Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/circulation.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/circulation.h807
1 files changed, 807 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/circulation.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/circulation.h
new file mode 100644
index 00000000000..b0f717b2615
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/circulation.h
@@ -0,0 +1,807 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_CIRCULATION_H
+#define LEMON_CIRCULATION_H
+
+#include <lemon/tolerance.h>
+#include <lemon/elevator.h>
+#include <limits>
+
+///\ingroup max_flow
+///\file
+///\brief Push-relabel algorithm for finding a feasible circulation.
+///
+namespace lemon {
+
+ /// \brief Default traits class of Circulation class.
+ ///
+ /// Default traits class of Circulation class.
+ ///
+ /// \tparam GR Type of the digraph the algorithm runs on.
+ /// \tparam LM The type of the lower bound map.
+ /// \tparam UM The type of the upper bound (capacity) map.
+ /// \tparam SM The type of the supply map.
+ template <typename GR, typename LM,
+ typename UM, typename SM>
+ struct CirculationDefaultTraits {
+
+ /// \brief The type of the digraph the algorithm runs on.
+ typedef GR Digraph;
+
+ /// \brief The type of the lower bound map.
+ ///
+ /// The type of the map that stores the lower bounds on the arcs.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+ typedef LM LowerMap;
+
+ /// \brief The type of the upper bound (capacity) map.
+ ///
+ /// The type of the map that stores the upper bounds (capacities)
+ /// on the arcs.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+ typedef UM UpperMap;
+
+ /// \brief The type of supply map.
+ ///
+ /// The type of the map that stores the signed supply values of the
+ /// nodes.
+ /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
+ typedef SM SupplyMap;
+
+ /// \brief The type of the flow and supply values.
+ typedef typename SupplyMap::Value Value;
+
+ /// \brief The type of the map that stores the flow values.
+ ///
+ /// The type of the map that stores the flow values.
+ /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
+ /// concept.
+#ifdef DOXYGEN
+ typedef GR::ArcMap<Value> FlowMap;
+#else
+ typedef typename Digraph::template ArcMap<Value> FlowMap;
+#endif
+
+ /// \brief Instantiates a FlowMap.
+ ///
+ /// This function instantiates a \ref FlowMap.
+ /// \param digraph The digraph for which we would like to define
+ /// the flow map.
+ static FlowMap* createFlowMap(const Digraph& digraph) {
+ return new FlowMap(digraph);
+ }
+
+ /// \brief The elevator type used by the algorithm.
+ ///
+ /// The elevator type used by the algorithm.
+ ///
+ /// \sa Elevator, LinkedElevator
+#ifdef DOXYGEN
+ typedef lemon::Elevator<GR, GR::Node> Elevator;
+#else
+ typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
+#endif
+
+ /// \brief Instantiates an Elevator.
+ ///
+ /// This function instantiates an \ref Elevator.
+ /// \param digraph The digraph for which we would like to define
+ /// the elevator.
+ /// \param max_level The maximum level of the elevator.
+ static Elevator* createElevator(const Digraph& digraph, int max_level) {
+ return new Elevator(digraph, max_level);
+ }
+
+ /// \brief The tolerance used by the algorithm
+ ///
+ /// The tolerance used by the algorithm to handle inexact computation.
+ typedef lemon::Tolerance<Value> Tolerance;
+
+ };
+
+ /**
+ \brief Push-relabel algorithm for the network circulation problem.
+
+ \ingroup max_flow
+ This class implements a push-relabel algorithm for the \e network
+ \e circulation problem.
+ It is to find a feasible circulation when lower and upper bounds
+ are given for the flow values on the arcs and lower bounds are
+ given for the difference between the outgoing and incoming flow
+ at the nodes.
+
+ The exact formulation of this problem is the following.
+ Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
+ \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
+ upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
+ holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
+ denotes the signed supply values of the nodes.
+ If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
+ supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
+ \f$-sup(u)\f$ demand.
+ A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
+ solution of the following problem.
