Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/core.h')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/core.h2506
1 files changed, 2506 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/core.h b/extern/quadriflow/3rd/lemon-1.3.1/lemon/core.h
new file mode 100644
index 00000000000..507943db1c3
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/core.h
@@ -0,0 +1,2506 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#ifndef LEMON_CORE_H
+#define LEMON_CORE_H
+
+#include <vector>
+#include <algorithm>
+
+#include <lemon/config.h>
+#include <lemon/bits/enable_if.h>
+#include <lemon/bits/traits.h>
+#include <lemon/assert.h>
+
+// Disable the following warnings when compiling with MSVC:
+// C4250: 'class1' : inherits 'class2::member' via dominance
+// C4355: 'this' : used in base member initializer list
+// C4503: 'function' : decorated name length exceeded, name was truncated
+// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
+// C4996: 'function': was declared deprecated
+#ifdef _MSC_VER
+#pragma warning( disable : 4250 4355 4503 4800 4996 )
+#endif
+
+#ifdef __GNUC__
+#define GCC_VERSION (__GNUC__ * 10000 \
+ + __GNUC_MINOR__ * 100 \
+ + __GNUC_PATCHLEVEL__)
+#endif
+
+#if GCC_VERSION >= 40800
+// Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
+#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
+#endif
+
+///\file
+///\brief LEMON core utilities.
+///
+///This header file contains core utilities for LEMON.
+///It is automatically included by all graph types, therefore it usually
+///do not have to be included directly.
+
+namespace lemon {
+
+ /// \brief Dummy type to make it easier to create invalid iterators.
+ ///
+ /// Dummy type to make it easier to create invalid iterators.
+ /// See \ref INVALID for the usage.
+ struct Invalid {
+ public:
+ bool operator==(Invalid) { return true; }
+ bool operator!=(Invalid) { return false; }
+ bool operator< (Invalid) { return false; }
+ };
+
+ /// \brief Invalid iterators.
+ ///
+ /// \ref Invalid is a global type that converts to each iterator
+ /// in such a way that the value of the target iterator will be invalid.
+#ifdef LEMON_ONLY_TEMPLATES
+ const Invalid INVALID = Invalid();
+#else
+ extern const Invalid INVALID;
+#endif
+
+ /// \addtogroup gutils
+ /// @{
+
+ ///Create convenience typedefs for the digraph types and iterators
+
+ ///This \c \#define creates convenient type definitions for the following
+ ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
+ ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
+ ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
+ ///
+ ///\note If the graph type is a dependent type, ie. the graph type depend
+ ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
+ ///macro.
+#define DIGRAPH_TYPEDEFS(Digraph) \
+ typedef Digraph::Node Node; \
+ typedef Digraph::NodeIt NodeIt; \
+ typedef Digraph::Arc Arc; \
+ typedef Digraph::ArcIt ArcIt; \
+ typedef Digraph::InArcIt InArcIt; \
+ typedef Digraph::OutArcIt OutArcIt; \
+ typedef Digraph::NodeMap<bool> BoolNodeMap; \
+ typedef Digraph::NodeMap<int> IntNodeMap; \
+ typedef Digraph::NodeMap<double> DoubleNodeMap; \
+ typedef Digraph::ArcMap<bool> BoolArcMap; \
+ typedef Digraph::ArcMap<int> IntArcMap; \
+ typedef Digraph::ArcMap<double> DoubleArcMap
+
+ ///Create convenience typedefs for the digraph types and iterators
+
+ ///\see DIGRAPH_TYPEDEFS
+ ///
+ ///\note Use this macro, if the graph type is a dependent type,
+ ///ie. the graph type depend on a template parameter.
+#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
+ typedef typename Digraph::Node Node; \
+ typedef typename Digraph::NodeIt NodeIt; \
+ typedef typename Digraph::Arc Arc; \
+ typedef typename Digraph::ArcIt ArcIt; \
+ typedef typename Digraph::InArcIt InArcIt; \
+ typedef typename Digraph::OutArcIt OutArcIt; \
+ typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
+ typedef typename Digraph::template NodeMap<int> IntNodeMap; \
+ typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
+ typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
+ typedef typename Digraph::template ArcMap<int> IntArcMap; \
+ typedef typename Digraph::template ArcMap<double> DoubleArcMap
+
+ ///Create convenience typedefs for the graph types and iterators
+
+ ///This \c \#define creates the same convenient type definitions as defined
+ ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
+ ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
+ ///\c DoubleEdgeMap.
+ ///
+ ///\note If the graph type is a dependent type, ie. the graph type depend
+ ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
+ ///macro.
+#define GRAPH_TYPEDEFS(Graph) \
+ DIGRAPH_TYPEDEFS(Graph); \
+ typedef Graph::Edge Edge; \
+ typedef Graph::EdgeIt EdgeIt; \
+ typedef Graph::IncEdgeIt IncEdgeIt; \
+ typedef Graph::EdgeMap<bool> BoolEdgeMap; \
+ typedef Graph::EdgeMap<int> IntEdgeMap; \
+ typedef Graph::EdgeMap<double> DoubleEdgeMap
+
+ ///Create convenience typedefs for the graph types and iterators
+
+ ///\see GRAPH_TYPEDEFS
+ ///
+ ///\note Use this macro, if the graph type is a dependent type,
+ ///ie. the graph type depend on a template parameter.
+#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
+ TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
+ typedef typename Graph::Edge Edge; \
+ typedef typename Graph::EdgeIt EdgeIt; \
+ typedef typename Graph::IncEdgeIt IncEdgeIt; \
+ typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
+ typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
+ typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
+
+ ///Create convenience typedefs for the bipartite graph types and iterators
+
+ ///This \c \#define creates the same convenient type definitions as
+ ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
+ ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
+ ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
+ ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
+ ///
+ ///\note If the graph type is a dependent type, ie. the graph type depend
+ ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
+ ///macro.
+#define BPGRAPH_TYPEDEFS(BpGraph) \
+ GRAPH_TYPEDEFS(BpGraph); \
+ typedef BpGraph::RedNode RedNode; \
+ typedef BpGraph::RedNodeIt RedNodeIt; \
+ typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap; \
+ typedef BpGraph::RedNodeMap<int> IntRedNodeMap; \
+ typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap; \
+ typedef BpGraph::BlueNode BlueNode; \
+ typedef BpGraph::BlueNodeIt BlueNodeIt; \
+ typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap; \
+ typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap; \
+ typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
+
+ ///Create convenience typedefs for the bipartite graph types and iterators
+
+ ///\see BPGRAPH_TYPEDEFS
+ ///
+ ///\note Use this macro, if the graph type is a dependent type,
+ ///ie. the graph type depend on a template parameter.
+#define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph) \
+ TEMPLATE_GRAPH_TYPEDEFS(BpGraph); \
+ typedef typename BpGraph::RedNode RedNode; \
+ typedef typename BpGraph::RedNodeIt RedNodeIt; \
+ typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap; \
+ typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap; \
+ typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap; \
+ typedef typename BpGraph::BlueNode BlueNode; \
+ typedef typename BpGraph::BlueNodeIt BlueNodeIt; \
+ typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap; \
+ typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap; \
+ typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
+
+ /// \brief Function to count the items in a graph.
+ ///
+ /// This function counts the items (nodes, arcs etc.) in a graph.
+ /// The complexity of the function is linear because
+ /// it iterates on all of the items.
+ template <typename Graph, typename Item>
+ inline int countItems(const Graph& g) {
+ typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
+ int num = 0;
+ for (ItemIt it(g); it != INVALID; ++it) {
+ ++num;
+ }
+ return num;
+ }
+
+ // Node counting:
+
+ namespace _core_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct CountNodesSelector {
+ static int count(const Graph &g) {
+ return countItems<Graph, typename Graph::Node>(g);
+ }
+ };
+
+ template <typename Graph>
+ struct CountNodesSelector<
+ Graph, typename
+ enable_if<typename Graph::NodeNumTag, void>::type>
+ {
+ static int count(const Graph &g) {
+ return g.nodeNum();
+ }
+ };
+ }
+
+ /// \brief Function to count the nodes in the graph.
+ ///
+ /// This function counts the nodes in the graph.
+ /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
+ /// graph structures it is specialized to run in <em>O</em>(1).
+ ///
+ /// \note If the graph contains a \c nodeNum() member function and a
+ /// \c NodeNumTag tag then this function calls directly the member
+ /// function to query the cardinality of the node set.
+ template <typename Graph>
+ inline int countNodes(const Graph& g) {
+ return _core_bits::CountNodesSelector<Graph>::count(g);
+ }
+
+ namespace _graph_utils_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct CountRedNodesSelector {
+ static int count(const Graph &g) {
+ return countItems<Graph, typename Graph::RedNode>(g);
+ }
+ };
+
+ template <typename Graph>
+ struct CountRedNodesSelector<
+ Graph, typename
+ enable_if<typename Graph::NodeNumTag, void>::type>
+ {
+ static int count(const Graph &g) {
+ return g.redNum();
+ }
+ };
+ }
+
+ /// \brief Function to count the red nodes in the graph.
