Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/bpgraph.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/bpgraph.h1029
1 files changed, 1029 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/bpgraph.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/bpgraph.h
new file mode 100644
index 00000000000..2ebdeaf8b2f
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/bpgraph.h
@@ -0,0 +1,1029 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+///\ingroup graph_concepts
+///\file
+///\brief The concept of undirected graphs.
+
+#ifndef LEMON_CONCEPTS_BPGRAPH_H
+#define LEMON_CONCEPTS_BPGRAPH_H
+
+#include <lemon/concepts/graph_components.h>
+#include <lemon/concepts/maps.h>
+#include <lemon/concept_check.h>
+#include <lemon/core.h>
+
+namespace lemon {
+ namespace concepts {
+
+ /// \ingroup graph_concepts
+ ///
+ /// \brief Class describing the concept of undirected bipartite graphs.
+ ///
+ /// This class describes the common interface of all undirected
+ /// bipartite graphs.
+ ///
+ /// Like all concept classes, it only provides an interface
+ /// without any sensible implementation. So any general algorithm for
+ /// undirected bipartite graphs should compile with this class,
+ /// but it will not run properly, of course.
+ /// An actual graph implementation like \ref ListBpGraph or
+ /// \ref SmartBpGraph may have additional functionality.
+ ///
+ /// The bipartite graphs also fulfill the concept of \ref Graph
+ /// "undirected graphs". Bipartite graphs provide a bipartition of
+ /// the node set, namely a red and blue set of the nodes. The
+ /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the
+ /// two node sets. With RedNodeMap and BlueNodeMap values can be
+ /// assigned to the nodes in the two sets.
+ ///
+ /// The edges of the graph cannot connect two nodes of the same
+ /// set. The edges inherent orientation is from the red nodes to
+ /// the blue nodes.
+ ///
+ /// \sa Graph
+ class BpGraph {
+ private:
+ /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead.
+ BpGraph(const BpGraph&) {}
+ /// \brief Assignment of a graph to another one is \e not allowed.
+ /// Use bpGraphCopy instead.
+ void operator=(const BpGraph&) {}
+
+ public:
+ /// Default constructor.
+ BpGraph() {}
+
+ /// \brief Undirected graphs should be tagged with \c UndirectedTag.
+ ///
+ /// Undirected graphs should be tagged with \c UndirectedTag.
+ ///
+ /// This tag helps the \c enable_if technics to make compile time
+ /// specializations for undirected graphs.
+ typedef True UndirectedTag;
+
+ /// The node type of the graph
+
+ /// This class identifies a node of the graph. It also serves
+ /// as a base class of the node iterators,
+ /// thus they convert to this type.
+ class Node {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ Node() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Node(const Node&) { }
+
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ Node(Invalid) { }
+ /// Equality operator
+
+ /// Equality operator.
+ ///
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are \c INVALID.
+ bool operator==(Node) const { return true; }
+
+ /// Inequality operator
+
+ /// Inequality operator.
+ bool operator!=(Node) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// Artificial ordering operator.
+ ///
+ /// \note This operator only has to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ bool operator<(Node) const { return false; }
+
+ };
+
+ /// Class to represent red nodes.
+
+ /// This class represents the red nodes of the graph. It does
+ /// not supposed to be used directly, because the nodes can be
+ /// represented as Node instances. This class can be used as
+ /// template parameter for special map classes.
+ class RedNode : public Node {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ RedNode() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ RedNode(const RedNode&) : Node() { }
+
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ RedNode(Invalid) { }
+
+ };
+
+ /// Class to represent blue nodes.
+
+ /// This class represents the blue nodes of the graph. It does
+ /// not supposed to be used directly, because the nodes can be
+ /// represented as Node instances. This class can be used as
+ /// template parameter for special map classes.
+ class BlueNode : public Node {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ BlueNode() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ BlueNode(const BlueNode&) : Node() { }
+
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ BlueNode(Invalid) { }
+
+ };
+
+ /// Iterator class for the red nodes.
