Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/capacity_scaling.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/capacity_scaling.h1014
1 files changed, 1014 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/capacity_scaling.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/capacity_scaling.h
new file mode 100644
index 00000000000..ca64b56d3b3
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/capacity_scaling.h
@@ -0,0 +1,1014 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_CAPACITY_SCALING_H
+#define LEMON_CAPACITY_SCALING_H
+
+/// \ingroup min_cost_flow_algs
+///
+/// \file
+/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
+
+#include <vector>
+#include <limits>
+#include <lemon/core.h>
+#include <lemon/bin_heap.h>
+
+namespace lemon {
+
+ /// \brief Default traits class of CapacityScaling algorithm.
+ ///
+ /// Default traits class of CapacityScaling algorithm.
+ /// \tparam GR Digraph type.
+ /// \tparam V The number type used for flow amounts, capacity bounds
+ /// and supply values. By default it is \c int.
+ /// \tparam C The number type used for costs and potentials.
+ /// By default it is the same as \c V.
+ template <typename GR, typename V = int, typename C = V>
+ struct CapacityScalingDefaultTraits
+ {
+ /// The type of the digraph
+ typedef GR Digraph;
+ /// The type of the flow amounts, capacity bounds and supply values
+ typedef V Value;
+ /// The type of the arc costs
+ typedef C Cost;
+
+ /// \brief The type of the heap used for internal Dijkstra computations.
+ ///
+ /// The type of the heap used for internal Dijkstra computations.
+ /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
+ /// its priority type must be \c Cost and its cross reference type
+ /// must be \ref RangeMap "RangeMap<int>".
+ typedef BinHeap<Cost, RangeMap<int> > Heap;
+ };
+
+ /// \addtogroup min_cost_flow_algs
+ /// @{
+
+ /// \brief Implementation of the Capacity Scaling algorithm for
+ /// finding a \ref min_cost_flow "minimum cost flow".
+ ///
+ /// \ref CapacityScaling implements the capacity scaling version
+ /// of the successive shortest path algorithm for finding a
+ /// \ref min_cost_flow "minimum cost flow" \cite amo93networkflows,
+ /// \cite edmondskarp72theoretical. It is an efficient dual
+ /// solution method, which runs in polynomial time
+ /// \f$O(m\log U (n+m)\log n)\f$, where <i>U</i> denotes the maximum
+ /// of node supply and arc capacity values.
+ ///
+ /// This algorithm is typically slower than \ref CostScaling and
+ /// \ref NetworkSimplex, but in special cases, it can be more
+ /// efficient than them.
+ /// (For more information, see \ref min_cost_flow_algs "the module page".)
+ ///
+ /// Most of the parameters of the problem (except for the digraph)
+ /// can be given using separate functions, and the algorithm can be
+ /// executed using the \ref run() function. If some parameters are not
+ /// specified, then default values will be used.
+ ///
+ /// \tparam GR The digraph type the algorithm runs on.
+ /// \tparam V The number type used for flow amounts, capacity bounds
+ /// and supply values in the algorithm. By default, it is \c int.
+ /// \tparam C The number type used for costs and potentials in the
+ /// algorithm. By default, it is the same as \c V.
+ /// \tparam TR The traits class that defines various types used by the
+ /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
+ /// "CapacityScalingDefaultTraits<GR, V, C>".
+ /// In most cases, this parameter should not be set directly,
+ /// consider to use the named template parameters instead.
+ ///
+ /// \warning Both \c V and \c C must be signed number types.
+ /// \warning Capacity bounds and supply values must be integer, but
+ /// arc costs can be arbitrary real numbers.
+ /// \warning This algorithm does not support negative costs for
+ /// arcs having infinite upper bound.
+#ifdef DOXYGEN
+ template <typename GR, typename V, typename C, typename TR>
+#else
+ template < typename GR, typename V = int, typename C = V,
+ typename TR = CapacityScalingDefaultTraits<GR, V, C> >
+#endif
+ class CapacityScaling
+ {
+ public:
+
+ /// The type of the digraph
+ typedef typename TR::Digraph Digraph;
+ /// The type of the flow amounts, capacity bounds and supply values
+ typedef typename TR::Value Value;
+ /// The type of the arc costs
+ typedef typename TR::Cost Cost;
+
+ /// The type of the heap used for internal Dijkstra computations
+ typedef typename TR::Heap Heap;
+
+ /// \brief The \ref lemon::CapacityScalingDefaultTraits "traits class"
+ /// of the algorithm
+ typedef TR Traits;
+
+ public:
+
+ /// \brief Problem type constants for the \c run() function.