+ ///
+ /// This function counts the red nodes in the graph.
+ /// The complexity of the function is O(n) but for some
+ /// graph structures it is specialized to run in O(1).
+ ///
+ /// If the graph contains a \e redNum() member function and a
+ /// \e NodeNumTag tag then this function calls directly the member
+ /// function to query the cardinality of the node set.
+ template <typename Graph>
+ inline int countRedNodes(const Graph& g) {
+ return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
+ }
+
+ namespace _graph_utils_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct CountBlueNodesSelector {
+ static int count(const Graph &g) {
+ return countItems<Graph, typename Graph::BlueNode>(g);
+ }
+ };
+
+ template <typename Graph>
+ struct CountBlueNodesSelector<
+ Graph, typename
+ enable_if<typename Graph::NodeNumTag, void>::type>
+ {
+ static int count(const Graph &g) {
+ return g.blueNum();
+ }
+ };
+ }
+
+ /// \brief Function to count the blue nodes in the graph.
+ ///
+ /// This function counts the blue nodes in the graph.
+ /// The complexity of the function is O(n) but for some
+ /// graph structures it is specialized to run in O(1).
+ ///
+ /// If the graph contains a \e blueNum() member function and a
+ /// \e NodeNumTag tag then this function calls directly the member
+ /// function to query the cardinality of the node set.
+ template <typename Graph>
+ inline int countBlueNodes(const Graph& g) {
+ return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
+ }
+
+ // Arc counting:
+
+ namespace _core_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct CountArcsSelector {
+ static int count(const Graph &g) {
+ return countItems<Graph, typename Graph::Arc>(g);
+ }
+ };
+
+ template <typename Graph>
+ struct CountArcsSelector<
+ Graph,
+ typename enable_if<typename Graph::ArcNumTag, void>::type>
+ {
+ static int count(const Graph &g) {
+ return g.arcNum();
+ }
+ };
+ }
+
+ /// \brief Function to count the arcs in the graph.
+ ///
+ /// This function counts the arcs in the graph.
+ /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
+ /// graph structures it is specialized to run in <em>O</em>(1).
+ ///
+ /// \note If the graph contains a \c arcNum() member function and a
+ /// \c ArcNumTag tag then this function calls directly the member
+ /// function to query the cardinality of the arc set.
+ template <typename Graph>
+ inline int countArcs(const Graph& g) {
+ return _core_bits::CountArcsSelector<Graph>::count(g);
+ }
+
+ // Edge counting:
+
+ namespace _core_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct CountEdgesSelector {
+ static int count(const Graph &g) {
+ return countItems<Graph, typename Graph::Edge>(g);
+ }
+ };
+
+ template <typename Graph>
+ struct CountEdgesSelector<
+ Graph,
+ typename enable_if<typename Graph::EdgeNumTag, void>::type>
+ {
+ static int count(const Graph &g) {
+ return g.edgeNum();
+ }
+ };
+ }
+
+ /// \brief Function to count the edges in the graph.
+ ///
+ /// This function counts the edges in the graph.
+ /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
+ /// graph structures it is specialized to run in <em>O</em>(1).
+ ///
+ /// \note If the graph contains a \c edgeNum() member function and a
+ /// \c EdgeNumTag tag then this function calls directly the member
+ /// function to query the cardinality of the edge set.
+ template <typename Graph>
+ inline int countEdges(const Graph& g) {
+ return _core_bits::CountEdgesSelector<Graph>::count(g);
+
+ }
+
+
+ template <typename Graph, typename DegIt>
+ inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
+ int num = 0;
+ for (DegIt it(_g, _n); it != INVALID; ++it) {
+ ++num;
+ }
+ return num;
+ }
+
+ /// \brief Function to count the number of the out-arcs from node \c n.
+ ///
+ /// This function counts the number of the out-arcs from node \c n
+ /// in the graph \c g.
+ template <typename Graph>
+ inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
+ return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
+ }
+
+ /// \brief Function to count the number of the in-arcs to node \c n.
+ ///
+ /// This function counts the number of the in-arcs to node \c n
+ /// in the graph \c g.
+ template <typename Graph>
+ inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
+ return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
+ }
+
+ /// \brief Function to count the number of the inc-edges to node \c n.
+ ///
+ /// This function counts the number of the inc-edges to node \c n
+ /// in the undirected graph \c g.
+ template <typename Graph>
+ inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
+ return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
+ }
+
+ namespace _core_bits {
+
+ template <typename Digraph, typename Item, typename RefMap>
+ class MapCopyBase {
+ public:
+ virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
+
+ virtual ~MapCopyBase() {}
+ };
+
+ template <typename Digraph, typename Item, typename RefMap,
+ typename FromMap, typename ToMap>
+ class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
+ public:
+
+ MapCopy(const FromMap& map, ToMap& tmap)
+ : _map(map), _tmap(tmap) {}
+
+ virtual void copy(const Digraph& digraph, const RefMap& refMap) {
+ typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
+ for (ItemIt it(digraph); it != INVALID; ++it) {
+ _tmap.set(refMap[it], _map[it]);
+ }
+ }
+
+ private:
+ const FromMap& _map;
+ ToMap& _tmap;
+ };
+
+ template <typename Digraph, typename Item, typename RefMap, typename It>
+ class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
+ public:
+
+ ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
+
+ virtual void copy(const Digraph&, const RefMap& refMap) {
+ _it = refMap[_item];
+ }
+
+ private:
+ Item _item;
+ It& _it;
+ };
+
+ template <typename Digraph, typename Item, typename RefMap, typename Ref>
+ class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
+ public:
+
+ RefCopy(Ref& map) : _map(map) {}
+
+ virtual void copy(const Digraph& digraph, const RefMap& refMap) {
+ typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
+ for (ItemIt it(digraph); it != INVALID; ++it) {
+ _map.set(it, refMap[it]);
+ }
+ }
+
+ private:
+ Ref& _map;
+ };
+
+ template <typename Digraph, typename Item, typename RefMap,
+ typename CrossRef>
+ class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
+ public:
+
+ CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
+
+ virtual void copy(const Digraph& digraph, const RefMap& refMap) {
+ typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
+ for (ItemIt it(digraph); it != INVALID; ++it) {
+ _cmap.set(refMap[it], it);
+ }
+ }
+
+ private:
+ CrossRef& _cmap;
+ };
+
+ template <typename Digraph, typename Enable = void>
+ struct DigraphCopySelector {
+ template <typename From, typename NodeRefMap, typename ArcRefMap>
+ static void copy(const From& from, Digraph &to,
+ NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
+ to.clear();
+ for (typename From::NodeIt it(from); it != INVALID; ++it) {
+ nodeRefMap[it] = to.addNode();
+ }
+ for (typename From::ArcIt it(from); it != INVALID; ++it) {
+ arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
+ nodeRefMap[from.target(it)]);
+ }
+ }
+ };
+
+ template <typename Digraph>
+ struct DigraphCopySelector<
+ Digraph,
+ typename enable_if<typename Digraph::BuildTag, void>::type>
+ {
+ template <typename From, typename NodeRefMap, typename ArcRefMap>
+ static void copy(const From& from, Digraph &to,
+ NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
+ to.build(from, nodeRefMap, arcRefMap);
+ }
+ };
+
+ template <typename Graph, typename Enable = void>
+ struct GraphCopySelector {
+ template <typename From, typename NodeRefMap, typename EdgeRefMap>
+ static void copy(const From& from, Graph &to,
+ NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
+ to.clear();
+ for (typename From::NodeIt it(from); it != INVALID; ++it) {
+ nodeRefMap[it] = to.addNode();
+ }
+ for (typename From::EdgeIt it(from); it != INVALID; ++it) {
+ edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
+ nodeRefMap[from.v(it)]);
+ }
+ }
+ };
+
+ template <typename Graph>
+ struct GraphCopySelector<
+ Graph,
+ typename enable_if<typename Graph::BuildTag, void>::type>
+ {
+ template <typename From, typename NodeRefMap, typename EdgeRefMap>
+ static void copy(const From& from, Graph &to,
+ NodeRefMap& nodeRefMap,
+ EdgeRefMap& edgeRefMap) {
+ to.build(from, nodeRefMap, edgeRefMap);
+ }
+ };
+
+ template <typename BpGraph, typename Enable = void>
+ struct BpGraphCopySelector {
+ template <typename From, typename RedNodeRefMap,
+ typename BlueNodeRefMap, typename EdgeRefMap>
+ static void copy(const From& from, BpGraph &to,
+ RedNodeRefMap& redNodeRefMap,
+ BlueNodeRefMap& blueNodeRefMap,
+ EdgeRefMap& edgeRefMap) {
+ to.clear();
+ for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
+ redNodeRefMap[it] = to.addRedNode();
+ }
+ for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
+ blueNodeRefMap[it] = to.addBlueNode();
+ }
+ for (typename From::EdgeIt it(from); it != INVALID; ++it) {
+ edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
+ blueNodeRefMap[from.blueNode(it)]);
+ }
+ }
+ };
+
+ template <typename BpGraph>
+ struct BpGraphCopySelector<
+ BpGraph,
+ typename enable_if<typename BpGraph::BuildTag, void>::type>
+ {
+ template <typename From, typename RedNodeRefMap,
+ typename BlueNodeRefMap, typename EdgeRefMap>
+ static void copy(const From& from, BpGraph &to,
+ RedNodeRefMap& redNodeRefMap,
+ BlueNodeRefMap& blueNodeRefMap,
+ EdgeRefMap& edgeRefMap) {
+ to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
+ }
+ };
+
+ }
+
+ /// \brief Check whether a graph is undirected.