+
+ /// This iterator goes through each red node of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of red nodes in a graph \c g of type \c %BpGraph like this:
+ ///\code
+ /// int count=0;
+ /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count;
+ ///\endcode
+ class RedNodeIt : public RedNode {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ RedNodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ RedNodeIt(const RedNodeIt& n) : RedNode(n) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ RedNodeIt(Invalid) { }
+ /// Sets the iterator to the first red node.
+
+ /// Sets the iterator to the first red node of the given
+ /// digraph.
+ explicit RedNodeIt(const BpGraph&) { }
+ /// Sets the iterator to the given red node.
+
+ /// Sets the iterator to the given red node of the given
+ /// digraph.
+ RedNodeIt(const BpGraph&, const RedNode&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next red node.
+ ///
+ RedNodeIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the blue nodes.
+
+ /// This iterator goes through each blue node of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of blue nodes in a graph \c g of type \c %BpGraph like this:
+ ///\code
+ /// int count=0;
+ /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count;
+ ///\endcode
+ class BlueNodeIt : public BlueNode {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ BlueNodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ BlueNodeIt(Invalid) { }
+ /// Sets the iterator to the first blue node.
+
+ /// Sets the iterator to the first blue node of the given
+ /// digraph.
+ explicit BlueNodeIt(const BpGraph&) { }
+ /// Sets the iterator to the given blue node.
+
+ /// Sets the iterator to the given blue node of the given
+ /// digraph.
+ BlueNodeIt(const BpGraph&, const BlueNode&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next blue node.
+ ///
+ BlueNodeIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the nodes.
+
+ /// This iterator goes through each node of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of nodes in a graph \c g of type \c %BpGraph like this:
+ ///\code
+ /// int count=0;
+ /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count;
+ ///\endcode
+ class NodeIt : public Node {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ NodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ NodeIt(const NodeIt& n) : Node(n) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ NodeIt(Invalid) { }
+ /// Sets the iterator to the first node.
+
+ /// Sets the iterator to the first node of the given digraph.
+ ///
+ explicit NodeIt(const BpGraph&) { }
+ /// Sets the iterator to the given node.
+
+ /// Sets the iterator to the given node of the given digraph.
+ ///
+ NodeIt(const BpGraph&, const Node&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next node.
+ ///
+ NodeIt& operator++() { return *this; }
+ };
+
+
+ /// The edge type of the graph
+
+ /// This class identifies an edge of the graph. It also serves
+ /// as a base class of the edge iterators,
+ /// thus they will convert to this type.
+ class Edge {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ Edge() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Edge(const Edge&) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ Edge(Invalid) { }
+ /// Equality operator
+
+ /// Equality operator.
+ ///
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are \c INVALID.
+ bool operator==(Edge) const { return true; }
+ /// Inequality operator
+
+ /// Inequality operator.
+ bool operator!=(Edge) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// Artificial ordering operator.
+ ///
+ /// \note This operator only has to define some strict ordering of
+ /// the edges; this order has nothing to do with the iteration
+ /// ordering of the edges.
+ bool operator<(Edge) const { return false; }
+ };
+
+ /// Iterator class for the edges.
+
+ /// This iterator goes through each edge of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of edges in a graph \c g of type \c %BpGraph as follows:
+ ///\code
+ /// int count=0;
+ /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count;
+ ///\endcode
+ class EdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ EdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ EdgeIt(const EdgeIt& e) : Edge(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ EdgeIt(Invalid) { }
+ /// Sets the iterator to the first edge.
+
+ /// Sets the iterator to the first edge of the given graph.
+ ///
+ explicit EdgeIt(const BpGraph&) { }
+ /// Sets the iterator to the given edge.
+
+ /// Sets the iterator to the given edge of the given graph.
+ ///
+ EdgeIt(const BpGraph&, const Edge&) { }
+ /// Next edge
+
+ /// Assign the iterator to the next edge.
+ ///
+ EdgeIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the incident edges of a node.
+
+ /// This iterator goes trough the incident undirected edges
+ /// of a certain node of a graph.
+ /// Its usage is quite simple, for example, you can compute the
+ /// degree (i.e. the number of incident edges) of a node \c n
+ /// in a graph \c g of type \c %BpGraph as follows.