+ ///
+ /// Enum type containing the problem type constants that can be
+ /// returned by the \ref run() function of the algorithm.
+ enum ProblemType {
+ /// The problem has no feasible solution (flow).
+ INFEASIBLE,
+ /// The problem has optimal solution (i.e. it is feasible and
+ /// bounded), and the algorithm has found optimal flow and node
+ /// potentials (primal and dual solutions).
+ OPTIMAL,
+ /// The digraph contains an arc of negative cost and infinite
+ /// upper bound. It means that the objective function is unbounded
+ /// on that arc, however, note that it could actually be bounded
+ /// over the feasible flows, but this algroithm cannot handle
+ /// these cases.
+ UNBOUNDED
+ };
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ typedef std::vector<int> IntVector;
+ typedef std::vector<Value> ValueVector;
+ typedef std::vector<Cost> CostVector;
+ typedef std::vector<char> BoolVector;
+ // Note: vector<char> is used instead of vector<bool> for efficiency reasons
+
+ private:
+
+ // Data related to the underlying digraph
+ const GR &_graph;
+ int _node_num;
+ int _arc_num;
+ int _res_arc_num;
+ int _root;
+
+ // Parameters of the problem
+ bool _has_lower;
+ Value _sum_supply;
+
+ // Data structures for storing the digraph
+ IntNodeMap _node_id;
+ IntArcMap _arc_idf;
+ IntArcMap _arc_idb;
+ IntVector _first_out;
+ BoolVector _forward;
+ IntVector _source;
+ IntVector _target;
+ IntVector _reverse;
+
+ // Node and arc data
+ ValueVector _lower;
+ ValueVector _upper;
+ CostVector _cost;
+ ValueVector _supply;
+
+ ValueVector _res_cap;
+ CostVector _pi;
+ ValueVector _excess;
+ IntVector _excess_nodes;
+ IntVector _deficit_nodes;
+
+ Value _delta;
+ int _factor;
+ IntVector _pred;
+
+ public:
+
+ /// \brief Constant for infinite upper bounds (capacities).
+ ///
+ /// Constant for infinite upper bounds (capacities).
+ /// It is \c std::numeric_limits<Value>::infinity() if available,
+ /// \c std::numeric_limits<Value>::max() otherwise.
+ const Value INF;
+
+ private:
+
+ // Special implementation of the Dijkstra algorithm for finding
+ // shortest paths in the residual network of the digraph with
+ // respect to the reduced arc costs and modifying the node
+ // potentials according to the found distance labels.
+ class ResidualDijkstra
+ {
+ private:
+
+ int _node_num;
+ bool _geq;
+ const IntVector &_first_out;
+ const IntVector &_target;
+ const CostVector &_cost;
+ const ValueVector &_res_cap;
+ const ValueVector &_excess;
+ CostVector &_pi;
+ IntVector &_pred;
+
+ IntVector _proc_nodes;
+ CostVector _dist;
+
+ public:
+
+ ResidualDijkstra(CapacityScaling& cs) :
+ _node_num(cs._node_num), _geq(cs._sum_supply < 0),
+ _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
+ _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
+ _pred(cs._pred), _dist(cs._node_num)
+ {}
+
+ int run(int s, Value delta = 1) {
+ RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
+ Heap heap(heap_cross_ref);
+ heap.push(s, 0);
+ _pred[s] = -1;
+ _proc_nodes.clear();
+
+ // Process nodes
+ while (!heap.empty() && _excess[heap.top()] > -delta) {
+ int u = heap.top(), v;
+ Cost d = heap.prio() + _pi[u], dn;
+ _dist[u] = heap.prio();
+ _proc_nodes.push_back(u);
+ heap.pop();
+
+ // Traverse outgoing residual arcs
+ int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
+ for (int a = _first_out[u]; a != last_out; ++a) {
+ if (_res_cap[a] < delta) continue;
+ v = _target[a];
+ switch (heap.state(v)) {
+ case Heap::PRE_HEAP:
+ heap.push(v, d + _cost[a] - _pi[v]);
+ _pred[v] = a;
+ break;
+ case Heap::IN_HEAP:
+ dn = d + _cost[a] - _pi[v];
+ if (dn < heap[v]) {
+ heap.decrease(v, dn);
+ _pred[v] = a;
+ }
+ break;
+ case Heap::POST_HEAP:
+ break;
+ }
+ }
+ }
+ if (heap.empty()) return -1;
+
+ // Update potentials of processed nodes
+ int t = heap.top();
+ Cost dt = heap.prio();
+ for (int i = 0; i < int(_proc_nodes.size()); ++i) {
+ _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
+ }
+
+ return t;
+ }
+
+ }; //class ResidualDijkstra
+
+ public:
+
+ /// \name Named Template Parameters
+ /// @{
+
+ template <typename T>
+ struct SetHeapTraits : public Traits {
+ typedef T Heap;
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// \c Heap type.
