Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/graph.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/graph.h788
1 files changed, 788 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/graph.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/graph.h
new file mode 100644
index 00000000000..76e43da0680
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/concepts/graph.h
@@ -0,0 +1,788 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+///\ingroup graph_concepts
+///\file
+///\brief The concept of undirected graphs.
+
+#ifndef LEMON_CONCEPTS_GRAPH_H
+#define LEMON_CONCEPTS_GRAPH_H
+
+#include <lemon/concepts/graph_components.h>
+#include <lemon/concepts/maps.h>
+#include <lemon/concept_check.h>
+#include <lemon/core.h>
+
+namespace lemon {
+ namespace concepts {
+
+ /// \ingroup graph_concepts
+ ///
+ /// \brief Class describing the concept of undirected graphs.
+ ///
+ /// This class describes the common interface of all undirected
+ /// graphs.
+ ///
+ /// Like all concept classes, it only provides an interface
+ /// without any sensible implementation. So any general algorithm for
+ /// undirected graphs should compile with this class, but it will not
+ /// run properly, of course.
+ /// An actual graph implementation like \ref ListGraph or
+ /// \ref SmartGraph may have additional functionality.
+ ///
+ /// The undirected graphs also fulfill the concept of \ref Digraph
+ /// "directed graphs", since each edge can also be regarded as two
+ /// oppositely directed arcs.
+ /// Undirected graphs provide an Edge type for the undirected edges and
+ /// an Arc type for the directed arcs. The Arc type is convertible to
+ /// Edge or inherited from it, i.e. the corresponding edge can be
+ /// obtained from an arc.
+ /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
+ /// and ArcMap classes can be used for the arcs (just like in digraphs).
+ /// Both InArcIt and OutArcIt iterates on the same edges but with
+ /// opposite direction. IncEdgeIt also iterates on the same edges
+ /// as OutArcIt and InArcIt, but it is not convertible to Arc,
+ /// only to Edge.
+ ///
+ /// In LEMON, each undirected edge has an inherent orientation.
+ /// Thus it can defined if an arc is forward or backward oriented in
+ /// an undirected graph with respect to this default oriantation of
+ /// the represented edge.
+ /// With the direction() and direct() functions the direction
+ /// of an arc can be obtained and set, respectively.
+ ///
+ /// Only nodes and edges can be added to or removed from an undirected
+ /// graph and the corresponding arcs are added or removed automatically.
+ ///
+ /// \sa Digraph
+ class Graph {
+ private:
+ /// Graphs are \e not copy constructible. Use GraphCopy instead.
+ Graph(const Graph&) {}
+ /// \brief Assignment of a graph to another one is \e not allowed.
+ /// Use GraphCopy instead.
+ void operator=(const Graph&) {}
+
+ public:
+ /// Default constructor.
+ Graph() {}
+
+ /// \brief Undirected graphs should be tagged with \c UndirectedTag.
+ ///
+ /// Undirected graphs should be tagged with \c UndirectedTag.
+ ///
+ /// This tag helps the \c enable_if technics to make compile time
+ /// specializations for undirected graphs.
+ typedef True UndirectedTag;
+
+ /// The node type of the graph
+
+ /// This class identifies a node of the graph. It also serves
+ /// as a base class of the node iterators,
+ /// thus they convert to this type.
+ class Node {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ Node() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Node(const Node&) { }
+
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ Node(Invalid) { }
+ /// Equality operator
+
+ /// Equality operator.
+ ///
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are \c INVALID.
+ bool operator==(Node) const { return true; }
+
+ /// Inequality operator
+
+ /// Inequality operator.
+ bool operator!=(Node) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// Artificial ordering operator.
+ ///
+ /// \note This operator only has to define some strict ordering of
+ /// the items; this order has nothing to do with the iteration
+ /// ordering of the items.
+ bool operator<(Node) const { return false; }
+
+ };
+
+ /// Iterator class for the nodes.
+
+ /// This iterator goes through each node of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of nodes in a graph \c g of type \c %Graph like this:
+ ///\code
+ /// int count=0;
+ /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
+ ///\endcode
+ class NodeIt : public Node {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ NodeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ NodeIt(const NodeIt& n) : Node(n) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ NodeIt(Invalid) { }
+ /// Sets the iterator to the first node.