+ ///
+ /// This function returns \c true if the given graph is undirected.
+#ifdef DOXYGEN
+ template <typename GR>
+ bool undirected(const GR& g) { return false; }
+#else
+ template <typename GR>
+ typename enable_if<UndirectedTagIndicator<GR>, bool>::type
+ undirected(const GR&) {
+ return true;
+ }
+ template <typename GR>
+ typename disable_if<UndirectedTagIndicator<GR>, bool>::type
+ undirected(const GR&) {
+ return false;
+ }
+#endif
+
+ /// \brief Class to copy a digraph.
+ ///
+ /// Class to copy a digraph to another digraph (duplicate a digraph). The
+ /// simplest way of using it is through the \c digraphCopy() function.
+ ///
+ /// This class not only make a copy of a digraph, but it can create
+ /// references and cross references between the nodes and arcs of
+ /// the two digraphs, and it can copy maps to use with the newly created
+ /// digraph.
+ ///
+ /// To make a copy from a digraph, first an instance of DigraphCopy
+ /// should be created, then the data belongs to the digraph should
+ /// assigned to copy. In the end, the \c run() member should be
+ /// called.
+ ///
+ /// The next code copies a digraph with several data:
+ ///\code
+ /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
+ /// // Create references for the nodes
+ /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
+ /// cg.nodeRef(nr);
+ /// // Create cross references (inverse) for the arcs
+ /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
+ /// cg.arcCrossRef(acr);
+ /// // Copy an arc map
+ /// OrigGraph::ArcMap<double> oamap(orig_graph);
+ /// NewGraph::ArcMap<double> namap(new_graph);
+ /// cg.arcMap(oamap, namap);
+ /// // Copy a node
+ /// OrigGraph::Node on;
+ /// NewGraph::Node nn;
+ /// cg.node(on, nn);
+ /// // Execute copying
+ /// cg.run();
+ ///\endcode
+ template <typename From, typename To>
+ class DigraphCopy {
+ private:
+
+ typedef typename From::Node Node;
+ typedef typename From::NodeIt NodeIt;
+ typedef typename From::Arc Arc;
+ typedef typename From::ArcIt ArcIt;
+
+ typedef typename To::Node TNode;
+ typedef typename To::Arc TArc;
+
+ typedef typename From::template NodeMap<TNode> NodeRefMap;
+ typedef typename From::template ArcMap<TArc> ArcRefMap;
+
+ public:
+
+ /// \brief Constructor of DigraphCopy.
+ ///
+ /// Constructor of DigraphCopy for copying the content of the
+ /// \c from digraph into the \c to digraph.
+ DigraphCopy(const From& from, To& to)
+ : _from(from), _to(to) {}
+
+ /// \brief Destructor of DigraphCopy
+ ///
+ /// Destructor of DigraphCopy.
+ ~DigraphCopy() {
+ for (int i = 0; i < int(_node_maps.size()); ++i) {
+ delete _node_maps[i];
+ }
+ for (int i = 0; i < int(_arc_maps.size()); ++i) {
+ delete _arc_maps[i];
+ }
+
+ }
+
+ /// \brief Copy the node references into the given map.
+ ///
+ /// This function copies the node references into the given map.
+ /// The parameter should be a map, whose key type is the Node type of
+ /// the source digraph, while the value type is the Node type of the
+ /// destination digraph.
+ template <typename NodeRef>
+ DigraphCopy& nodeRef(NodeRef& map) {
+ _node_maps.push_back(new _core_bits::RefCopy<From, Node,
+ NodeRefMap, NodeRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the node cross references into the given map.
+ ///
+ /// This function copies the node cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Node type of the destination digraph, while the value type is
+ /// the Node type of the source digraph.
+ template <typename NodeCrossRef>
+ DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
+ _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
+ NodeRefMap, NodeCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given node map.
+ ///
+ /// This function makes a copy of the given node map for the newly
+ /// created digraph.
+ /// The key type of the new map \c tmap should be the Node type of the
+ /// destination digraph, and the key type of the original map \c map
+ /// should be the Node type of the source digraph.
+ template <typename FromMap, typename ToMap>
+ DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
+ _node_maps.push_back(new _core_bits::MapCopy<From, Node,
+ NodeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given node.
+ ///
+ /// This function makes a copy of the given node.
+ DigraphCopy& node(const Node& node, TNode& tnode) {
+ _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
+ NodeRefMap, TNode>(node, tnode));
+ return *this;
+ }
+
+ /// \brief Copy the arc references into the given map.
+ ///
+ /// This function copies the arc references into the given map.
+ /// The parameter should be a map, whose key type is the Arc type of
+ /// the source digraph, while the value type is the Arc type of the
+ /// destination digraph.
+ template <typename ArcRef>
+ DigraphCopy& arcRef(ArcRef& map) {
+ _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
+ ArcRefMap, ArcRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the arc cross references into the given map.
+ ///
+ /// This function copies the arc cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Arc type of the destination digraph, while the value type is
+ /// the Arc type of the source digraph.
+ template <typename ArcCrossRef>
+ DigraphCopy& arcCrossRef(ArcCrossRef& map) {
+ _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
+ ArcRefMap, ArcCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given arc map.
+ ///
+ /// This function makes a copy of the given arc map for the newly
+ /// created digraph.
+ /// The key type of the new map \c tmap should be the Arc type of the
+ /// destination digraph, and the key type of the original map \c map
+ /// should be the Arc type of the source digraph.
+ template <typename FromMap, typename ToMap>
+ DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
+ _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
+ ArcRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given arc.
+ ///
+ /// This function makes a copy of the given arc.
+ DigraphCopy& arc(const Arc& arc, TArc& tarc) {
+ _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
+ ArcRefMap, TArc>(arc, tarc));
+ return *this;
+ }
+
+ /// \brief Execute copying.
+ ///
+ /// This function executes the copying of the digraph along with the
+ /// copying of the assigned data.
+ void run() {
+ NodeRefMap nodeRefMap(_from);
+ ArcRefMap arcRefMap(_from);
+ _core_bits::DigraphCopySelector<To>::
+ copy(_from, _to, nodeRefMap, arcRefMap);
+ for (int i = 0; i < int(_node_maps.size()); ++i) {
+ _node_maps[i]->copy(_from, nodeRefMap);
+ }
+ for (int i = 0; i < int(_arc_maps.size()); ++i) {
+ _arc_maps[i]->copy(_from, arcRefMap);
+ }
+ }
+
+ protected:
+
+ const From& _from;
+ To& _to;
+
+ std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
+ _node_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
+ _arc_maps;
+
+ };
+
+ /// \brief Copy a digraph to another digraph.
+ ///
+ /// This function copies a digraph to another digraph.
+ /// The complete usage of it is detailed in the DigraphCopy class, but
+ /// a short example shows a basic work:
+ ///\code
+ /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
+ ///\endcode
+ ///
+ /// After the copy the \c nr map will contain the mapping from the
+ /// nodes of the \c from digraph to the nodes of the \c to digraph and
+ /// \c acr will contain the mapping from the arcs of the \c to digraph
+ /// to the arcs of the \c from digraph.
+ ///
+ /// \see DigraphCopy
+ template <typename From, typename To>
+ DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
+ return DigraphCopy<From, To>(from, to);
+ }
+
+ /// \brief Class to copy a graph.
+ ///
+ /// Class to copy a graph to another graph (duplicate a graph). The
+ /// simplest way of using it is through the \c graphCopy() function.
+ ///
+ /// This class not only make a copy of a graph, but it can create
+ /// references and cross references between the nodes, edges and arcs of
+ /// the two graphs, and it can copy maps for using with the newly created
+ /// graph.
+ ///
+ /// To make a copy from a graph, first an instance of GraphCopy
+ /// should be created, then the data belongs to the graph should
+ /// assigned to copy. In the end, the \c run() member should be
+ /// called.
+ ///
+ /// The next code copies a graph with several data:
+ ///\code
+ /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
+ /// // Create references for the nodes
+ /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
+ /// cg.nodeRef(nr);
+ /// // Create cross references (inverse) for the edges
+ /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
+ /// cg.edgeCrossRef(ecr);
+ /// // Copy an edge map
+ /// OrigGraph::EdgeMap<double> oemap(orig_graph);
+ /// NewGraph::EdgeMap<double> nemap(new_graph);
+ /// cg.edgeMap(oemap, nemap);
+ /// // Copy a node
+ /// OrigGraph::Node on;
+ /// NewGraph::Node nn;
+ /// cg.node(on, nn);
+ /// // Execute copying
+ /// cg.run();
+ ///\endcode
+ template <typename From, typename To>
+ class GraphCopy {
+ private:
+
+ typedef typename From::Node Node;
+ typedef typename From::NodeIt NodeIt;
+ typedef typename From::Arc Arc;
+ typedef typename From::ArcIt ArcIt;
+ typedef typename From::Edge Edge;
+ typedef typename From::EdgeIt EdgeIt;
+
+ typedef typename To::Node TNode;
+ typedef typename To::Arc TArc;
+ typedef typename To::Edge TEdge;
+
+ typedef typename From::template NodeMap<TNode> NodeRefMap;
+ typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
+
+ struct ArcRefMap {
+ ArcRefMap(const From& from, const To& to,
+ const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
+ : _from(from), _to(to),
+ _edge_ref(edge_ref), _node_ref(node_ref) {}
+
+ typedef typename From::Arc Key;
+ typedef typename To::Arc Value;
+
+ Value operator[](const Key& key) const {
+ bool forward = _from.u(key) != _from.v(key) ?