+ ///
+ /// \ref named-templ-param "Named parameter" for setting \c Heap
+ /// type, which is used for internal Dijkstra computations.
+ /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
+ /// its priority type must be \c Cost and its cross reference type
+ /// must be \ref RangeMap "RangeMap<int>".
+ template <typename T>
+ struct SetHeap
+ : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
+ typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
+ };
+
+ /// @}
+
+ protected:
+
+ CapacityScaling() {}
+
+ public:
+
+ /// \brief Constructor.
+ ///
+ /// The constructor of the class.
+ ///
+ /// \param graph The digraph the algorithm runs on.
+ CapacityScaling(const GR& graph) :
+ _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
+ INF(std::numeric_limits<Value>::has_infinity ?
+ std::numeric_limits<Value>::infinity() :
+ std::numeric_limits<Value>::max())
+ {
+ // Check the number types
+ LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
+ "The flow type of CapacityScaling must be signed");
+ LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
+ "The cost type of CapacityScaling must be signed");
+
+ // Reset data structures
+ reset();
+ }
+
+ /// \name Parameters
+ /// The parameters of the algorithm can be specified using these
+ /// functions.
+
+ /// @{
+
+ /// \brief Set the lower bounds on the arcs.
+ ///
+ /// This function sets the lower bounds on the arcs.
+ /// If it is not used before calling \ref run(), the lower bounds
+ /// will be set to zero on all arcs.
+ ///
+ /// \param map An arc map storing the lower bounds.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template <typename LowerMap>
+ CapacityScaling& lowerMap(const LowerMap& map) {
+ _has_lower = true;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _lower[_arc_idf[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the upper bounds (capacities) on the arcs.
+ ///
+ /// This function sets the upper bounds (capacities) on the arcs.
+ /// If it is not used before calling \ref run(), the upper bounds
+ /// will be set to \ref INF on all arcs (i.e. the flow value will be
+ /// unbounded from above).
+ ///
+ /// \param map An arc map storing the upper bounds.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename UpperMap>
+ CapacityScaling& upperMap(const UpperMap& map) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _upper[_arc_idf[a]] = map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the costs of the arcs.
+ ///
+ /// This function sets the costs of the arcs.
+ /// If it is not used before calling \ref run(), the costs
+ /// will be set to \c 1 on all arcs.
+ ///
+ /// \param map An arc map storing the costs.
+ /// Its \c Value type must be convertible to the \c Cost type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename CostMap>
+ CapacityScaling& costMap(const CostMap& map) {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ _cost[_arc_idf[a]] = map[a];
+ _cost[_arc_idb[a]] = -map[a];
+ }
+ return *this;
+ }
+
+ /// \brief Set the supply values of the nodes.
+ ///
+ /// This function sets the supply values of the nodes.
+ /// If neither this function nor \ref stSupply() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// \param map A node map storing the supply values.
+ /// Its \c Value type must be convertible to the \c Value type
+ /// of the algorithm.
+ ///
+ /// \return <tt>(*this)</tt>
+ template<typename SupplyMap>
+ CapacityScaling& supplyMap(const SupplyMap& map) {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ _supply[_node_id[n]] = map[n];
+ }
+ return *this;
+ }
+
+ /// \brief Set single source and target nodes and a supply value.
+ ///
+ /// This function sets a single source node and a single target node
+ /// and the required flow value.
+ /// If neither this function nor \ref supplyMap() is used before
+ /// calling \ref run(), the supply of each node will be set to zero.
+ ///
+ /// Using this function has the same effect as using \ref supplyMap()
+ /// with a map in which \c k is assigned to \c s, \c -k is
+ /// assigned to \c t and all other nodes have zero supply value.