+
+ /// Sets the iterator to the first node of the given digraph.
+ ///
+ explicit NodeIt(const Graph&) { }
+ /// Sets the iterator to the given node.
+
+ /// Sets the iterator to the given node of the given digraph.
+ ///
+ NodeIt(const Graph&, const Node&) { }
+ /// Next node.
+
+ /// Assign the iterator to the next node.
+ ///
+ NodeIt& operator++() { return *this; }
+ };
+
+
+ /// The edge type of the graph
+
+ /// This class identifies an edge of the graph. It also serves
+ /// as a base class of the edge iterators,
+ /// thus they will convert to this type.
+ class Edge {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ Edge() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Edge(const Edge&) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ Edge(Invalid) { }
+ /// Equality operator
+
+ /// Equality operator.
+ ///
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are \c INVALID.
+ bool operator==(Edge) const { return true; }
+ /// Inequality operator
+
+ /// Inequality operator.
+ bool operator!=(Edge) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// Artificial ordering operator.
+ ///
+ /// \note This operator only has to define some strict ordering of
+ /// the edges; this order has nothing to do with the iteration
+ /// ordering of the edges.
+ bool operator<(Edge) const { return false; }
+ };
+
+ /// Iterator class for the edges.
+
+ /// This iterator goes through each edge of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of edges in a graph \c g of type \c %Graph as follows:
+ ///\code
+ /// int count=0;
+ /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
+ ///\endcode
+ class EdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ EdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ EdgeIt(const EdgeIt& e) : Edge(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ EdgeIt(Invalid) { }
+ /// Sets the iterator to the first edge.
+
+ /// Sets the iterator to the first edge of the given graph.
+ ///
+ explicit EdgeIt(const Graph&) { }
+ /// Sets the iterator to the given edge.
+
+ /// Sets the iterator to the given edge of the given graph.
+ ///
+ EdgeIt(const Graph&, const Edge&) { }
+ /// Next edge
+
+ /// Assign the iterator to the next edge.
+ ///
+ EdgeIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the incident edges of a node.
+
+ /// This iterator goes trough the incident undirected edges
+ /// of a certain node of a graph.
+ /// Its usage is quite simple, for example, you can compute the
+ /// degree (i.e. the number of incident edges) of a node \c n
+ /// in a graph \c g of type \c %Graph as follows.
+ ///
+ ///\code
+ /// int count=0;
+ /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
+ ///\endcode
+ ///
+ /// \warning Loop edges will be iterated twice.
+ class IncEdgeIt : public Edge {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ IncEdgeIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ IncEdgeIt(Invalid) { }
+ /// Sets the iterator to the first incident edge.
+
+ /// Sets the iterator to the first incident edge of the given node.
+ ///
+ IncEdgeIt(const Graph&, const Node&) { }
+ /// Sets the iterator to the given edge.
+
+ /// Sets the iterator to the given edge of the given graph.
+ ///
+ IncEdgeIt(const Graph&, const Edge&) { }
+ /// Next incident edge
+
+ /// Assign the iterator to the next incident edge
+ /// of the corresponding node.
+ IncEdgeIt& operator++() { return *this; }
+ };
+
+ /// The arc type of the graph
+
+ /// This class identifies a directed arc of the graph. It also serves
+ /// as a base class of the arc iterators,
+ /// thus they will convert to this type.
+ class Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the object to an undefined value.
+ Arc() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ Arc(const Arc&) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the object to be invalid.
+ /// \sa Invalid for more details.
+ Arc(Invalid) { }
+ /// Equality operator
+
+ /// Equality operator.
+ ///
+ /// Two iterators are equal if and only if they point to the
+ /// same object or both are \c INVALID.
+ bool operator==(Arc) const { return true; }
+ /// Inequality operator
+
+ /// Inequality operator.
+ bool operator!=(Arc) const { return true; }
+
+ /// Artificial ordering operator.
+
+ /// Artificial ordering operator.
+ ///
+ /// \note This operator only has to define some strict ordering of
+ /// the arcs; this order has nothing to do with the iteration
+ /// ordering of the arcs.