+
+ \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
+ \geq sup(u) \quad \forall u\in V, \f]
+ \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
+
+ The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
+ zero or negative in order to have a feasible solution (since the sum
+ of the expressions on the left-hand side of the inequalities is zero).
+ It means that the total demand must be greater or equal to the total
+ supply and all the supplies have to be carried out from the supply nodes,
+ but there could be demands that are not satisfied.
+ If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
+ constraints have to be satisfied with equality, i.e. all demands
+ have to be satisfied and all supplies have to be used.
+
+ If you need the opposite inequalities in the supply/demand constraints
+ (i.e. the total demand is less than the total supply and all the demands
+ have to be satisfied while there could be supplies that are not used),
+ then you could easily transform the problem to the above form by reversing
+ the direction of the arcs and taking the negative of the supply values
+ (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
+
+ This algorithm either calculates a feasible circulation, or provides
+ a \ref barrier() "barrier", which prooves that a feasible soultion
+ cannot exist.
+
+ Note that this algorithm also provides a feasible solution for the
+ \ref min_cost_flow "minimum cost flow problem".
+
+ \tparam GR The type of the digraph the algorithm runs on.
+ \tparam LM The type of the lower bound map. The default
+ map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
+ \tparam UM The type of the upper bound (capacity) map.
+ The default map type is \c LM.
+ \tparam SM The type of the supply map. The default map type is
+ \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
+ \tparam TR The traits class that defines various types used by the
+ algorithm. By default, it is \ref CirculationDefaultTraits
+ "CirculationDefaultTraits<GR, LM, UM, SM>".
+ In most cases, this parameter should not be set directly,
+ consider to use the named template parameters instead.
+ */
+#ifdef DOXYGEN
+template< typename GR,
+ typename LM,
+ typename UM,
+ typename SM,
+ typename TR >
+#else
+template< typename GR,
+ typename LM = typename GR::template ArcMap<int>,
+ typename UM = LM,
+ typename SM = typename GR::template NodeMap<typename UM::Value>,
+ typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
+#endif
+ class Circulation {
+ public:
+
+ /// \brief The \ref lemon::CirculationDefaultTraits "traits class"
+ /// of the algorithm.
+ typedef TR Traits;
+ ///The type of the digraph the algorithm runs on.
+ typedef typename Traits::Digraph Digraph;
+ ///The type of the flow and supply values.
+ typedef typename Traits::Value Value;
+
+ ///The type of the lower bound map.
+ typedef typename Traits::LowerMap LowerMap;
+ ///The type of the upper bound (capacity) map.
+ typedef typename Traits::UpperMap UpperMap;
+ ///The type of the supply map.
+ typedef typename Traits::SupplyMap SupplyMap;
+ ///The type of the flow map.
+ typedef typename Traits::FlowMap FlowMap;
+
+ ///The type of the elevator.
+ typedef typename Traits::Elevator Elevator;
+ ///The type of the tolerance.
+ typedef typename Traits::Tolerance Tolerance;
+
+ private:
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
+
+ const Digraph &_g;
+ int _node_num;
+
+ const LowerMap *_lo;
+ const UpperMap *_up;
+ const SupplyMap *_supply;
+
+ FlowMap *_flow;
+ bool _local_flow;
+
+ Elevator* _level;
+ bool _local_level;
+
+ typedef typename Digraph::template NodeMap<Value> ExcessMap;
+ ExcessMap* _excess;
+
+ Tolerance _tol;
+ int _el;
+
+ public:
+
+ typedef Circulation Create;
+
+ ///\name Named Template Parameters
+
+ ///@{
+
+ template <typename T>
+ struct SetFlowMapTraits : public Traits {
+ typedef T FlowMap;
+ static FlowMap *createFlowMap(const Digraph&) {
+ LEMON_ASSERT(false, "FlowMap is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// FlowMap type
+ ///
+ /// \ref named-templ-param "Named parameter" for setting FlowMap
+ /// type.