+ _node_ref[_from.source(key)] ==
+ _to.source(_to.direct(_edge_ref[key], true)) :
+ _from.direction(key);
+ return _to.direct(_edge_ref[key], forward);
+ }
+
+ const From& _from;
+ const To& _to;
+ const EdgeRefMap& _edge_ref;
+ const NodeRefMap& _node_ref;
+ };
+
+ public:
+
+ /// \brief Constructor of GraphCopy.
+ ///
+ /// Constructor of GraphCopy for copying the content of the
+ /// \c from graph into the \c to graph.
+ GraphCopy(const From& from, To& to)
+ : _from(from), _to(to) {}
+
+ /// \brief Destructor of GraphCopy
+ ///
+ /// Destructor of GraphCopy.
+ ~GraphCopy() {
+ for (int i = 0; i < int(_node_maps.size()); ++i) {
+ delete _node_maps[i];
+ }
+ for (int i = 0; i < int(_arc_maps.size()); ++i) {
+ delete _arc_maps[i];
+ }
+ for (int i = 0; i < int(_edge_maps.size()); ++i) {
+ delete _edge_maps[i];
+ }
+ }
+
+ /// \brief Copy the node references into the given map.
+ ///
+ /// This function copies the node references into the given map.
+ /// The parameter should be a map, whose key type is the Node type of
+ /// the source graph, while the value type is the Node type of the
+ /// destination graph.
+ template <typename NodeRef>
+ GraphCopy& nodeRef(NodeRef& map) {
+ _node_maps.push_back(new _core_bits::RefCopy<From, Node,
+ NodeRefMap, NodeRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the node cross references into the given map.
+ ///
+ /// This function copies the node cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Node type of the destination graph, while the value type is
+ /// the Node type of the source graph.
+ template <typename NodeCrossRef>
+ GraphCopy& nodeCrossRef(NodeCrossRef& map) {
+ _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
+ NodeRefMap, NodeCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given node map.
+ ///
+ /// This function makes a copy of the given node map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Node type of the
+ /// destination graph, and the key type of the original map \c map
+ /// should be the Node type of the source graph.
+ template <typename FromMap, typename ToMap>
+ GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
+ _node_maps.push_back(new _core_bits::MapCopy<From, Node,
+ NodeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given node.
+ ///
+ /// This function makes a copy of the given node.
+ GraphCopy& node(const Node& node, TNode& tnode) {
+ _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
+ NodeRefMap, TNode>(node, tnode));
+ return *this;
+ }
+
+ /// \brief Copy the arc references into the given map.
+ ///
+ /// This function copies the arc references into the given map.
+ /// The parameter should be a map, whose key type is the Arc type of
+ /// the source graph, while the value type is the Arc type of the
+ /// destination graph.
+ template <typename ArcRef>
+ GraphCopy& arcRef(ArcRef& map) {
+ _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
+ ArcRefMap, ArcRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the arc cross references into the given map.
+ ///
+ /// This function copies the arc cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Arc type of the destination graph, while the value type is
+ /// the Arc type of the source graph.
+ template <typename ArcCrossRef>
+ GraphCopy& arcCrossRef(ArcCrossRef& map) {
+ _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
+ ArcRefMap, ArcCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given arc map.
+ ///
+ /// This function makes a copy of the given arc map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Arc type of the
+ /// destination graph, and the key type of the original map \c map
+ /// should be the Arc type of the source graph.
+ template <typename FromMap, typename ToMap>
+ GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
+ _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
+ ArcRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given arc.
+ ///
+ /// This function makes a copy of the given arc.
+ GraphCopy& arc(const Arc& arc, TArc& tarc) {
+ _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
+ ArcRefMap, TArc>(arc, tarc));
+ return *this;
+ }
+
+ /// \brief Copy the edge references into the given map.
+ ///
+ /// This function copies the edge references into the given map.
+ /// The parameter should be a map, whose key type is the Edge type of
+ /// the source graph, while the value type is the Edge type of the
+ /// destination graph.
+ template <typename EdgeRef>
+ GraphCopy& edgeRef(EdgeRef& map) {
+ _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
+ EdgeRefMap, EdgeRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the edge cross references into the given map.
+ ///
+ /// This function copies the edge cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Edge type of the destination graph, while the value type is
+ /// the Edge type of the source graph.
+ template <typename EdgeCrossRef>
+ GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
+ _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
+ Edge, EdgeRefMap, EdgeCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given edge map.
+ ///
+ /// This function makes a copy of the given edge map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Edge type of the
+ /// destination graph, and the key type of the original map \c map
+ /// should be the Edge type of the source graph.
+ template <typename FromMap, typename ToMap>
+ GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
+ _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
+ EdgeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given edge.
+ ///
+ /// This function makes a copy of the given edge.
+ GraphCopy& edge(const Edge& edge, TEdge& tedge) {
+ _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
+ EdgeRefMap, TEdge>(edge, tedge));
+ return *this;
+ }
+
+ /// \brief Execute copying.
+ ///
+ /// This function executes the copying of the graph along with the
+ /// copying of the assigned data.
+ void run() {
+ NodeRefMap nodeRefMap(_from);
+ EdgeRefMap edgeRefMap(_from);
+ ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
+ _core_bits::GraphCopySelector<To>::
+ copy(_from, _to, nodeRefMap, edgeRefMap);
+ for (int i = 0; i < int(_node_maps.size()); ++i) {
+ _node_maps[i]->copy(_from, nodeRefMap);
+ }
+ for (int i = 0; i < int(_edge_maps.size()); ++i) {
+ _edge_maps[i]->copy(_from, edgeRefMap);
+ }
+ for (int i = 0; i < int(_arc_maps.size()); ++i) {
+ _arc_maps[i]->copy(_from, arcRefMap);
+ }
+ }
+
+ private:
+
+ const From& _from;
+ To& _to;
+
+ std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
+ _node_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
+ _arc_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
+ _edge_maps;
+
+ };
+
+ /// \brief Copy a graph to another graph.
+ ///
+ /// This function copies a graph to another graph.
+ /// The complete usage of it is detailed in the GraphCopy class,
+ /// but a short example shows a basic work:
+ ///\code
+ /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
+ ///\endcode
+ ///
+ /// After the copy the \c nr map will contain the mapping from the
+ /// nodes of the \c from graph to the nodes of the \c to graph and
+ /// \c ecr will contain the mapping from the edges of the \c to graph
+ /// to the edges of the \c from graph.
+ ///
+ /// \see GraphCopy
+ template <typename From, typename To>
+ GraphCopy<From, To>
+ graphCopy(const From& from, To& to) {
+ return GraphCopy<From, To>(from, to);
+ }
+
+ /// \brief Class to copy a bipartite graph.
+ ///
+ /// Class to copy a bipartite graph to another graph (duplicate a
+ /// graph). The simplest way of using it is through the
+ /// \c bpGraphCopy() function.
+ ///
+ /// This class not only make a copy of a bipartite graph, but it can
+ /// create references and cross references between the nodes, edges
+ /// and arcs of the two graphs, and it can copy maps for using with
+ /// the newly created graph.
+ ///
+ /// To make a copy from a graph, first an instance of BpGraphCopy
+ /// should be created, then the data belongs to the graph should
+ /// assigned to copy. In the end, the \c run() member should be
+ /// called.