+ bool operator<(Arc) const { return false; }
+
+ /// Converison to \c Edge
+
+ /// Converison to \c Edge.
+ ///
+ operator Edge() const { return Edge(); }
+ };
+
+ /// Iterator class for the arcs.
+
+ /// This iterator goes through each directed arc of the graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of arcs in a graph \c g of type \c %Graph as follows:
+ ///\code
+ /// int count=0;
+ /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
+ ///\endcode
+ class ArcIt : public Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ ArcIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ ArcIt(const ArcIt& e) : Arc(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ ArcIt(Invalid) { }
+ /// Sets the iterator to the first arc.
+
+ /// Sets the iterator to the first arc of the given graph.
+ ///
+ explicit ArcIt(const Graph &g) {
+ ::lemon::ignore_unused_variable_warning(g);
+ }
+ /// Sets the iterator to the given arc.
+
+ /// Sets the iterator to the given arc of the given graph.
+ ///
+ ArcIt(const Graph&, const Arc&) { }
+ /// Next arc
+
+ /// Assign the iterator to the next arc.
+ ///
+ ArcIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the outgoing arcs of a node.
+
+ /// This iterator goes trough the \e outgoing directed arcs of a
+ /// certain node of a graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of outgoing arcs of a node \c n
+ /// in a graph \c g of type \c %Graph as follows.
+ ///\code
+ /// int count=0;
+ /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
+ ///\endcode
+ class OutArcIt : public Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ OutArcIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ OutArcIt(const OutArcIt& e) : Arc(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ OutArcIt(Invalid) { }
+ /// Sets the iterator to the first outgoing arc.
+
+ /// Sets the iterator to the first outgoing arc of the given node.
+ ///
+ OutArcIt(const Graph& n, const Node& g) {
+ ::lemon::ignore_unused_variable_warning(n);
+ ::lemon::ignore_unused_variable_warning(g);
+ }
+ /// Sets the iterator to the given arc.
+
+ /// Sets the iterator to the given arc of the given graph.
+ ///
+ OutArcIt(const Graph&, const Arc&) { }
+ /// Next outgoing arc
+
+ /// Assign the iterator to the next
+ /// outgoing arc of the corresponding node.
+ OutArcIt& operator++() { return *this; }
+ };
+
+ /// Iterator class for the incoming arcs of a node.
+
+ /// This iterator goes trough the \e incoming directed arcs of a
+ /// certain node of a graph.
+ /// Its usage is quite simple, for example, you can count the number
+ /// of incoming arcs of a node \c n
+ /// in a graph \c g of type \c %Graph as follows.
+ ///\code
+ /// int count=0;
+ /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
+ ///\endcode
+ class InArcIt : public Arc {
+ public:
+ /// Default constructor
+
+ /// Default constructor.
+ /// \warning It sets the iterator to an undefined value.
+ InArcIt() { }
+ /// Copy constructor.
+
+ /// Copy constructor.
+ ///
+ InArcIt(const InArcIt& e) : Arc(e) { }
+ /// %Invalid constructor \& conversion.
+
+ /// Initializes the iterator to be invalid.
+ /// \sa Invalid for more details.
+ InArcIt(Invalid) { }
+ /// Sets the iterator to the first incoming arc.
+
+ /// Sets the iterator to the first incoming arc of the given node.
+ ///
+ InArcIt(const Graph& g, const Node& n) {
+ ::lemon::ignore_unused_variable_warning(n);
+ ::lemon::ignore_unused_variable_warning(g);
+ }
+ /// Sets the iterator to the given arc.
+
+ /// Sets the iterator to the given arc of the given graph.
+ ///
+ InArcIt(const Graph&, const Arc&) { }
+ /// Next incoming arc
+
+ /// Assign the iterator to the next
+ /// incoming arc of the corresponding node.
+ InArcIt& operator++() { return *this; }
+ };
+
+ /// \brief Standard graph map type for the nodes.