+ ///
+ /// \param s The source node.
+ /// \param t The target node.
+ /// \param k The required amount of flow from node \c s to node \c t
+ /// (i.e. the supply of \c s and the demand of \c t).
+ ///
+ /// \return <tt>(*this)</tt>
+ CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
+ for (int i = 0; i != _node_num; ++i) {
+ _supply[i] = 0;
+ }
+ _supply[_node_id[s]] = k;
+ _supply[_node_id[t]] = -k;
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Execution control
+ /// The algorithm can be executed using \ref run().
+
+ /// @{
+
+ /// \brief Run the algorithm.
+ ///
+ /// This function runs the algorithm.
+ /// The paramters can be specified using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
+ /// For example,
+ /// \code
+ /// CapacityScaling<ListDigraph> cs(graph);
+ /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// This function can be called more than once. All the given parameters
+ /// are kept for the next call, unless \ref resetParams() or \ref reset()
+ /// is used, thus only the modified parameters have to be set again.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class (or the last \ref reset() call), then the \ref reset()
+ /// function must be called.
+ ///
+ /// \param factor The capacity scaling factor. It must be larger than
+ /// one to use scaling. If it is less or equal to one, then scaling
+ /// will be disabled.
+ ///
+ /// \return \c INFEASIBLE if no feasible flow exists,
+ /// \n \c OPTIMAL if the problem has optimal solution
+ /// (i.e. it is feasible and bounded), and the algorithm has found
+ /// optimal flow and node potentials (primal and dual solutions),
+ /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
+ /// and infinite upper bound. It means that the objective function
+ /// is unbounded on that arc, however, note that it could actually be
+ /// bounded over the feasible flows, but this algroithm cannot handle
+ /// these cases.
+ ///
+ /// \see ProblemType
+ /// \see resetParams(), reset()
+ ProblemType run(int factor = 4) {
+ _factor = factor;
+ ProblemType pt = init();
+ if (pt != OPTIMAL) return pt;
+ return start();
+ }
+
+ /// \brief Reset all the parameters that have been given before.
+ ///
+ /// This function resets all the paramaters that have been given
+ /// before using functions \ref lowerMap(), \ref upperMap(),
+ /// \ref costMap(), \ref supplyMap(), \ref stSupply().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// For example,
+ /// \code
+ /// CapacityScaling<ListDigraph> cs(graph);
+ ///
+ /// // First run
+ /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
+ /// .supplyMap(sup).run();
+ ///
+ /// // Run again with modified cost map (resetParams() is not called,
+ /// // so only the cost map have to be set again)
+ /// cost[e] += 100;
+ /// cs.costMap(cost).run();
+ ///
+ /// // Run again from scratch using resetParams()
+ /// // (the lower bounds will be set to zero on all arcs)
+ /// cs.resetParams();
+ /// cs.upperMap(capacity).costMap(cost)
+ /// .supplyMap(sup).run();
+ /// \endcode
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see reset(), run()
+ CapacityScaling& resetParams() {
+ for (int i = 0; i != _node_num; ++i) {
+ _supply[i] = 0;
+ }
+ for (int j = 0; j != _res_arc_num; ++j) {
+ _lower[j] = 0;
+ _upper[j] = INF;
+ _cost[j] = _forward[j] ? 1 : -1;
+ }
+ _has_lower = false;
+ return *this;
+ }
+
+ /// \brief Reset the internal data structures and all the parameters
+ /// that have been given before.
+ ///
+ /// This function resets the internal data structures and all the
+ /// paramaters that have been given before using functions \ref lowerMap(),
+ /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
+ ///
+ /// It is useful for multiple \ref run() calls. Basically, all the given
+ /// parameters are kept for the next \ref run() call, unless
+ /// \ref resetParams() or \ref reset() is used.
+ /// If the underlying digraph was also modified after the construction
+ /// of the class or the last \ref reset() call, then the \ref reset()
+ /// function must be used, otherwise \ref resetParams() is sufficient.
+ ///
+ /// See \ref resetParams() for examples.