+ ///
+ /// The next code copies a graph with several data:
+ ///\code
+ /// BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
+ /// // Create references for the nodes
+ /// OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
+ /// cg.nodeRef(nr);
+ /// // Create cross references (inverse) for the edges
+ /// NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
+ /// cg.edgeCrossRef(ecr);
+ /// // Copy a red node map
+ /// OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
+ /// NewBpGraph::RedNodeMap<double> nrmap(new_graph);
+ /// cg.redNodeMap(ormap, nrmap);
+ /// // Copy a node
+ /// OrigBpGraph::Node on;
+ /// NewBpGraph::Node nn;
+ /// cg.node(on, nn);
+ /// // Execute copying
+ /// cg.run();
+ ///\endcode
+ template <typename From, typename To>
+ class BpGraphCopy {
+ private:
+
+ typedef typename From::Node Node;
+ typedef typename From::RedNode RedNode;
+ typedef typename From::BlueNode BlueNode;
+ typedef typename From::NodeIt NodeIt;
+ typedef typename From::Arc Arc;
+ typedef typename From::ArcIt ArcIt;
+ typedef typename From::Edge Edge;
+ typedef typename From::EdgeIt EdgeIt;
+
+ typedef typename To::Node TNode;
+ typedef typename To::RedNode TRedNode;
+ typedef typename To::BlueNode TBlueNode;
+ typedef typename To::Arc TArc;
+ typedef typename To::Edge TEdge;
+
+ typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
+ typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
+ typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
+
+ struct NodeRefMap {
+ NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
+ const BlueNodeRefMap& blue_node_ref)
+ : _from(from), _red_node_ref(red_node_ref),
+ _blue_node_ref(blue_node_ref) {}
+
+ typedef typename From::Node Key;
+ typedef typename To::Node Value;
+
+ Value operator[](const Key& key) const {
+ if (_from.red(key)) {
+ return _red_node_ref[_from.asRedNodeUnsafe(key)];
+ } else {
+ return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
+ }
+ }
+
+ const From& _from;
+ const RedNodeRefMap& _red_node_ref;
+ const BlueNodeRefMap& _blue_node_ref;
+ };
+
+ struct ArcRefMap {
+ ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
+ : _from(from), _to(to), _edge_ref(edge_ref) {}
+
+ typedef typename From::Arc Key;
+ typedef typename To::Arc Value;
+
+ Value operator[](const Key& key) const {
+ return _to.direct(_edge_ref[key], _from.direction(key));
+ }
+
+ const From& _from;
+ const To& _to;
+ const EdgeRefMap& _edge_ref;
+ };
+
+ public:
+
+ /// \brief Constructor of BpGraphCopy.
+ ///
+ /// Constructor of BpGraphCopy for copying the content of the
+ /// \c from graph into the \c to graph.
+ BpGraphCopy(const From& from, To& to)
+ : _from(from), _to(to) {}
+
+ /// \brief Destructor of BpGraphCopy
+ ///
+ /// Destructor of BpGraphCopy.
+ ~BpGraphCopy() {
+ for (int i = 0; i < int(_node_maps.size()); ++i) {
+ delete _node_maps[i];
+ }
+ for (int i = 0; i < int(_red_maps.size()); ++i) {
+ delete _red_maps[i];
+ }
+ for (int i = 0; i < int(_blue_maps.size()); ++i) {
+ delete _blue_maps[i];
+ }
+ for (int i = 0; i < int(_arc_maps.size()); ++i) {
+ delete _arc_maps[i];
+ }
+ for (int i = 0; i < int(_edge_maps.size()); ++i) {
+ delete _edge_maps[i];
+ }
+ }
+
+ /// \brief Copy the node references into the given map.
+ ///
+ /// This function copies the node references into the given map.
+ /// The parameter should be a map, whose key type is the Node type of
+ /// the source graph, while the value type is the Node type of the
+ /// destination graph.
+ template <typename NodeRef>
+ BpGraphCopy& nodeRef(NodeRef& map) {
+ _node_maps.push_back(new _core_bits::RefCopy<From, Node,
+ NodeRefMap, NodeRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the node cross references into the given map.
+ ///
+ /// This function copies the node cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Node type of the destination graph, while the value type is
+ /// the Node type of the source graph.
+ template <typename NodeCrossRef>
+ BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
+ _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
+ NodeRefMap, NodeCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given node map.
+ ///
+ /// This function makes a copy of the given node map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Node type of the
+ /// destination graph, and the key type of the original map \c map
+ /// should be the Node type of the source graph.
+ template <typename FromMap, typename ToMap>
+ BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
+ _node_maps.push_back(new _core_bits::MapCopy<From, Node,
+ NodeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given node.
+ ///
+ /// This function makes a copy of the given node.
+ BpGraphCopy& node(const Node& node, TNode& tnode) {
+ _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
+ NodeRefMap, TNode>(node, tnode));
+ return *this;
+ }
+
+ /// \brief Copy the red node references into the given map.
+ ///
+ /// This function copies the red node references into the given
+ /// map. The parameter should be a map, whose key type is the
+ /// Node type of the source graph with the red item set, while the
+ /// value type is the Node type of the destination graph.
+ template <typename RedRef>
+ BpGraphCopy& redRef(RedRef& map) {
+ _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
+ RedNodeRefMap, RedRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the red node cross references into the given map.
+ ///
+ /// This function copies the red node cross references (reverse
+ /// references) into the given map. The parameter should be a map,
+ /// whose key type is the Node type of the destination graph with
+ /// the red item set, while the value type is the Node type of the
+ /// source graph.
+ template <typename RedCrossRef>
+ BpGraphCopy& redCrossRef(RedCrossRef& map) {
+ _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
+ RedNodeRefMap, RedCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given red node map.
+ ///
+ /// This function makes a copy of the given red node map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Node type of
+ /// the destination graph with the red items, and the key type of
+ /// the original map \c map should be the Node type of the source
+ /// graph.
+ template <typename FromMap, typename ToMap>
+ BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
+ _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
+ RedNodeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given red node.
+ ///
+ /// This function makes a copy of the given red node.
+ BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
+ _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
+ RedNodeRefMap, TRedNode>(node, tnode));
+ return *this;
+ }
+
+ /// \brief Copy the blue node references into the given map.
+ ///
+ /// This function copies the blue node references into the given
+ /// map. The parameter should be a map, whose key type is the
+ /// Node type of the source graph with the blue item set, while the
+ /// value type is the Node type of the destination graph.
+ template <typename BlueRef>
+ BpGraphCopy& blueRef(BlueRef& map) {
+ _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
+ BlueNodeRefMap, BlueRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the blue node cross references into the given map.
+ ///
+ /// This function copies the blue node cross references (reverse
+ /// references) into the given map. The parameter should be a map,
+ /// whose key type is the Node type of the destination graph with
+ /// the blue item set, while the value type is the Node type of the
+ /// source graph.
+ template <typename BlueCrossRef>
+ BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
+ _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
+ BlueNodeRefMap, BlueCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given blue node map.
+ ///
+ /// This function makes a copy of the given blue node map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Node type of
+ /// the destination graph with the blue items, and the key type of
+ /// the original map \c map should be the Node type of the source
+ /// graph.
+ template <typename FromMap, typename ToMap>
+ BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
+ _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
+ BlueNodeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given blue node.
+ ///
+ /// This function makes a copy of the given blue node.
+ BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
+ _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
+ BlueNodeRefMap, TBlueNode>(node, tnode));
+ return *this;
+ }
+
+ /// \brief Copy the arc references into the given map.
+ ///
+ /// This function copies the arc references into the given map.
+ /// The parameter should be a map, whose key type is the Arc type of
+ /// the source graph, while the value type is the Arc type of the
+ /// destination graph.
+ template <typename ArcRef>
+ BpGraphCopy& arcRef(ArcRef& map) {
+ _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
+ ArcRefMap, ArcRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the arc cross references into the given map.
+ ///
+ /// This function copies the arc cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Arc type of the destination graph, while the value type is
+ /// the Arc type of the source graph.
+ template <typename ArcCrossRef>
+ BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
+ _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
+ ArcRefMap, ArcCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given arc map.
+ ///
+ /// This function makes a copy of the given arc map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Arc type of the
+ /// destination graph, and the key type of the original map \c map
+ /// should be the Arc type of the source graph.
+ template <typename FromMap, typename ToMap>
+ BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
+ _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
+ ArcRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given arc.
+ ///
+ /// This function makes a copy of the given arc.
+ BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
+ _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
+ ArcRefMap, TArc>(arc, tarc));
+ return *this;
+ }
+
+ /// \brief Copy the edge references into the given map.
+ ///
+ /// This function copies the edge references into the given map.
+ /// The parameter should be a map, whose key type is the Edge type of
+ /// the source graph, while the value type is the Edge type of the
+ /// destination graph.
+ template <typename EdgeRef>
+ BpGraphCopy& edgeRef(EdgeRef& map) {
+ _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
+ EdgeRefMap, EdgeRef>(map));
+ return *this;
+ }
+
+ /// \brief Copy the edge cross references into the given map.
+ ///
+ /// This function copies the edge cross references (reverse references)
+ /// into the given map. The parameter should be a map, whose key type
+ /// is the Edge type of the destination graph, while the value type is
+ /// the Edge type of the source graph.
+ template <typename EdgeCrossRef>
+ BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
+ _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
+ Edge, EdgeRefMap, EdgeCrossRef>(map));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given edge map.
+ ///
+ /// This function makes a copy of the given edge map for the newly
+ /// created graph.
+ /// The key type of the new map \c tmap should be the Edge type of the
+ /// destination graph, and the key type of the original map \c map
+ /// should be the Edge type of the source graph.
+ template <typename FromMap, typename ToMap>
+ BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
+ _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
+ EdgeRefMap, FromMap, ToMap>(map, tmap));
+ return *this;
+ }
+
+ /// \brief Make a copy of the given edge.
+ ///
+ /// This function makes a copy of the given edge.
+ BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
+ _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
+ EdgeRefMap, TEdge>(edge, tedge));
+ return *this;
+ }
+
+ /// \brief Execute copying.
+ ///
+ /// This function executes the copying of the graph along with the
+ /// copying of the assigned data.