+ ///
+ /// Standard graph map type for the nodes.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class NodeMap : public ReferenceMap<Node, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit NodeMap(const Graph&) { }
+ /// Constructor with given initial value
+ NodeMap(const Graph&, T) { }
+
+ private:
+ ///Copy constructor
+ NodeMap(const NodeMap& nm) :
+ ReferenceMap<Node, T, T&, const T&>(nm) { }
+ ///Assignment operator
+ template <typename CMap>
+ NodeMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Node, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Standard graph map type for the arcs.
+ ///
+ /// Standard graph map type for the arcs.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit ArcMap(const Graph&) { }
+ /// Constructor with given initial value
+ ArcMap(const Graph&, T) { }
+
+ private:
+ ///Copy constructor
+ ArcMap(const ArcMap& em) :
+ ReferenceMap<Arc, T, T&, const T&>(em) { }
+ ///Assignment operator
+ template <typename CMap>
+ ArcMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Arc, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief Standard graph map type for the edges.
+ ///
+ /// Standard graph map type for the edges.
+ /// It conforms to the ReferenceMap concept.
+ template<class T>
+ class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
+ {
+ public:
+
+ /// Constructor
+ explicit EdgeMap(const Graph&) { }
+ /// Constructor with given initial value
+ EdgeMap(const Graph&, T) { }
+
+ private:
+ ///Copy constructor
+ EdgeMap(const EdgeMap& em) :
+ ReferenceMap<Edge, T, T&, const T&>(em) {}
+ ///Assignment operator
+ template <typename CMap>
+ EdgeMap& operator=(const CMap&) {
+ checkConcept<ReadMap<Edge, T>, CMap>();
+ return *this;
+ }
+ };
+
+ /// \brief The first node of the edge.
+ ///
+ /// Returns the first node of the given edge.
+ ///
+ /// Edges don't have source and target nodes, however, methods
+ /// u() and v() are used to query the two end-nodes of an edge.
+ /// The orientation of an edge that arises this way is called
+ /// the inherent direction, it is used to define the default
+ /// direction for the corresponding arcs.
+ /// \sa v()
+ /// \sa direction()
+ Node u(Edge) const { return INVALID; }
+
+ /// \brief The second node of the edge.
+ ///
+ /// Returns the second node of the given edge.
+ ///
+ /// Edges don't have source and target nodes, however, methods
+ /// u() and v() are used to query the two end-nodes of an edge.
+ /// The orientation of an edge that arises this way is called
+ /// the inherent direction, it is used to define the default
+ /// direction for the corresponding arcs.
+ /// \sa u()
+ /// \sa direction()
+ Node v(Edge) const { return INVALID; }
+
+ /// \brief The source node of the arc.
+ ///
+ /// Returns the source node of the given arc.
+ Node source(Arc) const { return INVALID; }
+
+ /// \brief The target node of the arc.
+ ///
+ /// Returns the target node of the given arc.
+ Node target(Arc) const { return INVALID; }
+
+ /// \brief The ID of the node.
+ ///
+ /// Returns the ID of the given node.
+ int id(Node) const { return -1; }
+
+ /// \brief The ID of the edge.
+ ///
+ /// Returns the ID of the given edge.
+ int id(Edge) const { return -1; }
+
+ /// \brief The ID of the arc.
+ ///
+ /// Returns the ID of the given arc.
+ int id(Arc) const { return -1; }
+
+ /// \brief The node with the given ID.
+ ///
+ /// Returns the node with the given ID.
+ /// \pre The argument should be a valid node ID in the graph.
+ Node nodeFromId(int) const { return INVALID; }
+
+ /// \brief The edge with the given ID.
+ ///
+ /// Returns the edge with the given ID.
+ /// \pre The argument should be a valid edge ID in the graph.
+ Edge edgeFromId(int) const { return INVALID; }
+
+ /// \brief The arc with the given ID.
+ ///
+ /// Returns the arc with the given ID.
+ /// \pre The argument should be a valid arc ID in the graph.
+ Arc arcFromId(int) const { return INVALID; }
+
+ /// \brief An upper bound on the node IDs.
+ ///
+ /// Returns an upper bound on the node IDs.
+ int maxNodeId() const { return -1; }
+
+ /// \brief An upper bound on the edge IDs.
+ ///
+ /// Returns an upper bound on the edge IDs.
