ State state(const Item &item) const {
+ int i=_iim[item];
+ if( i>=0 ) {
+ if ( _data[i].in ) i=0;
+ else i=-2;
+ }
+ return State(i);
+ }
+
+ /// \brief Set the state of an item in the heap.
+ ///
+ /// This function sets the state of the given item in the heap.
+ /// It can be used to manually clear the heap when it is important
+ /// to achive better time complexity.
+ /// \param i The item.
+ /// \param st The state. It should not be \c IN_HEAP.
+ void state(const Item& i, State st) {
+ switch (st) {
+ case POST_HEAP:
+ case PRE_HEAP:
+ if (state(i) == IN_HEAP) {
+ erase(i);
+ }
+ _iim[i] = st;
+ break;
+ case IN_HEAP:
+ break;
+ }
+ }
+
+ private:
+
+ // Find the minimum of the roots
+ int findMin() {
+ if( _head!=-1 ) {
+ int min_loc=_head, min_val=_data[_head].prio;
+ for( int x=_data[_head].right_neighbor; x!=-1;
+ x=_data[x].right_neighbor ) {
+ if( _comp( _data[x].prio,min_val ) ) {
+ min_val=_data[x].prio;
+ min_loc=x;
+ }
+ }
+ return min_loc;
+ }
+ else return -1;
+ }
+
+ // Merge the heap with another heap starting at the given position
+ void merge(int a) {
+ if( _head==-1 || a==-1 ) return;
+ if( _data[a].right_neighbor==-1 &&
+ _data[a].degree<=_data[_head].degree ) {
+ _data[a].right_neighbor=_head;
+ _head=a;
+ } else {
+ interleave(a);
+ }
+ if( _data[_head].right_neighbor==-1 ) return;
+
+ int x=_head;
+ int x_prev=-1, x_next=_data[x].right_neighbor;
+ while( x_next!=-1 ) {
+ if( _data[x].degree!=_data[x_next].degree ||
+ ( _data[x_next].right_neighbor!=-1 &&
+ _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
+ x_prev=x;
+ x=x_next;
+ }
+ else {
+ if( _comp(_data[x_next].prio,_data[x].prio) ) {
+ if( x_prev==-1 ) {
+ _head=x_next;
+ } else {
+ _data[x_prev].right_neighbor=x_next;
+ }
+ fuse(x,x_next);
+ x=x_next;
+ }
+ else {
+ _data[x].right_neighbor=_data[x_next].right_neighbor;
+ fuse(x_next,x);
+ }
+ }
+ x_next=_data[x].right_neighbor;
+ }
+ }
+
+ // Interleave the elements of the given list into the list of the roots
+ void interleave(int a) {
+ int p=_head, q=a;
+ int curr=_data.size();
+ _data.push_back(Store());
+
+ while( p!=-1 || q!=-1 ) {
+ if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
+ _data[curr].right_neighbor=p;
+ curr=p;
+ p=_data[p].right_neighbor;
+ }
+ else {
+ _data[curr].right_neighbor=q;
+ curr=q;
+ q=_data[q].right_neighbor;
+ }
+ }
+
+ _head=_data.back().right_neighbor;
+ _data.pop_back();
+ }
+
+ // Lace node a under node b
+ void fuse(int a, int b) {
+ _data[a].parent=b;
+ _data[a].right_neighbor=_data[b].child;
+ _data[b].child=a;
+
+ ++_data[b].degree;
+ }
+
+ // Unlace node a (if it has siblings)
+ void unlace(int a) {
+ int neighb=_data[a].right_neighbor;
+ int other=_head;
+
+ while( _data[other].right_neighbor!=a )
+ other=_data[other].right_neighbor;
+ _data[other].right_neighbor=neighb;
+ }
+
+ private:
+
+ class Store {
+ friend class BinomialHeap;
+
+ Item name;
+ int parent;
+ int right_neighbor;
+ int child;
+ int degree;
+ bool in;
+ Prio prio;
+
+ Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
+ in(true) {}
+ };
+ };
+
+} //namespace lemon
+
+#endif //LEMON_BINOMIAL_HEAP_H
+