+ ///
+ /// \return <tt>(*this)</tt>
+ ///
+ /// \see resetParams(), run()
+ CapacityScaling& reset() {
+ // Resize vectors
+ _node_num = countNodes(_graph);
+ _arc_num = countArcs(_graph);
+ _res_arc_num = 2 * (_arc_num + _node_num);
+ _root = _node_num;
+ ++_node_num;
+
+ _first_out.resize(_node_num + 1);
+ _forward.resize(_res_arc_num);
+ _source.resize(_res_arc_num);
+ _target.resize(_res_arc_num);
+ _reverse.resize(_res_arc_num);
+
+ _lower.resize(_res_arc_num);
+ _upper.resize(_res_arc_num);
+ _cost.resize(_res_arc_num);
+ _supply.resize(_node_num);
+
+ _res_cap.resize(_res_arc_num);
+ _pi.resize(_node_num);
+ _excess.resize(_node_num);
+ _pred.resize(_node_num);
+
+ // Copy the graph
+ int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
+ _node_id[n] = i;
+ }
+ i = 0;
+ for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
+ _first_out[i] = j;
+ for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
+ _arc_idf[a] = j;
+ _forward[j] = true;
+ _source[j] = i;
+ _target[j] = _node_id[_graph.runningNode(a)];
+ }
+ for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
+ _arc_idb[a] = j;
+ _forward[j] = false;
+ _source[j] = i;
+ _target[j] = _node_id[_graph.runningNode(a)];
+ }
+ _forward[j] = false;
+ _source[j] = i;
+ _target[j] = _root;
+ _reverse[j] = k;
+ _forward[k] = true;
+ _source[k] = _root;
+ _target[k] = i;
+ _reverse[k] = j;
+ ++j; ++k;
+ }
+ _first_out[i] = j;
+ _first_out[_node_num] = k;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int fi = _arc_idf[a];
+ int bi = _arc_idb[a];
+ _reverse[fi] = bi;
+ _reverse[bi] = fi;
+ }
+
+ // Reset parameters
+ resetParams();
+ return *this;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the algorithm can be obtained using these
+ /// functions.\n
+ /// The \ref run() function must be called before using them.
+
+ /// @{
+
+ /// \brief Return the total cost of the found flow.
+ ///
+ /// This function returns the total cost of the found flow.
+ /// Its complexity is O(m).
+ ///
+ /// \note The return type of the function can be specified as a
+ /// template parameter. For example,
+ /// \code
+ /// cs.totalCost<double>();
+ /// \endcode
+ /// It is useful if the total cost cannot be stored in the \c Cost
+ /// type of the algorithm, which is the default return type of the
+ /// function.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename Number>
+ Number totalCost() const {
+ Number c = 0;
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ int i = _arc_idb[a];
+ c += static_cast<Number>(_res_cap[i]) *
+ (-static_cast<Number>(_cost[i]));
+ }
+ return c;
+ }
+
+#ifndef DOXYGEN
+ Cost totalCost() const {
+ return totalCost<Cost>();
+ }
+#endif
+
+ /// \brief Return the flow on the given arc.
+ ///
+ /// This function returns the flow on the given arc.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Value flow(const Arc& a) const {
+ return _res_cap[_arc_idb[a]];
+ }
+
+ /// \brief Copy the flow values (the primal solution) into the
+ /// given map.
+ ///
+ /// This function copies the flow value on each arc into the given
+ /// map. The \c Value type of the algorithm must be convertible to
+ /// the \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename FlowMap>
+ void flowMap(FlowMap &map) const {
+ for (ArcIt a(_graph); a != INVALID; ++a) {
+ map.set(a, _res_cap[_arc_idb[a]]);
+ }
+ }
+
+ /// \brief Return the potential (dual value) of the given node.
+ ///
+ /// This function returns the potential (dual value) of the
+ /// given node.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ Cost potential(const Node& n) const {
+ return _pi[_node_id[n]];
+ }
+
+ /// \brief Copy the potential values (the dual solution) into the
+ /// given map.
+ ///
+ /// This function copies the potential (dual value) of each node
+ /// into the given map.
+ /// The \c Cost type of the algorithm must be convertible to the
+ /// \c Value type of the map.
+ ///
+ /// \pre \ref run() must be called before using this function.