+ ///
+ ///\code
+ /// int count=0;
+ /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+ ///\endcode
+ ///
+ /// \warning Loop edges will be iterated twice.
+ class IncEdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ IncEdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ IncEdgeIt(Invalid) { }
+ /// Sets the iterator to the first incident edge.
+
+ /// Sets the iterator to the first incident edge of the given node.
+ ///
+ IncEdgeIt(const BpGraph&, const Node&) { }
+ /// Sets the iterator to the given edge.
+
+ /// Sets the iterator to the given edge of the given graph.
+ ///
+ IncEdgeIt(const BpGraph&, const Edge&) { }
+ /// Next incident edge
+
+ /// Assign the iterator to the next incident edge
+ /// of the corresponding node.
+ IncEdgeIt& operator++() { return *this; }
+ };
+
+ /// The arc type of the graph
+
+ /// This class identifies a directed arc of the graph. It also serves
+ /// as a base class of the arc iterators,
+ /// thus they will convert to this type.
+ class Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ Arc() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Arc(const Arc&) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ Arc(Invalid) { }
+ /// Equality operator
+
+ /// Equality operator.
+ ///
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are \c INVALID.
+ bool operator==(Arc) const { return true; }
+ /// Inequality operator
+
+ /// Inequality operator.
+ bool operator!=(Arc) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// Artificial ordering operator.
+ ///
+ /// \note This operator only has to define some strict ordering of
+ /// the arcs; this order has nothing to do with the iteration
+ /// ordering of the arcs.
+ bool operator<(Arc) const { return false; }
+
+ /// Converison to \c Edge
+
+ /// Converison to \c Edge.
+ ///
+ operator Edge() const { return Edge(); }
+ };
+
+ /// Iterator class for the arcs.
+
+ /// This iterator goes through each directed arc of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of arcs in a graph \c g of type \c %BpGraph as follows:
+ ///\code
+ /// int count=0;
+ /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count;
+ ///\endcode
+ class ArcIt : public Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ ArcIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ ArcIt(const ArcIt& e) : Arc(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ArcIt(Invalid) { }
+ /// Sets the iterator to the first arc.
+
+ /// Sets the iterator to the first arc of the given graph.
+ ///
+ explicit ArcIt(const BpGraph &g)
+ {
+ ::lemon::ignore_unused_variable_warning(g);
+ }
+ /// Sets the iterator to the given arc.
+
+ /// Sets the iterator to the given arc of the given graph.
+ ///
+ ArcIt(const BpGraph&, const Arc&) { }
+ /// Next arc
+
+ /// Assign the iterator to the next arc.
+ ///
+ ArcIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the outgoing arcs of a node.
+
+ /// This iterator goes trough the \e outgoing directed arcs of a
+ /// certain node of a graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of outgoing arcs of a node \c n
+ /// in a graph \c g of type \c %BpGraph as follows.
+ ///\code
+ /// int count=0;
+ /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
+ ///\endcode
+ class OutArcIt : public Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ OutArcIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ OutArcIt(const OutArcIt& e) : Arc(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ OutArcIt(Invalid) { }
+ /// Sets the iterator to the first outgoing arc.
+
+ /// Sets the iterator to the first outgoing arc of the given node.
+ ///
+ OutArcIt(const BpGraph& n, const Node& g) {
+ ::lemon::ignore_unused_variable_warning(n);
+ ::lemon::ignore_unused_variable_warning(g);
+ }
+ /// Sets the iterator to the given arc.
+
+ /// Sets the iterator to the given arc of the given graph.
+ ///
+ OutArcIt(const BpGraph&, const Arc&) { }
+ /// Next outgoing arc
+
+ /// Assign the iterator to the next
+ /// outgoing arc of the corresponding node.
+ OutArcIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the incoming arcs of a node.
+
+ /// This iterator goes trough the \e incoming directed arcs of a
+ /// certain node of a graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of incoming arcs of a node \c n
+ /// in a graph \c g of type \c %BpGraph as follows.