+ template <typename T>
+ struct SetFlowMap
+ : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
+ SetFlowMapTraits<T> > {
+ typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
+ SetFlowMapTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetElevatorTraits : public Traits {
+ typedef T Elevator;
+ static Elevator *createElevator(const Digraph&, int) {
+ LEMON_ASSERT(false, "Elevator is not initialized");
+ return 0; // ignore warnings
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// Elevator type
+ ///
+ /// \ref named-templ-param "Named parameter" for setting Elevator
+ /// type. If this named parameter is used, then an external
+ /// elevator object must be passed to the algorithm using the
+ /// \ref elevator(Elevator&) "elevator()" function before calling
+ /// \ref run() or \ref init().
+ /// \sa SetStandardElevator
+ template <typename T>
+ struct SetElevator
+ : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
+ SetElevatorTraits<T> > {
+ typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
+ SetElevatorTraits<T> > Create;
+ };
+
+ template <typename T>
+ struct SetStandardElevatorTraits : public Traits {
+ typedef T Elevator;
+ static Elevator *createElevator(const Digraph& digraph, int max_level) {
+ return new Elevator(digraph, max_level);
+ }
+ };
+
+ /// \brief \ref named-templ-param "Named parameter" for setting
+ /// Elevator type with automatic allocation
+ ///
+ /// \ref named-templ-param "Named parameter" for setting Elevator
+ /// type with automatic allocation.
+ /// The Elevator should have standard constructor interface to be
+ /// able to automatically created by the algorithm (i.e. the
+ /// digraph and the maximum level should be passed to it).
+ /// However, an external elevator object could also be passed to the
+ /// algorithm with the \ref elevator(Elevator&) "elevator()" function
+ /// before calling \ref run() or \ref init().
+ /// \sa SetElevator
+ template <typename T>
+ struct SetStandardElevator
+ : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
+ SetStandardElevatorTraits<T> > {
+ typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
+ SetStandardElevatorTraits<T> > Create;
+ };
+
+ /// @}
+
+ protected:
+
+ Circulation() {}
+
+ public:
+
+ /// Constructor.
+
+ /// The constructor of the class.
+ ///
+ /// \param graph The digraph the algorithm runs on.
+ /// \param lower The lower bounds for the flow values on the arcs.
+ /// \param upper The upper bounds (capacities) for the flow values
+ /// on the arcs.
+ /// \param supply The signed supply values of the nodes.
+ Circulation(const Digraph &graph, const LowerMap &lower,
+ const UpperMap &upper, const SupplyMap &supply)
+ : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
+ _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
+ _excess(NULL) {}
+
+ /// Destructor.
+ ~Circulation() {
+ destroyStructures();
+ }
+
+
+ private:
+
+ bool checkBoundMaps() {
+ for (ArcIt e(_g);e!=INVALID;++e) {
+ if (_tol.less((*_up)[e], (*_lo)[e])) return false;
+ }
+ return true;
+ }
+
+ void createStructures() {
+ _node_num = _el = countNodes(_g);
+
+ if (!_flow) {
+ _flow = Traits::createFlowMap(_g);
+ _local_flow = true;
+ }
+ if (!_level) {
+ _level = Traits::createElevator(_g, _node_num);
+ _local_level = true;
+ }
+ if (!_excess) {
+ _excess = new ExcessMap(_g);
+ }
+ }
+
+ void destroyStructures() {
+ if (_local_flow) {
+ delete _flow;
+ }
+ if (_local_level) {
+ delete _level;
+ }
+ if (_excess) {
+ delete _excess;
+ }
+ }
+
+ public:
+
+ /// Sets the lower bound map.
+
+ /// Sets the lower bound map.
+ /// \return <tt>(*this)</tt>
+ Circulation& lowerMap(const LowerMap& map) {
+ _lo = &map;
+ return *this;
+ }
+
+ /// Sets the upper bound (capacity) map.
+
+ /// Sets the upper bound (capacity) map.
+ /// \return <tt>(*this)</tt>
+ Circulation& upperMap(const UpperMap& map) {
+ _up = &map;
+ return *this;
+ }
+
+ /// Sets the supply map.