+ template <typename PotentialMap>
+ void potentialMap(PotentialMap &map) const {
+ for (NodeIt n(_graph); n != INVALID; ++n) {
+ map.set(n, _pi[_node_id[n]]);
+ }
+ }
+
+ /// @}
+
+ private:
+
+ // Initialize the algorithm
+ ProblemType init() {
+ if (_node_num <= 1) return INFEASIBLE;
+
+ // Check the sum of supply values
+ _sum_supply = 0;
+ for (int i = 0; i != _root; ++i) {
+ _sum_supply += _supply[i];
+ }
+ if (_sum_supply > 0) return INFEASIBLE;
+
+ // Check lower and upper bounds
+ LEMON_DEBUG(checkBoundMaps(),
+ "Upper bounds must be greater or equal to the lower bounds");
+
+
+ // Initialize vectors
+ for (int i = 0; i != _root; ++i) {
+ _pi[i] = 0;
+ _excess[i] = _supply[i];
+ }
+
+ // Remove non-zero lower bounds
+ const Value MAX = std::numeric_limits<Value>::max();
+ int last_out;
+ if (_has_lower) {
+ for (int i = 0; i != _root; ++i) {
+ last_out = _first_out[i+1];
+ for (int j = _first_out[i]; j != last_out; ++j) {
+ if (_forward[j]) {
+ Value c = _lower[j];
+ if (c >= 0) {
+ _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
+ } else {
+ _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
+ }
+ _excess[i] -= c;
+ _excess[_target[j]] += c;
+ } else {
+ _res_cap[j] = 0;
+ }
+ }
+ }
+ } else {
+ for (int j = 0; j != _res_arc_num; ++j) {
+ _res_cap[j] = _forward[j] ? _upper[j] : 0;
+ }
+ }
+
+ // Handle negative costs
+ for (int i = 0; i != _root; ++i) {
+ last_out = _first_out[i+1] - 1;
+ for (int j = _first_out[i]; j != last_out; ++j) {
+ Value rc = _res_cap[j];
+ if (_cost[j] < 0 && rc > 0) {
+ if (rc >= MAX) return UNBOUNDED;
+ _excess[i] -= rc;
+ _excess[_target[j]] += rc;
+ _res_cap[j] = 0;
+ _res_cap[_reverse[j]] += rc;
+ }
+ }
+ }
+
+ // Handle GEQ supply type
+ if (_sum_supply < 0) {
+ _pi[_root] = 0;
+ _excess[_root] = -_sum_supply;
+ for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
+ int ra = _reverse[a];
+ _res_cap[a] = -_sum_supply + 1;
+ _res_cap[ra] = 0;
+ _cost[a] = 0;
+ _cost[ra] = 0;
+ }
+ } else {
+ _pi[_root] = 0;
+ _excess[_root] = 0;
+ for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
+ int ra = _reverse[a];
+ _res_cap[a] = 1;
+ _res_cap[ra] = 0;
+ _cost[a] = 0;
+ _cost[ra] = 0;
+ }
+ }
+
+ // Initialize delta value
+ if (_factor > 1) {
+ // With scaling
+ Value max_sup = 0, max_dem = 0, max_cap = 0;
+ for (int i = 0; i != _root; ++i) {
+ Value ex = _excess[i];
+ if ( ex > max_sup) max_sup = ex;
+ if (-ex > max_dem) max_dem = -ex;
+ int last_out = _first_out[i+1] - 1;
+ for (int j = _first_out[i]; j != last_out; ++j) {
+ if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
+ }
+ }
+ max_sup = std::min(std::min(max_sup, max_dem), max_cap);
+ for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
+ } else {
+ // Without scaling
+ _delta = 1;
+ }
+
+ return OPTIMAL;
+ }
+
+ // Check if the upper bound is greater than or equal to the lower bound
+ // on each forward arc.
+ bool checkBoundMaps() {
+ for (int j = 0; j != _res_arc_num; ++j) {
+ if (_forward[j] && _upper[j] < _lower[j]) return false;
+ }
+ return true;
+ }
+
+ ProblemType start() {
+ // Execute the algorithm
+ ProblemType pt;
+ if (_delta > 1)
+ pt = startWithScaling();
+ else
+ pt = startWithoutScaling();
+
+ // Handle non-zero lower bounds
+ if (_has_lower) {
+ int limit = _first_out[_root];
+ for (int j = 0; j != limit; ++j) {
+ if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
+ }
+ }
+
+ // Shift potentials if necessary
+ Cost pr = _pi[_root];
+ if (_sum_supply < 0 || pr > 0) {
+ for (int i = 0; i != _node_num; ++i) {
+ _pi[i] -= pr;
+ }
+ }
+
+ return pt;
+ }
+
+ // Execute the capacity scaling algorithm
+ ProblemType startWithScaling() {
+ // Perform capacity scaling phases
+ int s, t;
+ ResidualDijkstra _dijkstra(*this);
+ while (true) {
+ // Saturate all arcs not satisfying the optimality condition
+ int last_out;
+ for (int u = 0; u != _node_num; ++u) {
+ last_out = _sum_supply < 0 ?