+ ///\code
+ /// int count=0;
+ /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
+ ///\endcode
+ class InArcIt : public Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ InArcIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ InArcIt(const InArcIt& e) : Arc(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ InArcIt(Invalid) { }
+ /// Sets the iterator to the first incoming arc.
+
+ /// Sets the iterator to the first incoming arc of the given node.
+ ///
+ InArcIt(const BpGraph& g, const Node& n) {
+ ::lemon::ignore_unused_variable_warning(n);
+ ::lemon::ignore_unused_variable_warning(g);
+ }
+ /// Sets the iterator to the given arc.
+
+ /// Sets the iterator to the given arc of the given graph.
+ ///
+ InArcIt(const BpGraph&, const Arc&) { }
+ /// Next incoming arc
+
+ /// Assign the iterator to the next
+ /// incoming arc of the corresponding node.
+ InArcIt& operator++() { return *this; }
+ };
+
+ /// \brief Standard graph map type for the nodes.
+ ///
+ /// Standard graph map type for the nodes.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class NodeMap : public ReferenceMap<Node, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit NodeMap(const BpGraph&) { }
+ /// Constructor with given initial value
+ NodeMap(const BpGraph&, T) { }
+
+ private:
+ ///Copy constructor
+ NodeMap(const NodeMap& nm) :
+ ReferenceMap<Node, T, T&, const T&>(nm) { }
+ ///Assignment operator
+ template <typename CMap>
+ NodeMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Node, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Standard graph map type for the red nodes.
+ ///
+ /// Standard graph map type for the red nodes.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class RedNodeMap : public ReferenceMap<Node, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit RedNodeMap(const BpGraph&) { }
+ /// Constructor with given initial value
+ RedNodeMap(const BpGraph&, T) { }
+
+ private:
+ ///Copy constructor
+ RedNodeMap(const RedNodeMap& nm) :
+ ReferenceMap<Node, T, T&, const T&>(nm) { }
+ ///Assignment operator
+ template <typename CMap>
+ RedNodeMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Node, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Standard graph map type for the blue nodes.
+ ///
+ /// Standard graph map type for the blue nodes.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class BlueNodeMap : public ReferenceMap<Node, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit BlueNodeMap(const BpGraph&) { }
+ /// Constructor with given initial value
+ BlueNodeMap(const BpGraph&, T) { }
+
+ private:
+ ///Copy constructor
+ BlueNodeMap(const BlueNodeMap& nm) :
+ ReferenceMap<Node, T, T&, const T&>(nm) { }
+ ///Assignment operator
+ template <typename CMap>
+ BlueNodeMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Node, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Standard graph map type for the arcs.
+ ///
+ /// Standard graph map type for the arcs.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit ArcMap(const BpGraph&) { }
+ /// Constructor with given initial value
+ ArcMap(const BpGraph&, T) { }
+
+ private:
+ ///Copy constructor
+ ArcMap(const ArcMap& em) :
+ ReferenceMap<Arc, T, T&, const T&>(em) { }
+ ///Assignment operator
+ template <typename CMap>
+ ArcMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Arc, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Standard graph map type for the edges.
+ ///
+ /// Standard graph map type for the edges.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit EdgeMap(const BpGraph&) { }
+ /// Constructor with given initial value
+ EdgeMap(const BpGraph&, T) { }
+
+ private:
+ ///Copy constructor
+ EdgeMap(const EdgeMap& em) :
+ ReferenceMap<Edge, T, T&, const T&>(em) {}
+ ///Assignment operator
+ template <typename CMap>
+ EdgeMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Edge, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Gives back %true for red nodes.
+ ///
+ /// Gives back %true for red nodes.
+ bool red(const Node&) const { return true; }
+
+ /// \brief Gives back %true for blue nodes.
+ ///
+ /// Gives back %true for blue nodes.
+ bool blue(const Node&) const { return true; }
+
+ /// \brief Converts the node to red node object.
+ ///
+ /// This function converts unsafely the node to red node
+ /// object. It should be called only if the node is from the red
+ /// partition or INVALID.
+ RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); }
+
+ /// \brief Converts the node to blue node object.
