Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/christofides_tsp.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/christofides_tsp.h254
1 files changed, 254 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/christofides_tsp.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/christofides_tsp.h
new file mode 100644
index 00000000000..2997567a689
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/christofides_tsp.h
@@ -0,0 +1,254 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_CHRISTOFIDES_TSP_H
+#define LEMON_CHRISTOFIDES_TSP_H
+
+/// \ingroup tsp
+/// \file
+/// \brief Christofides algorithm for symmetric TSP
+
+#include <lemon/full_graph.h>
+#include <lemon/smart_graph.h>
+#include <lemon/kruskal.h>
+#include <lemon/matching.h>
+#include <lemon/euler.h>
+
+namespace lemon {
+
+ /// \ingroup tsp
+ ///
+ /// \brief Christofides algorithm for symmetric TSP.
+ ///
+ /// ChristofidesTsp implements Christofides' heuristic for solving
+ /// symmetric \ref tsp "TSP".
+ ///
+ /// This a well-known approximation method for the TSP problem with
+ /// metric cost function.
+ /// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
+ /// whose total cost is at most 3/2 of the optimum), but it usually
+ /// provides better solutions in practice.
+ /// This implementation runs in O(n<sup>3</sup>log(n)) time.
+ ///
+ /// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
+ /// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
+ /// in the subgraph induced by the nodes that have odd degree in the
+ /// spanning tree.
+ /// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
+ /// of the union of the spanning tree and the matching.
+ /// During this last step, the algorithm simply skips the visited nodes
+ /// (i.e. creates shortcuts) assuming that the triangle inequality holds
+ /// for the cost function.
+ ///
+ /// \tparam CM Type of the cost map.
+ ///
+ /// \warning CM::Value must be a signed number type.
+ template <typename CM>
+ class ChristofidesTsp
+ {
+ public:
+
+ /// Type of the cost map
+ typedef CM CostMap;
+ /// Type of the edge costs
+ typedef typename CM::Value Cost;
+
+ private:
+
+ GRAPH_TYPEDEFS(FullGraph);
+
+ const FullGraph &_gr;
+ const CostMap &_cost;
+ std::vector<Node> _path;
+ Cost _sum;
+
+ public:
+
+ /// \brief Constructor
+ ///
+ /// Constructor.
+ /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
+ /// \param cost The cost map.
+ ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
+ : _gr(gr), _cost(cost) {}
+
+ /// \name Execution Control
+ /// @{
+
+ /// \brief Runs the algorithm.
+ ///
+ /// This function runs the algorithm.
+ ///
+ /// \return The total cost of the found tour.
+ Cost run() {
+ _path.clear();
+
+ if (_gr.nodeNum() == 0) return _sum = 0;
+ else if (_gr.nodeNum() == 1) {
+ _path.push_back(_gr(0));
+ return _sum = 0;
+ }
+ else if (_gr.nodeNum() == 2) {
+ _path.push_back(_gr(0));
+ _path.push_back(_gr(1));
+ return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
+ }
+
+ // Compute min. cost spanning tree
+ std::vector<Edge> tree;
+ kruskal(_gr, _cost, std::back_inserter(tree));
+
+ FullGraph::NodeMap<int> deg(_gr, 0);
+ for (int i = 0; i != int(tree.size()); ++i) {
+ Edge e = tree[i];
+ ++deg[_gr.u(e)];
+ ++deg[_gr.v(e)];
+ }
+
+ // Copy the induced subgraph of odd nodes
+ std::vector<Node> odd_nodes;
+ for (NodeIt u(_gr); u != INVALID; ++u) {
+ if (deg[u] % 2 == 1) odd_nodes.push_back(u);
+ }
+
+ SmartGraph sgr;
+ SmartGraph::EdgeMap<Cost> scost(sgr);
+ for (int i = 0; i != int(odd_nodes.size()); ++i) {
+ sgr.addNode();
+ }
+ for (int i = 0; i != int(odd_nodes.size()); ++i) {
+ for (int j = 0; j != int(odd_nodes.size()); ++j) {
+ if (j == i) continue;
+ SmartGraph::Edge e =
+ sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
+ scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
+ }
+ }
+
+ // Compute min. cost perfect matching
+ MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
+ mwpm(sgr, scost);
+ mwpm.run();
+
+ for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
+ if (mwpm.matching(e)) {
+ tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
+ odd_nodes[sgr.id(sgr.v(e))]) );
+ }
+ }
+
+ // Join the spanning tree and the matching
+ sgr.clear();
+ for (int i = 0; i != _gr.nodeNum(); ++i) {
+ sgr.addNode();
+ }
+ for (int i = 0; i != int(tree.size()); ++i) {
+ int ui = _gr.id(_gr.u(tree[i])),
+ vi = _gr.id(_gr.v(tree[i]));
+ sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
+ }
+
+ // Compute the tour from the Euler traversal
+ SmartGraph::NodeMap<bool> visited(sgr, false);
+ for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
+ SmartGraph::Node n = sgr.target(e);
+ if (!visited[n]) {
+ _path.push_back(_gr(sgr.id(n)));
+ visited[n] = true;
+ }
+ }
+
+ _sum = _cost[_gr.edge(_path.back(), _path.front())];
+ for (int i = 0; i < int(_path.size())-1; ++i) {
+ _sum += _cost[_gr.edge(_path[i], _path[i+1])];
+ }
+
+ return _sum;
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// @{
+
+ /// \brief The total cost of the found tour.
+ ///
+ /// This function returns the total cost of the found tour.
+ ///
+ /// \pre run() must be called before using this function.
+ Cost tourCost() const {
+ return _sum;
+ }
+
+ /// \brief Returns a const reference to the node sequence of the
+ /// found tour.
+ ///
+ /// This function returns a const reference to a vector
+ /// that stores the node sequence of the found tour.
+ ///
+ /// \pre run() must be called before using this function.
+ const std::vector<Node>& tourNodes() const {
+ return _path;
+ }
+
+ /// \brief Gives back the node sequence of the found tour.
+ ///
+ /// This function copies the node sequence of the found tour into
+ /// an STL container through the given output iterator. The
+ /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
+ /// For example,
+ /// \code
+ /// std::vector<FullGraph::Node> nodes(countNodes(graph));
+ /// tsp.tourNodes(nodes.begin());
+ /// \endcode
+ /// or
+ /// \code
+ /// std::list<FullGraph::Node> nodes;
+ /// tsp.tourNodes(std::back_inserter(nodes));
+ /// \endcode
+ ///
+ /// \pre run() must be called before using this function.
+ template <typename Iterator>
+ void tourNodes(Iterator out) const {
+ std::copy(_path.begin(), _path.end(), out);
+ }
+
+ /// \brief Gives back the found tour as a path.
+ ///
+ /// This function copies the found tour as a list of arcs/edges into
+ /// the given \ref lemon::concepts::Path "path structure".
+ ///
+ /// \pre run() must be called before using this function.
+ template <typename Path>
+ void tour(Path &path) const {
+ path.clear();
+ for (int i = 0; i < int(_path.size()) - 1; ++i) {
+ path.addBack(_gr.arc(_path[i], _path[i+1]));
+ }
+ if (int(_path.size()) >= 2) {
+ path.addBack(_gr.arc(_path.back(), _path.front()));
+ }
+ }
+
+ /// @}
+
+ };
+
+}; // namespace lemon
+
+#endif