+ _first_out[u+1] : _first_out[u+1] - 1;
+ for (int a = _first_out[u]; a != last_out; ++a) {
+ int v = _target[a];
+ Cost c = _cost[a] + _pi[u] - _pi[v];
+ Value rc = _res_cap[a];
+ if (c < 0 && rc >= _delta) {
+ _excess[u] -= rc;
+ _excess[v] += rc;
+ _res_cap[a] = 0;
+ _res_cap[_reverse[a]] += rc;
+ }
+ }
+ }
+
+ // Find excess nodes and deficit nodes
+ _excess_nodes.clear();
+ _deficit_nodes.clear();
+ for (int u = 0; u != _node_num; ++u) {
+ Value ex = _excess[u];
+ if (ex >= _delta) _excess_nodes.push_back(u);
+ if (ex <= -_delta) _deficit_nodes.push_back(u);
+ }
+ int next_node = 0, next_def_node = 0;
+
+ // Find augmenting shortest paths
+ while (next_node < int(_excess_nodes.size())) {
+ // Check deficit nodes
+ if (_delta > 1) {
+ bool delta_deficit = false;
+ for ( ; next_def_node < int(_deficit_nodes.size());
+ ++next_def_node ) {
+ if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
+ delta_deficit = true;
+ break;
+ }
+ }
+ if (!delta_deficit) break;
+ }
+
+ // Run Dijkstra in the residual network
+ s = _excess_nodes[next_node];
+ if ((t = _dijkstra.run(s, _delta)) == -1) {
+ if (_delta > 1) {
+ ++next_node;
+ continue;
+ }
+ return INFEASIBLE;
+ }
+
+ // Augment along a shortest path from s to t
+ Value d = std::min(_excess[s], -_excess[t]);
+ int u = t;
+ int a;
+ if (d > _delta) {
+ while ((a = _pred[u]) != -1) {
+ if (_res_cap[a] < d) d = _res_cap[a];
+ u = _source[a];
+ }
+ }
+ u = t;
+ while ((a = _pred[u]) != -1) {
+ _res_cap[a] -= d;
+ _res_cap[_reverse[a]] += d;
+ u = _source[a];
+ }
+ _excess[s] -= d;
+ _excess[t] += d;
+
+ if (_excess[s] < _delta) ++next_node;
+ }
+
+ if (_delta == 1) break;
+ _delta = _delta <= _factor ? 1 : _delta / _factor;
+ }
+
+ return OPTIMAL;
+ }
+
+ // Execute the successive shortest path algorithm
+ ProblemType startWithoutScaling() {
+ // Find excess nodes
+ _excess_nodes.clear();
+ for (int i = 0; i != _node_num; ++i) {
+ if (_excess[i] > 0) _excess_nodes.push_back(i);
+ }
+ if (_excess_nodes.size() == 0) return OPTIMAL;
+ int next_node = 0;
+
+ // Find shortest paths
+ int s, t;
+ ResidualDijkstra _dijkstra(*this);
+ while ( _excess[_excess_nodes[next_node]] > 0 ||
+ ++next_node < int(_excess_nodes.size()) )
+ {
+ // Run Dijkstra in the residual network
+ s = _excess_nodes[next_node];
+ if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
+
+ // Augment along a shortest path from s to t
+ Value d = std::min(_excess[s], -_excess[t]);
+ int u = t;
+ int a;
+ if (d > 1) {
+ while ((a = _pred[u]) != -1) {
+ if (_res_cap[a] < d) d = _res_cap[a];
+ u = _source[a];
+ }
+ }
+ u = t;
+ while ((a = _pred[u]) != -1) {
+ _res_cap[a] -= d;
+ _res_cap[_reverse[a]] += d;
+ u = _source[a];
+ }
+ _excess[s] -= d;
+ _excess[t] += d;
+ }
+
+ return OPTIMAL;
+ }
+
+ }; //class CapacityScaling
+
+ ///@}
+
+} //namespace lemon
+
+#endif //LEMON_CAPACITY_SCALING_H