+
+ /// Sets the supply map.
+ /// \return <tt>(*this)</tt>
+ Circulation& supplyMap(const SupplyMap& map) {
+ _supply = &map;
+ return *this;
+ }
+
+ /// \brief Sets the flow map.
+ ///
+ /// Sets the flow map.
+ /// If you don't use this function before calling \ref run() or
+ /// \ref init(), an instance will be allocated automatically.
+ /// The destructor deallocates this automatically allocated map,
+ /// of course.
+ /// \return <tt>(*this)</tt>
+ Circulation& flowMap(FlowMap& map) {
+ if (_local_flow) {
+ delete _flow;
+ _local_flow = false;
+ }
+ _flow = &map;
+ return *this;
+ }
+
+ /// \brief Sets the elevator used by algorithm.
+ ///
+ /// Sets the elevator used by algorithm.
+ /// If you don't use this function before calling \ref run() or
+ /// \ref init(), an instance will be allocated automatically.
+ /// The destructor deallocates this automatically allocated elevator,
+ /// of course.
+ /// \return <tt>(*this)</tt>
+ Circulation& elevator(Elevator& elevator) {
+ if (_local_level) {
+ delete _level;
+ _local_level = false;
+ }
+ _level = &elevator;
+ return *this;
+ }
+
+ /// \brief Returns a const reference to the elevator.
+ ///
+ /// Returns a const reference to the elevator.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ const Elevator& elevator() const {
+ return *_level;
+ }
+
+ /// \brief Sets the tolerance used by the algorithm.
+ ///
+ /// Sets the tolerance object used by the algorithm.
+ /// \return <tt>(*this)</tt>
+ Circulation& tolerance(const Tolerance& tolerance) {
+ _tol = tolerance;
+ return *this;
+ }
+
+ /// \brief Returns a const reference to the tolerance.
+ ///
+ /// Returns a const reference to the tolerance object used by
+ /// the algorithm.
+ const Tolerance& tolerance() const {
+ return _tol;
+ }
+
+ /// \name Execution Control
+ /// The simplest way to execute the algorithm is to call \ref run().\n
+ /// If you need better control on the initial solution or the execution,
+ /// you have to call one of the \ref init() functions first, then
+ /// the \ref start() function.
+
+ ///@{
+
+ /// Initializes the internal data structures.
+
+ /// Initializes the internal data structures and sets all flow values
+ /// to the lower bound.
+ void init()
+ {
+ LEMON_DEBUG(checkBoundMaps(),
+ "Upper bounds must be greater or equal to the lower bounds");
+
+ createStructures();
+
+ for(NodeIt n(_g);n!=INVALID;++n) {
+ (*_excess)[n] = (*_supply)[n];
+ }
+
+ for (ArcIt e(_g);e!=INVALID;++e) {
+ _flow->set(e, (*_lo)[e]);
+ (*_excess)[_g.target(e)] += (*_flow)[e];
+ (*_excess)[_g.source(e)] -= (*_flow)[e];
+ }
+
+ // global relabeling tested, but in general case it provides
+ // worse performance for random digraphs
+ _level->initStart();
+ for(NodeIt n(_g);n!=INVALID;++n)
+ _level->initAddItem(n);
+ _level->initFinish();
+ for(NodeIt n(_g);n!=INVALID;++n)
+ if(_tol.positive((*_excess)[n]))
+ _level->activate(n);
+ }
+
+ /// Initializes the internal data structures using a greedy approach.
+
+ /// Initializes the internal data structures using a greedy approach
+ /// to construct the initial solution.