+ void run() {
+ RedNodeRefMap redNodeRefMap(_from);
+ BlueNodeRefMap blueNodeRefMap(_from);
+ NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
+ EdgeRefMap edgeRefMap(_from);
+ ArcRefMap arcRefMap(_from, _to, edgeRefMap);
+ _core_bits::BpGraphCopySelector<To>::
+ copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
+ for (int i = 0; i < int(_node_maps.size()); ++i) {
+ _node_maps[i]->copy(_from, nodeRefMap);
+ }
+ for (int i = 0; i < int(_red_maps.size()); ++i) {
+ _red_maps[i]->copy(_from, redNodeRefMap);
+ }
+ for (int i = 0; i < int(_blue_maps.size()); ++i) {
+ _blue_maps[i]->copy(_from, blueNodeRefMap);
+ }
+ for (int i = 0; i < int(_edge_maps.size()); ++i) {
+ _edge_maps[i]->copy(_from, edgeRefMap);
+ }
+ for (int i = 0; i < int(_arc_maps.size()); ++i) {
+ _arc_maps[i]->copy(_from, arcRefMap);
+ }
+ }
+
+ private:
+
+ const From& _from;
+ To& _to;
+
+ std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
+ _node_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
+ _red_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
+ _blue_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
+ _arc_maps;
+
+ std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
+ _edge_maps;
+
+ };
+
+ /// \brief Copy a graph to another graph.
+ ///
+ /// This function copies a graph to another graph.
+ /// The complete usage of it is detailed in the BpGraphCopy class,
+ /// but a short example shows a basic work:
+ ///\code
+ /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
+ ///\endcode
+ ///
+ /// After the copy the \c nr map will contain the mapping from the
+ /// nodes of the \c from graph to the nodes of the \c to graph and
+ /// \c ecr will contain the mapping from the edges of the \c to graph
+ /// to the edges of the \c from graph.
+ ///
+ /// \see BpGraphCopy
+ template <typename From, typename To>
+ BpGraphCopy<From, To>
+ bpGraphCopy(const From& from, To& to) {
+ return BpGraphCopy<From, To>(from, to);
+ }
+
+ namespace _core_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct FindArcSelector {
+ typedef typename Graph::Node Node;
+ typedef typename Graph::Arc Arc;
+ static Arc find(const Graph &g, Node u, Node v, Arc e) {
+ if (e == INVALID) {
+ g.firstOut(e, u);
+ } else {
+ g.nextOut(e);
+ }
+ while (e != INVALID && g.target(e) != v) {
+ g.nextOut(e);
+ }
+ return e;
+ }
+ };
+
+ template <typename Graph>
+ struct FindArcSelector<
+ Graph,
+ typename enable_if<typename Graph::FindArcTag, void>::type>
+ {
+ typedef typename Graph::Node Node;
+ typedef typename Graph::Arc Arc;
+ static Arc find(const Graph &g, Node u, Node v, Arc prev) {
+ return g.findArc(u, v, prev);
+ }
+ };
+ }
+
+ /// \brief Find an arc between two nodes of a digraph.
+ ///
+ /// This function finds an arc from node \c u to node \c v in the
+ /// digraph \c g.
+ ///
+ /// If \c prev is \ref INVALID (this is the default value), then
+ /// it finds the first arc from \c u to \c v. Otherwise it looks for
+ /// the next arc from \c u to \c v after \c prev.
+ /// \return The found arc or \ref INVALID if there is no such an arc.
+ ///
+ /// Thus you can iterate through each arc from \c u to \c v as it follows.
+ ///\code
+ /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
+ /// ...
+ /// }
+ ///\endcode
+ ///
+ /// \note \ref ConArcIt provides iterator interface for the same
+ /// functionality.
+ ///
+ ///\sa ConArcIt
+ ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
+ template <typename Graph>
+ inline typename Graph::Arc
+ findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
+ typename Graph::Arc prev = INVALID) {
+ return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
+ }
+
+ /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
+ ///
+ /// Iterator for iterating on parallel arcs connecting the same nodes. It is
+ /// a higher level interface for the \ref findArc() function. You can
+ /// use it the following way:
+ ///\code
+ /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
+ /// ...
+ /// }
+ ///\endcode
+ ///
+ ///\sa findArc()
+ ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
+ template <typename GR>
+ class ConArcIt : public GR::Arc {
+ typedef typename GR::Arc Parent;
+
+ public:
+
+ typedef typename GR::Arc Arc;
+ typedef typename GR::Node Node;
+
+ /// \brief Constructor.
+ ///
+ /// Construct a new ConArcIt iterating on the arcs that
+ /// connects nodes \c u and \c v.
+ ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
+ Parent::operator=(findArc(_graph, u, v));
+ }
+
+ /// \brief Constructor.
+ ///
+ /// Construct a new ConArcIt that continues the iterating from arc \c a.
+ ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
+
+ /// \brief Increment operator.
+ ///
+ /// It increments the iterator and gives back the next arc.
+ ConArcIt& operator++() {
+ Parent::operator=(findArc(_graph, _graph.source(*this),
+ _graph.target(*this), *this));
+ return *this;
+ }
+ private:
+ const GR& _graph;
+ };
+
+ namespace _core_bits {
+
+ template <typename Graph, typename Enable = void>
+ struct FindEdgeSelector {
+ typedef typename Graph::Node Node;
+ typedef typename Graph::Edge Edge;
+ static Edge find(const Graph &g, Node u, Node v, Edge e) {
+ bool b;
+ if (u != v) {
+ if (e == INVALID) {
+ g.firstInc(e, b, u);
+ } else {
+ b = g.u(e) == u;
+ g.nextInc(e, b);
+ }
+ while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
+ g.nextInc(e, b);
+ }
+ } else {
+ if (e == INVALID) {
+ g.firstInc(e, b, u);
+ } else {
+ b = true;
+ g.nextInc(e, b);
+ }
+ while (e != INVALID && (!b || g.v(e) != v)) {
+ g.nextInc(e, b);
+ }
+ }
+ return e;
+ }
+ };
+
+ template <typename Graph>
+ struct FindEdgeSelector<
+ Graph,
+ typename enable_if<typename Graph::FindEdgeTag, void>::type>
+ {
+ typedef typename Graph::Node Node;
+ typedef typename Graph::Edge Edge;
+ static Edge find(const Graph &g, Node u, Node v, Edge prev) {
+ return g.findEdge(u, v, prev);
+ }
+ };
+ }
+
+ /// \brief Find an edge between two nodes of a graph.
+ ///
+ /// This function finds an edge from node \c u to node \c v in graph \c g.
+ /// If node \c u and node \c v is equal then each loop edge
+ /// will be enumerated once.
+ ///
+ /// If \c prev is \ref INVALID (this is the default value), then
+ /// it finds the first edge from \c u to \c v. Otherwise it looks for
+ /// the next edge from \c u to \c v after \c prev.
+ /// \return The found edge or \ref INVALID if there is no such an edge.
+ ///
+ /// Thus you can iterate through each edge between \c u and \c v
+ /// as it follows.
+ ///\code
+ /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
+ /// ...
+ /// }
+ ///\endcode
+ ///
+ /// \note \ref ConEdgeIt provides iterator interface for the same
+ /// functionality.
+ ///
+ ///\sa ConEdgeIt
+ template <typename Graph>
+ inline typename Graph::Edge
+ findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
+ typename Graph::Edge p = INVALID) {
+ return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
+ }
+
+ /// \brief Iterator for iterating on parallel edges connecting the same nodes.
+ ///
+ /// Iterator for iterating on parallel edges connecting the same nodes.
+ /// It is a higher level interface for the findEdge() function. You can
+ /// use it the following way:
+ ///\code
+ /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
+ /// ...
+ /// }
+ ///\endcode
+ ///
+ ///\sa findEdge()
+ template <typename GR>
+ class ConEdgeIt : public GR::Edge {
+ typedef typename GR::Edge Parent;
+
+ public:
+
+ typedef typename GR::Edge Edge;
+ typedef typename GR::Node Node;
+
+ /// \brief Constructor.
+ ///
+ /// Construct a new ConEdgeIt iterating on the edges that
+ /// connects nodes \c u and \c v.
+ ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
+ Parent::operator=(findEdge(_graph, _u, _v));
+ }
+
+ /// \brief Constructor.
+ ///
+ /// Construct a new ConEdgeIt that continues iterating from edge \c e.
+ ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
+
+ /// \brief Increment operator.
+ ///
+ /// It increments the iterator and gives back the next edge.
+ ConEdgeIt& operator++() {
+ Parent::operator=(findEdge(_graph, _u, _v, *this));
+ return *this;
+ }
+ private:
+ const GR& _graph;
+ Node _u, _v;
+ };
+
+
+ ///Dynamic arc look-up between given endpoints.
+
+ ///Using this class, you can find an arc in a digraph from a given
+ ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
+ ///where <em>d</em> is the out-degree of the source node.
+ ///
+ ///It is possible to find \e all parallel arcs between two nodes with
+ ///the \c operator() member.
+ ///
+ ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
+ ///\ref AllArcLookUp if your digraph is not changed so frequently.