+ int maxEdgeId() const { return -1; }
+
+ /// \brief An upper bound on the arc IDs.
+ ///
+ /// Returns an upper bound on the arc IDs.
+ int maxArcId() const { return -1; }
+
+ /// \brief The direction of the arc.
+ ///
+ /// Returns \c true if the direction of the given arc is the same as
+ /// the inherent orientation of the represented edge.
+ bool direction(Arc) const { return true; }
+
+ /// \brief Direct the edge.
+ ///
+ /// Direct the given edge. The returned arc
+ /// represents the given edge and its direction comes
+ /// from the bool parameter. If it is \c true, then the direction
+ /// of the arc is the same as the inherent orientation of the edge.
+ Arc direct(Edge, bool) const {
+ return INVALID;
+ }
+
+ /// \brief Direct the edge.
+ ///
+ /// Direct the given edge. The returned arc represents the given
+ /// edge and its source node is the given node.
+ Arc direct(Edge, Node) const {
+ return INVALID;
+ }
+
+ /// \brief The oppositely directed arc.
+ ///
+ /// Returns the oppositely directed arc representing the same edge.
+ Arc oppositeArc(Arc) const { return INVALID; }
+
+ /// \brief The opposite node on the edge.
+ ///
+ /// Returns the opposite node on the given edge.
+ Node oppositeNode(Node, Edge) const { return INVALID; }
+
+ void first(Node&) const {}
+ void next(Node&) const {}
+
+ void first(Edge&) const {}
+ void next(Edge&) const {}
+
+ void first(Arc&) const {}
+ void next(Arc&) const {}
+
+ void firstOut(Arc&, Node) const {}
+ void nextOut(Arc&) const {}
+
+ void firstIn(Arc&, Node) const {}
+ void nextIn(Arc&) const {}
+
+ void firstInc(Edge &, bool &, const Node &) const {}
+ void nextInc(Edge &, bool &) const {}
+
+ // The second parameter is dummy.
+ Node fromId(int, Node) const { return INVALID; }
+ // The second parameter is dummy.
+ Edge fromId(int, Edge) const { return INVALID; }
+ // The second parameter is dummy.
+ Arc fromId(int, Arc) const { return INVALID; }
+
+ // Dummy parameter.
+ int maxId(Node) const { return -1; }
+ // Dummy parameter.
+ int maxId(Edge) const { return -1; }
+ // Dummy parameter.
+ int maxId(Arc) const { return -1; }
+
+ /// \brief The base node of the iterator.
+ ///
+ /// Returns the base node of the given incident edge iterator.
+ Node baseNode(IncEdgeIt) const { return INVALID; }
+
+ /// \brief The running node of the iterator.
+ ///
+ /// Returns the running node of the given incident edge iterator.
+ Node runningNode(IncEdgeIt) const { return INVALID; }
+
+ /// \brief The base node of the iterator.
+ ///
+ /// Returns the base node of the given outgoing arc iterator
+ /// (i.e. the source node of the corresponding arc).
+ Node baseNode(OutArcIt) const { return INVALID; }
+
+ /// \brief The running node of the iterator.
+ ///
+ /// Returns the running node of the given outgoing arc iterator
+ /// (i.e. the target node of the corresponding arc).
+ Node runningNode(OutArcIt) const { return INVALID; }
+
+ /// \brief The base node of the iterator.
+ ///
+ /// Returns the base node of the given incoming arc iterator
+ /// (i.e. the target node of the corresponding arc).
+ Node baseNode(InArcIt) const { return INVALID; }
+
+ /// \brief The running node of the iterator.
+ ///
+ /// Returns the running node of the given incoming arc iterator
+ /// (i.e. the source node of the corresponding arc).
+ Node runningNode(InArcIt) const { return INVALID; }
+
+ template <typename _Graph>
+ struct Constraints {
+ void constraints() {
+ checkConcept<BaseGraphComponent, _Graph>();
+ checkConcept<IterableGraphComponent<>, _Graph>();
+ checkConcept<IDableGraphComponent<>, _Graph>();
+ checkConcept<MappableGraphComponent<>, _Graph>();
+ }
+ };
+
+ };
+
+ }
+
+}
+
+#endif