+ void greedyInit()
+ {
+ LEMON_DEBUG(checkBoundMaps(),
+ "Upper bounds must be greater or equal to the lower bounds");
+
+ createStructures();
+
+ for(NodeIt n(_g);n!=INVALID;++n) {
+ (*_excess)[n] = (*_supply)[n];
+ }
+
+ for (ArcIt e(_g);e!=INVALID;++e) {
+ if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
+ _flow->set(e, (*_up)[e]);
+ (*_excess)[_g.target(e)] += (*_up)[e];
+ (*_excess)[_g.source(e)] -= (*_up)[e];
+ } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
+ _flow->set(e, (*_lo)[e]);
+ (*_excess)[_g.target(e)] += (*_lo)[e];
+ (*_excess)[_g.source(e)] -= (*_lo)[e];
+ } else {
+ Value fc = -(*_excess)[_g.target(e)];
+ _flow->set(e, fc);
+ (*_excess)[_g.target(e)] = 0;
+ (*_excess)[_g.source(e)] -= fc;
+ }
+ }
+
+ _level->initStart();
+ for(NodeIt n(_g);n!=INVALID;++n)
+ _level->initAddItem(n);
+ _level->initFinish();
+ for(NodeIt n(_g);n!=INVALID;++n)
+ if(_tol.positive((*_excess)[n]))
+ _level->activate(n);
+ }
+
+ ///Executes the algorithm
+
+ ///This function executes the algorithm.
+ ///
+ ///\return \c true if a feasible circulation is found.
+ ///
+ ///\sa barrier()
+ ///\sa barrierMap()
+ bool start()
+ {
+
+ Node act;
+ while((act=_level->highestActive())!=INVALID) {
+ int actlevel=(*_level)[act];
+ int mlevel=_node_num;
+ Value exc=(*_excess)[act];
+
+ for(OutArcIt e(_g,act);e!=INVALID; ++e) {
+ Node v = _g.target(e);
+ Value fc=(*_up)[e]-(*_flow)[e];
+ if(!_tol.positive(fc)) continue;
+ if((*_level)[v]<actlevel) {
+ if(!_tol.less(fc, exc)) {
+ _flow->set(e, (*_flow)[e] + exc);
+ (*_excess)[v] += exc;
+ if(!_level->active(v) && _tol.positive((*_excess)[v]))
+ _level->activate(v);
+ (*_excess)[act] = 0;
+ _level->deactivate(act);
+ goto next_l;
+ }
+ else {
+ _flow->set(e, (*_up)[e]);
+ (*_excess)[v] += fc;
+ if(!_level->active(v) && _tol.positive((*_excess)[v]))
+ _level->activate(v);
+ exc-=fc;
+ }
+ }
+ else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
+ }
+ for(InArcIt e(_g,act);e!=INVALID; ++e) {
+ Node v = _g.source(e);
+ Value fc=(*_flow)[e]-(*_lo)[e];
+ if(!_tol.positive(fc)) continue;
+ if((*_level)[v]<actlevel) {
+ if(!_tol.less(fc, exc)) {
+ _flow->set(e, (*_flow)[e] - exc);
+ (*_excess)[v] += exc;
+ if(!_level->active(v) && _tol.positive((*_excess)[v]))
+ _level->activate(v);
+ (*_excess)[act] = 0;
+ _level->deactivate(act);
+ goto next_l;
+ }
+ else {
+ _flow->set(e, (*_lo)[e]);
+ (*_excess)[v] += fc;
+ if(!_level->active(v) && _tol.positive((*_excess)[v]))
+ _level->activate(v);
+ exc-=fc;
+ }
+ }
+ else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
+ }
+
+ (*_excess)[act] = exc;
+ if(!_tol.positive(exc)) _level->deactivate(act);
+ else if(mlevel==_node_num) {
+ _level->liftHighestActiveToTop();
+ _el = _node_num;
+ return false;
+ }
+ else {
+ _level->liftHighestActive(mlevel+1);
+ if(_level->onLevel(actlevel)==0) {
+ _el = actlevel;
+ return false;
+ }
+ }
+ next_l:
+ ;
+ }
+ return true;
+ }
+
+ /// Runs the algorithm.
+
+ /// This function runs the algorithm.
+ ///
+ /// \return \c true if a feasible circulation is found.
+ ///
+ /// \note Apart from the return value, c.run() is just a shortcut of
+ /// the following code.