+ ///
+ ///This class uses a self-adjusting binary search tree, the Splay tree
+ ///of Sleator and Tarjan to guarantee the logarithmic amortized
+ ///time bound for arc look-ups. This class also guarantees the
+ ///optimal time bound in a constant factor for any distribution of
+ ///queries.
+ ///
+ ///\tparam GR The type of the underlying digraph.
+ ///
+ ///\sa ArcLookUp
+ ///\sa AllArcLookUp
+ template <typename GR>
+ class DynArcLookUp
+ : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
+ {
+ typedef typename ItemSetTraits<GR, typename GR::Arc>
+ ::ItemNotifier::ObserverBase Parent;
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ public:
+
+ /// The Digraph type
+ typedef GR Digraph;
+
+ protected:
+
+ class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
+ {
+ typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
+
+ public:
+
+ AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
+
+ virtual void add(const Node& node) {
+ Parent::add(node);
+ Parent::set(node, INVALID);
+ }
+
+ virtual void add(const std::vector<Node>& nodes) {
+ Parent::add(nodes);
+ for (int i = 0; i < int(nodes.size()); ++i) {
+ Parent::set(nodes[i], INVALID);
+ }
+ }
+
+ virtual void build() {
+ Parent::build();
+ Node it;
+ typename Parent::Notifier* nf = Parent::notifier();
+ for (nf->first(it); it != INVALID; nf->next(it)) {
+ Parent::set(it, INVALID);
+ }
+ }
+ };
+
+ class ArcLess {
+ const Digraph &g;
+ public:
+ ArcLess(const Digraph &_g) : g(_g) {}
+ bool operator()(Arc a,Arc b) const
+ {
+ return g.target(a)<g.target(b);
+ }
+ };
+
+ protected:
+
+ const Digraph &_g;
+ AutoNodeMap _head;
+ typename Digraph::template ArcMap<Arc> _parent;
+ typename Digraph::template ArcMap<Arc> _left;
+ typename Digraph::template ArcMap<Arc> _right;
+
+ public:
+
+ ///Constructor
+
+ ///Constructor.
+ ///
+ ///It builds up the search database.
+ DynArcLookUp(const Digraph &g)
+ : _g(g),_head(g),_parent(g),_left(g),_right(g)
+ {
+ Parent::attach(_g.notifier(typename Digraph::Arc()));
+ refresh();
+ }
+
+ protected:
+
+ virtual void add(const Arc& arc) {
+ insert(arc);
+ }
+
+ virtual void add(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ insert(arcs[i]);
+ }
+ }
+
+ virtual void erase(const Arc& arc) {
+ remove(arc);
+ }
+
+ virtual void erase(const std::vector<Arc>& arcs) {
+ for (int i = 0; i < int(arcs.size()); ++i) {
+ remove(arcs[i]);
+ }
+ }
+
+ virtual void build() {
+ refresh();
+ }
+
+ virtual void clear() {
+ for(NodeIt n(_g);n!=INVALID;++n) {
+ _head[n] = INVALID;
+ }
+ }
+
+ void insert(Arc arc) {
+ Node s = _g.source(arc);
+ Node t = _g.target(arc);
+ _left[arc] = INVALID;
+ _right[arc] = INVALID;
+
+ Arc e = _head[s];
+ if (e == INVALID) {
+ _head[s] = arc;
+ _parent[arc] = INVALID;
+ return;
+ }
+ while (true) {
+ if (t < _g.target(e)) {
+ if (_left[e] == INVALID) {
+ _left[e] = arc;
+ _parent[arc] = e;
+ splay(arc);
+ return;
+ } else {
+ e = _left[e];
+ }
+ } else {
+ if (_right[e] == INVALID) {
+ _right[e] = arc;
+ _parent[arc] = e;
+ splay(arc);
+ return;
+ } else {
+ e = _right[e];
+ }
+ }
+ }
+ }
+
+ void remove(Arc arc) {
+ if (_left[arc] == INVALID) {
+ if (_right[arc] != INVALID) {
+ _parent[_right[arc]] = _parent[arc];
+ }
+ if (_parent[arc] != INVALID) {
+ if (_left[_parent[arc]] == arc) {
+ _left[_parent[arc]] = _right[arc];
+ } else {
+ _right[_parent[arc]] = _right[arc];
+ }
+ } else {
+ _head[_g.source(arc)] = _right[arc];
+ }
+ } else if (_right[arc] == INVALID) {
+ _parent[_left[arc]] = _parent[arc];
+ if (_parent[arc] != INVALID) {
+ if (_left[_parent[arc]] == arc) {
+ _left[_parent[arc]] = _left[arc];
+ } else {
+ _right[_parent[arc]] = _left[arc];
+ }
+ } else {
+ _head[_g.source(arc)] = _left[arc];
+ }
+ } else {
+ Arc e = _left[arc];
+ if (_right[e] != INVALID) {
+ e = _right[e];
+ while (_right[e] != INVALID) {
+ e = _right[e];
+ }
+ Arc s = _parent[e];
+ _right[_parent[e]] = _left[e];
+ if (_left[e] != INVALID) {
+ _parent[_left[e]] = _parent[e];
+ }
+
+ _left[e] = _left[arc];
+ _parent[_left[arc]] = e;
+ _right[e] = _right[arc];
+ _parent[_right[arc]] = e;
+
+ _parent[e] = _parent[arc];
+ if (_parent[arc] != INVALID) {
+ if (_left[_parent[arc]] == arc) {
+ _left[_parent[arc]] = e;
+ } else {
+ _right[_parent[arc]] = e;
+ }
+ }
+ splay(s);
+ } else {
+ _right[e] = _right[arc];
+ _parent[_right[arc]] = e;
+ _parent[e] = _parent[arc];
+
+ if (_parent[arc] != INVALID) {
+ if (_left[_parent[arc]] == arc) {
+ _left[_parent[arc]] = e;
+ } else {
+ _right[_parent[arc]] = e;
+ }
+ } else {
+ _head[_g.source(arc)] = e;
+ }
+ }
+ }
+ }
+
+ Arc refreshRec(std::vector<Arc> &v,int a,int b)
+ {
+ int m=(a+b)/2;
+ Arc me=v[m];
+ if (a < m) {
+ Arc left = refreshRec(v,a,m-1);
+ _left[me] = left;
+ _parent[left] = me;
+ } else {
+ _left[me] = INVALID;
+ }
+ if (m < b) {
+ Arc right = refreshRec(v,m+1,b);
+ _right[me] = right;
+ _parent[right] = me;
+ } else {
+ _right[me] = INVALID;
+ }
+ return me;
+ }
+
+ void refresh() {
+ for(NodeIt n(_g);n!=INVALID;++n) {
+ std::vector<Arc> v;
+ for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
+ if (!v.empty()) {
+ std::sort(v.begin(),v.end(),ArcLess(_g));
+ Arc head = refreshRec(v,0,v.size()-1);
+ _head[n] = head;
+ _parent[head] = INVALID;
+ }
+ else _head[n] = INVALID;
+ }
+ }
+
+ void zig(Arc v) {
+ Arc w = _parent[v];
+ _parent[v] = _parent[w];
+ _parent[w] = v;
+ _left[w] = _right[v];
+ _right[v] = w;
+ if (_parent[v] != INVALID) {
+ if (_right[_parent[v]] == w) {
+ _right[_parent[v]] = v;
+ } else {
+ _left[_parent[v]] = v;
+ }
+ }
+ if (_left[w] != INVALID){
+ _parent[_left[w]] = w;
+ }
+ }
+
+ void zag(Arc v) {
+ Arc w = _parent[v];
+ _parent[v] = _parent[w];
+ _parent[w] = v;
+ _right[w] = _left[v];
+ _left[v] = w;
+ if (_parent[v] != INVALID){
+ if (_left[_parent[v]] == w) {
+ _left[_parent[v]] = v;
+ } else {
+ _right[_parent[v]] = v;
+ }
+ }
+ if (_right[w] != INVALID){
+ _parent[_right[w]] = w;
+ }
+ }
+
+ void splay(Arc v) {
+ while (_parent[v] != INVALID) {
+ if (v == _left[_parent[v]]) {
+ if (_parent[_parent[v]] == INVALID) {
+ zig(v);
+ } else {
+ if (_parent[v] == _left[_parent[_parent[v]]]) {
+ zig(_parent[v]);
+ zig(v);
+ } else {
+ zig(v);
+ zag(v);
+ }
+ }
+ } else {
+ if (_parent[_parent[v]] == INVALID) {
+ zag(v);
+ } else {
+ if (_parent[v] == _left[_parent[_parent[v]]]) {
+ zag(v);
+ zig(v);
+ } else {
+ zag(_parent[v]);
+ zag(v);
+ }
+ }
+ }
+ }
+ _head[_g.source(v)] = v;
+ }
+
+
+ public:
+
+ ///Find an arc between two nodes.
+
+ ///Find an arc between two nodes.
+ ///\param s The source node.
+ ///\param t The target node.
+ ///\param p The previous arc between \c s and \c t. It it is INVALID or
+ ///not given, the operator finds the first appropriate arc.
+ ///\return An arc from \c s to \c t after \c p or
+ ///\ref INVALID if there is no more.