+ ///
+ /// This function converts unsafely the node to blue node
+ /// object. It should be called only if the node is from the red
+ /// partition or INVALID.
+ BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); }
+
+ /// \brief Converts the node to red node object.
+ ///
+ /// This function converts safely the node to red node
+ /// object. If the node is not from the red partition, then it
+ /// returns INVALID.
+ RedNode asRedNode(const Node&) const { return RedNode(); }
+
+ /// \brief Converts the node to blue node object.
+ ///
+ /// This function converts unsafely the node to blue node
+ /// object. If the node is not from the blue partition, then it
+ /// returns INVALID.
+ BlueNode asBlueNode(const Node&) const { return BlueNode(); }
+
+ /// \brief Gives back the red end node of the edge.
+ ///
+ /// Gives back the red end node of the edge.
+ RedNode redNode(const Edge&) const { return RedNode(); }
+
+ /// \brief Gives back the blue end node of the edge.
+ ///
+ /// Gives back the blue end node of the edge.
+ BlueNode blueNode(const Edge&) const { return BlueNode(); }
+
+ /// \brief The first node of the edge.
+ ///
+ /// It is a synonim for the \c redNode().
+ Node u(Edge) const { return INVALID; }
+
+ /// \brief The second node of the edge.
+ ///
+ /// It is a synonim for the \c blueNode().
+ Node v(Edge) const { return INVALID; }
+
+ /// \brief The source node of the arc.
+ ///
+ /// Returns the source node of the given arc.
+ Node source(Arc) const { return INVALID; }
+
+ /// \brief The target node of the arc.
+ ///
+ /// Returns the target node of the given arc.
+ Node target(Arc) const { return INVALID; }
+
+ /// \brief The ID of the node.
+ ///
+ /// Returns the ID of the given node.
+ int id(Node) const { return -1; }
+
+ /// \brief The red ID of the node.
+ ///
+ /// Returns the red ID of the given node.
+ int id(RedNode) const { return -1; }
+
+ /// \brief The blue ID of the node.
+ ///
+ /// Returns the blue ID of the given node.
+ int id(BlueNode) const { return -1; }
+
+ /// \brief The ID of the edge.
+ ///
+ /// Returns the ID of the given edge.
+ int id(Edge) const { return -1; }
+
+ /// \brief The ID of the arc.
+ ///
+ /// Returns the ID of the given arc.
+ int id(Arc) const { return -1; }
+
+ /// \brief The node with the given ID.
+ ///
+ /// Returns the node with the given ID.
+ /// \pre The argument should be a valid node ID in the graph.
+ Node nodeFromId(int) const { return INVALID; }
+
+ /// \brief The edge with the given ID.
+ ///
+ /// Returns the edge with the given ID.
+ /// \pre The argument should be a valid edge ID in the graph.
+ Edge edgeFromId(int) const { return INVALID; }
+
+ /// \brief The arc with the given ID.
+ ///
+ /// Returns the arc with the given ID.
+ /// \pre The argument should be a valid arc ID in the graph.
+ Arc arcFromId(int) const { return INVALID; }
+
+ /// \brief An upper bound on the node IDs.
+ ///
+ /// Returns an upper bound on the node IDs.
+ int maxNodeId() const { return -1; }
+
+ /// \brief An upper bound on the red IDs.
+ ///
+ /// Returns an upper bound on the red IDs.
+ int maxRedId() const { return -1; }
+
+ /// \brief An upper bound on the blue IDs.
+ ///
+ /// Returns an upper bound on the blue IDs.
+ int maxBlueId() const { return -1; }
+
+ /// \brief An upper bound on the edge IDs.
+ ///
+ /// Returns an upper bound on the edge IDs.
+ int maxEdgeId() const { return -1; }
+
+ /// \brief An upper bound on the arc IDs.
+ ///
+ /// Returns an upper bound on the arc IDs.
+ int maxArcId() const { return -1; }
+
+ /// \brief The direction of the arc.
+ ///
+ /// Returns \c true if the given arc goes from a red node to a blue node.
+ bool direction(Arc) const { return true; }
+
+ /// \brief Direct the edge.