+ /// \code
+ /// c.greedyInit();
+ /// c.start();
+ /// \endcode
+ bool run() {
+ greedyInit();
+ return start();
+ }
+
+ /// @}
+
+ /// \name Query Functions
+ /// The results of the circulation algorithm can be obtained using
+ /// these functions.\n
+ /// Either \ref run() or \ref start() should be called before
+ /// using them.
+
+ ///@{
+
+ /// \brief Returns the flow value on the given arc.
+ ///
+ /// Returns the flow value on the given arc.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ Value flow(const Arc& arc) const {
+ return (*_flow)[arc];
+ }
+
+ /// \brief Returns a const reference to the flow map.
+ ///
+ /// Returns a const reference to the arc map storing the found flow.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ const FlowMap& flowMap() const {
+ return *_flow;
+ }
+
+ /**
+ \brief Returns \c true if the given node is in a barrier.
+
+ Barrier is a set \e B of nodes for which
+
+ \f[ \sum_{uv\in A: u\in B} upper(uv) -
+ \sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
+
+ holds. The existence of a set with this property prooves that a
+ feasible circualtion cannot exist.
+
+ This function returns \c true if the given node is in the found
+ barrier. If a feasible circulation is found, the function
+ gives back \c false for every node.
+
+ \pre Either \ref run() or \ref init() must be called before
+ using this function.
+
+ \sa barrierMap()
+ \sa checkBarrier()
+ */
+ bool barrier(const Node& node) const
+ {
+ return (*_level)[node] >= _el;
+ }
+
+ /// \brief Gives back a barrier.
+ ///
+ /// This function sets \c bar to the characteristic vector of the
+ /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
+ /// node map with \c bool (or convertible) value type.
+ ///
+ /// If a feasible circulation is found, the function gives back an
+ /// empty set, so \c bar[v] will be \c false for all nodes \c v.
+ ///
+ /// \note This function calls \ref barrier() for each node,
+ /// so it runs in O(n) time.
+ ///
+ /// \pre Either \ref run() or \ref init() must be called before
+ /// using this function.
+ ///
+ /// \sa barrier()
+ /// \sa checkBarrier()
+ template<class BarrierMap>
+ void barrierMap(BarrierMap &bar) const
+ {
+ for(NodeIt n(_g);n!=INVALID;++n)
+ bar.set(n, (*_level)[n] >= _el);
+ }
+
+ /// @}
+
+ /// \name Checker Functions
+ /// The feasibility of the results can be checked using
+ /// these functions.\n
+ /// Either \ref run() or \ref start() should be called before
+ /// using them.
+
+ ///@{
+
+ ///Check if the found flow is a feasible circulation
+
+ ///Check if the found flow is a feasible circulation,
+ ///
+ bool checkFlow() const {
+ for(ArcIt e(_g);e!=INVALID;++e)
+ if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
+ for(NodeIt n(_g);n!=INVALID;++n)
+ {
+ Value dif=-(*_supply)[n];
+ for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
+ for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
+ if(_tol.negative(dif)) return false;
+ }
+ return true;
+ }
+
+ ///Check whether or not the last execution provides a barrier
+
+ ///Check whether or not the last execution provides a barrier.
+ ///\sa barrier()
+ ///\sa barrierMap()
+ bool checkBarrier() const
+ {
+ Value delta=0;
+ Value inf_cap = std::numeric_limits<Value>::has_infinity ?
+ std::numeric_limits<Value>::infinity() :
+ std::numeric_limits<Value>::max();
+ for(NodeIt n(_g);n!=INVALID;++n)
+ if(barrier(n))
+ delta-=(*_supply)[n];
+ for(ArcIt e(_g);e!=INVALID;++e)
+ {
+ Node s=_g.source(e);
+ Node t=_g.target(e);
+ if(barrier(s)&&!barrier(t)) {
+ if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
+ delta+=(*_up)[e];
+ }
+ else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
+ }
+ return _tol.negative(delta);
+ }
+
+ /// @}
+
+ };
+
+}
+
+#endif