+ ///
+ ///For example, you can count the number of arcs from \c u to \c v in the
+ ///following way.
+ ///\code
+ ///DynArcLookUp<ListDigraph> ae(g);
+ ///...
+ ///int n = 0;
+ ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
+ ///\endcode
+ ///
+ ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
+ ///amortized time, specifically, the time complexity of the lookups
+ ///is equal to the optimal search tree implementation for the
+ ///current query distribution in a constant factor.
+ ///
+ ///\note This is a dynamic data structure, therefore the data
+ ///structure is updated after each graph alteration. Thus although
+ ///this data structure is theoretically faster than \ref ArcLookUp
+ ///and \ref AllArcLookUp, it often provides worse performance than
+ ///them.
+ Arc operator()(Node s, Node t, Arc p = INVALID) const {
+ if (p == INVALID) {
+ Arc a = _head[s];
+ if (a == INVALID) return INVALID;
+ Arc r = INVALID;
+ while (true) {
+ if (_g.target(a) < t) {
+ if (_right[a] == INVALID) {
+ const_cast<DynArcLookUp&>(*this).splay(a);
+ return r;
+ } else {
+ a = _right[a];
+ }
+ } else {
+ if (_g.target(a) == t) {
+ r = a;
+ }
+ if (_left[a] == INVALID) {
+ const_cast<DynArcLookUp&>(*this).splay(a);
+ return r;
+ } else {
+ a = _left[a];
+ }
+ }
+ }
+ } else {
+ Arc a = p;
+ if (_right[a] != INVALID) {
+ a = _right[a];
+ while (_left[a] != INVALID) {
+ a = _left[a];
+ }
+ const_cast<DynArcLookUp&>(*this).splay(a);
+ } else {
+ while (_parent[a] != INVALID && _right[_parent[a]] == a) {
+ a = _parent[a];
+ }
+ if (_parent[a] == INVALID) {
+ return INVALID;
+ } else {
+ a = _parent[a];
+ const_cast<DynArcLookUp&>(*this).splay(a);
+ }
+ }
+ if (_g.target(a) == t) return a;
+ else return INVALID;
+ }
+ }
+
+ };
+
+ ///Fast arc look-up between given endpoints.
+
+ ///Using this class, you can find an arc in a digraph from a given
+ ///source to a given target in time <em>O</em>(log<em>d</em>),
+ ///where <em>d</em> is the out-degree of the source node.
+ ///
+ ///It is not possible to find \e all parallel arcs between two nodes.
+ ///Use \ref AllArcLookUp for this purpose.
+ ///
+ ///\warning This class is static, so you should call refresh() (or at
+ ///least refresh(Node)) to refresh this data structure whenever the
+ ///digraph changes. This is a time consuming (superlinearly proportional
+ ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
+ ///
+ ///\tparam GR The type of the underlying digraph.
+ ///
+ ///\sa DynArcLookUp
+ ///\sa AllArcLookUp
+ template<class GR>
+ class ArcLookUp
+ {
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ public:
+
+ /// The Digraph type
+ typedef GR Digraph;
+
+ protected:
+ const Digraph &_g;
+ typename Digraph::template NodeMap<Arc> _head;
+ typename Digraph::template ArcMap<Arc> _left;
+ typename Digraph::template ArcMap<Arc> _right;
+
+ class ArcLess {
+ const Digraph &g;
+ public:
+ ArcLess(const Digraph &_g) : g(_g) {}
+ bool operator()(Arc a,Arc b) const
+ {
+ return g.target(a)<g.target(b);
+ }
+ };
+
+ public:
+
+ ///Constructor
+
+ ///Constructor.
+ ///
+ ///It builds up the search database, which remains valid until the digraph
+ ///changes.
+ ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
+
+ private:
+ Arc refreshRec(std::vector<Arc> &v,int a,int b)
+ {
+ int m=(a+b)/2;
+ Arc me=v[m];
+ _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
+ _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
+ return me;
+ }
+ public:
+ ///Refresh the search data structure at a node.
+
+ ///Build up the search database of node \c n.
+ ///
+ ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
+ ///is the number of the outgoing arcs of \c n.
+ void refresh(Node n)
+ {
+ std::vector<Arc> v;
+ for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
+ if(v.size()) {
+ std::sort(v.begin(),v.end(),ArcLess(_g));
+ _head[n]=refreshRec(v,0,v.size()-1);
+ }
+ else _head[n]=INVALID;
+ }
+ ///Refresh the full data structure.
+
+ ///Build up the full search database. In fact, it simply calls
+ ///\ref refresh(Node) "refresh(n)" for each node \c n.
+ ///
+ ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
+ ///the number of the arcs in the digraph and <em>D</em> is the maximum
+ ///out-degree of the digraph.
+ void refresh()
+ {
+ for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
+ }
+
+ ///Find an arc between two nodes.
+
+ ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
+ ///where <em>d</em> is the number of outgoing arcs of \c s.
+ ///\param s The source node.
+ ///\param t The target node.
+ ///\return An arc from \c s to \c t if there exists,
+ ///\ref INVALID otherwise.
+ ///
+ ///\warning If you change the digraph, refresh() must be called before using
+ ///this operator. If you change the outgoing arcs of
+ ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
+ Arc operator()(Node s, Node t) const
+ {
+ Arc e;
+ for(e=_head[s];
+ e!=INVALID&&_g.target(e)!=t;
+ e = t < _g.target(e)?_left[e]:_right[e]) ;
+ return e;
+ }
+
+ };
+
+ ///Fast look-up of all arcs between given endpoints.
+
+ ///This class is the same as \ref ArcLookUp, with the addition
+ ///that it makes it possible to find all parallel arcs between given
+ ///endpoints.
+ ///
+ ///\warning This class is static, so you should call refresh() (or at
+ ///least refresh(Node)) to refresh this data structure whenever the
+ ///digraph changes. This is a time consuming (superlinearly proportional
+ ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
+ ///
+ ///\tparam GR The type of the underlying digraph.
+ ///
+ ///\sa DynArcLookUp
+ ///\sa ArcLookUp
+ template<class GR>
+ class AllArcLookUp : public ArcLookUp<GR>
+ {
+ using ArcLookUp<GR>::_g;
+ using ArcLookUp<GR>::_right;
+ using ArcLookUp<GR>::_left;
+ using ArcLookUp<GR>::_head;
+
+ TEMPLATE_DIGRAPH_TYPEDEFS(GR);
+
+ typename GR::template ArcMap<Arc> _next;
+
+ Arc refreshNext(Arc head,Arc next=INVALID)
+ {
+ if(head==INVALID) return next;
+ else {
+ next=refreshNext(_right[head],next);
+ _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
+ ? next : INVALID;
+ return refreshNext(_left[head],head);
+ }
+ }
+
+ void refreshNext()
+ {
+ for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
+ }
+
+ public:
+
+ /// The Digraph type
+ typedef GR Digraph;
+
+ ///Constructor
+
+ ///Constructor.
+ ///
+ ///It builds up the search database, which remains valid until the digraph
+ ///changes.
+ AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
+
+ ///Refresh the data structure at a node.
+
+ ///Build up the search database of node \c n.
+ ///
+ ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
+ ///the number of the outgoing arcs of \c n.
+ void refresh(Node n)
+ {
+ ArcLookUp<GR>::refresh(n);
+ refreshNext(_head[n]);
+ }
+
+ ///Refresh the full data structure.
+
+ ///Build up the full search database. In fact, it simply calls
+ ///\ref refresh(Node) "refresh(n)" for each node \c n.
+ ///
+ ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
+ ///the number of the arcs in the digraph and <em>D</em> is the maximum
+ ///out-degree of the digraph.
+ void refresh()
+ {
+ for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
+ }
+
+ ///Find an arc between two nodes.
+
+ ///Find an arc between two nodes.
+ ///\param s The source node.
+ ///\param t The target node.
+ ///\param prev The previous arc between \c s and \c t. It it is INVALID or
+ ///not given, the operator finds the first appropriate arc.
+ ///\return An arc from \c s to \c t after \c prev or
+ ///\ref INVALID if there is no more.
+ ///
+ ///For example, you can count the number of arcs from \c u to \c v in the
+ ///following way.
+ ///\code
+ ///AllArcLookUp<ListDigraph> ae(g);
+ ///...
+ ///int n = 0;
+ ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
+ ///\endcode
+ ///
+ ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
+ ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
+ ///consecutive arcs are found in constant time.
+ ///
+ ///\warning If you change the digraph, refresh() must be called before using
+ ///this operator. If you change the outgoing arcs of
+ ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
+ ///
+ Arc operator()(Node s, Node t, Arc prev=INVALID) const
+ {
+ if(prev==INVALID)
+ {
+ Arc f=INVALID;
+ Arc e;
+ for(e=_head[s];
+ e!=INVALID&&_g.target(e)!=t;
+ e = t < _g.target(e)?_left[e]:_right[e]) ;
+ while(e!=INVALID)
+ if(_g.target(e)==t)
+ {
+ f = e;
+ e = _left[e];
+ }
+ else e = _right[e];
+ return f;
+ }
+ else return _next[prev];
+ }
+
+ };
+
+ /// @}
+
+} //namespace lemon
+
+#endif