+ ///
+ /// Direct the given edge. The returned arc
+ /// represents the given edge and its direction comes
+ /// from the bool parameter. If it is \c true, then the source of the node
+ /// will be a red node.
+ Arc direct(Edge, bool) const {
+ return INVALID;
+ }
+
+ /// \brief Direct the edge.
+ ///
+ /// Direct the given edge. The returned arc represents the given
+ /// edge and its source node is the given node.
+ Arc direct(Edge, Node) const {
+ return INVALID;
+ }
+
+ /// \brief The oppositely directed arc.
+ ///
+ /// Returns the oppositely directed arc representing the same edge.
+ Arc oppositeArc(Arc) const { return INVALID; }
+
+ /// \brief The opposite node on the edge.
+ ///
+ /// Returns the opposite node on the given edge.
+ Node oppositeNode(Node, Edge) const { return INVALID; }
+
+ void first(Node&) const {}
+ void next(Node&) const {}
+
+ void firstRed(RedNode&) const {}
+ void nextRed(RedNode&) const {}
+
+ void firstBlue(BlueNode&) const {}
+ void nextBlue(BlueNode&) const {}
+
+ void first(Edge&) const {}
+ void next(Edge&) const {}
+
+ void first(Arc&) const {}
+ void next(Arc&) const {}
+
+ void firstOut(Arc&, Node) const {}
+ void nextOut(Arc&) const {}
+
+ void firstIn(Arc&, Node) const {}
+ void nextIn(Arc&) const {}
+
+ void firstInc(Edge &, bool &, const Node &) const {}
+ void nextInc(Edge &, bool &) const {}
+
+ // The second parameter is dummy.
+ Node fromId(int, Node) const { return INVALID; }
+ // The second parameter is dummy.
+ Edge fromId(int, Edge) const { return INVALID; }
+ // The second parameter is dummy.
+ Arc fromId(int, Arc) const { return INVALID; }
+
+ // Dummy parameter.
+ int maxId(Node) const { return -1; }
+ // Dummy parameter.
+ int maxId(RedNode) const { return -1; }
+ // Dummy parameter.
+ int maxId(BlueNode) const { return -1; }
+ // Dummy parameter.
+ int maxId(Edge) const { return -1; }
+ // Dummy parameter.
+ int maxId(Arc) const { return -1; }
+
+ /// \brief The base node of the iterator.
+ ///
+ /// Returns the base node of the given incident edge iterator.
+ Node baseNode(IncEdgeIt) const { return INVALID; }
+
+ /// \brief The running node of the iterator.
+ ///
+ /// Returns the running node of the given incident edge iterator.
+ Node runningNode(IncEdgeIt) const { return INVALID; }
+
+ /// \brief The base node of the iterator.
+ ///
+ /// Returns the base node of the given outgoing arc iterator
+ /// (i.e. the source node of the corresponding arc).
+ Node baseNode(OutArcIt) const { return INVALID; }
+
+ /// \brief The running node of the iterator.
+ ///
+ /// Returns the running node of the given outgoing arc iterator
+ /// (i.e. the target node of the corresponding arc).
+ Node runningNode(OutArcIt) const { return INVALID; }
+
+ /// \brief The base node of the iterator.
+ ///
+ /// Returns the base node of the given incoming arc iterator
+ /// (i.e. the target node of the corresponding arc).
+ Node baseNode(InArcIt) const { return INVALID; }
+
+ /// \brief The running node of the iterator.
+ ///
+ /// Returns the running node of the given incoming arc iterator
+ /// (i.e. the source node of the corresponding arc).
+ Node runningNode(InArcIt) const { return INVALID; }
+
+ template <typename _BpGraph>
+ struct Constraints {
+ void constraints() {
+ checkConcept<BaseBpGraphComponent, _BpGraph>();
+ checkConcept<IterableBpGraphComponent<>, _BpGraph>();
+ checkConcept<IDableBpGraphComponent<>, _BpGraph>();
+ checkConcept<MappableBpGraphComponent<>, _BpGraph>();
+ }
+ };
+
+ };
+
+ }
+
+}
+
+#endif