Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'extern/quadriflow/3rd/lemon-1.3.1/lemon/cplex.cc')
-rw-r--r--extern/quadriflow/3rd/lemon-1.3.1/lemon/cplex.cc994
1 files changed, 994 insertions, 0 deletions
diff --git a/extern/quadriflow/3rd/lemon-1.3.1/lemon/cplex.cc b/extern/quadriflow/3rd/lemon-1.3.1/lemon/cplex.cc
new file mode 100644
index 00000000000..029a3efc500
--- /dev/null
+++ b/extern/quadriflow/3rd/lemon-1.3.1/lemon/cplex.cc
@@ -0,0 +1,994 @@
+/* -*- mode: C++; indent-tabs-mode: nil; -*-
+ *
+ * This file is a part of LEMON, a generic C++ optimization library.
+ *
+ * Copyright (C) 2003-2013
+ * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
+ * (Egervary Research Group on Combinatorial Optimization, EGRES).
+ *
+ * Permission to use, modify and distribute this software is granted
+ * provided that this copyright notice appears in all copies. For
+ * precise terms see the accompanying LICENSE file.
+ *
+ * This software is provided "AS IS" with no warranty of any kind,
+ * express or implied, and with no claim as to its suitability for any
+ * purpose.
+ *
+ */
+
+#include <iostream>
+#include <vector>
+#include <cstring>
+
+#include <lemon/cplex.h>
+
+extern "C" {
+#include <ilcplex/cplex.h>
+}
+
+
+///\file
+///\brief Implementation of the LEMON-CPLEX lp solver interface.
+namespace lemon {
+
+ CplexEnv::LicenseError::LicenseError(int status) {
+ if (!CPXgeterrorstring(0, status, _message)) {
+ std::strcpy(_message, "Cplex unknown error");
+ }
+ }
+
+ CplexEnv::CplexEnv() {
+ int status;
+ _cnt = new int;
+ (*_cnt) = 1;
+ _env = CPXopenCPLEX(&status);
+ if (_env == 0) {
+ delete _cnt;
+ _cnt = 0;
+ throw LicenseError(status);
+ }
+ }
+
+ CplexEnv::CplexEnv(const CplexEnv& other) {
+ _env = other._env;
+ _cnt = other._cnt;
+ ++(*_cnt);
+ }
+
+ CplexEnv& CplexEnv::operator=(const CplexEnv& other) {
+ _env = other._env;
+ _cnt = other._cnt;
+ ++(*_cnt);
+ return *this;
+ }
+
+ CplexEnv::~CplexEnv() {
+ --(*_cnt);
+ if (*_cnt == 0) {
+ delete _cnt;
+ CPXcloseCPLEX(&_env);
+ }
+ }
+
+ CplexBase::CplexBase() : LpBase() {
+ int status;
+ _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
+ messageLevel(MESSAGE_NOTHING);
+ }
+
+ CplexBase::CplexBase(const CplexEnv& env)
+ : LpBase(), _env(env) {
+ int status;
+ _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
+ messageLevel(MESSAGE_NOTHING);
+ }
+
+ CplexBase::CplexBase(const CplexBase& cplex)
+ : LpBase() {
+ int status;
+ _prob = CPXcloneprob(cplexEnv(), cplex._prob, &status);
+ rows = cplex.rows;
+ cols = cplex.cols;
+ messageLevel(MESSAGE_NOTHING);
+ }
+
+ CplexBase::~CplexBase() {
+ CPXfreeprob(cplexEnv(),&_prob);
+ }
+
+ int CplexBase::_addCol() {
+ int i = CPXgetnumcols(cplexEnv(), _prob);
+ double lb = -INF, ub = INF;
+ CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0);
+ return i;
+ }
+
+
+ int CplexBase::_addRow() {
+ int i = CPXgetnumrows(cplexEnv(), _prob);
+ const double ub = INF;
+ const char s = 'L';
+ CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
+ return i;
+ }
+
+ int CplexBase::_addRow(Value lb, ExprIterator b,
+ ExprIterator e, Value ub) {
+ int i = CPXgetnumrows(cplexEnv(), _prob);
+ if (lb == -INF) {
+ const char s = 'L';
+ CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
+ } else if (ub == INF) {
+ const char s = 'G';
+ CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0);
+ } else if (lb == ub){
+ const char s = 'E';
+ CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0);
+ } else {
+ const char s = 'R';
+ double len = ub - lb;
+ CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0);
+ }
+
+ std::vector<int> indices;
+ std::vector<int> rowlist;
+ std::vector<Value> values;
+
+ for(ExprIterator it=b; it!=e; ++it) {
+ indices.push_back(it->first);
+ values.push_back(it->second);
+ rowlist.push_back(i);
+ }
+
+ CPXchgcoeflist(cplexEnv(), _prob, values.size(),
+ &rowlist.front(), &indices.front(), &values.front());
+
+ return i;
+ }
+
+ void CplexBase::_eraseCol(int i) {
+ CPXdelcols(cplexEnv(), _prob, i, i);
+ }
+
+ void CplexBase::_eraseRow(int i) {
+ CPXdelrows(cplexEnv(), _prob, i, i);
+ }
+
+ void CplexBase::_eraseColId(int i) {
+ cols.eraseIndex(i);
+ cols.shiftIndices(i);
+ }
+ void CplexBase::_eraseRowId(int i) {
+ rows.eraseIndex(i);
+ rows.shiftIndices(i);
+ }
+
+ void CplexBase::_getColName(int col, std::string &name) const {
+ int size;
+ CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col);
+ if (size == 0) {
+ name.clear();
+ return;
+ }
+
+ size *= -1;
+ std::vector<char> buf(size);
+ char *cname;
+ int tmp;
+ CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size,
+ &tmp, col, col);
+ name = cname;
+ }
+
+ void CplexBase::_setColName(int col, const std::string &name) {
+ char *cname;
+ cname = const_cast<char*>(name.c_str());
+ CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname);
+ }
+
+ int CplexBase::_colByName(const std::string& name) const {
+ int index;
+ if (CPXgetcolindex(cplexEnv(), _prob,
+ const_cast<char*>(name.c_str()), &index) == 0) {
+ return index;
+ }
+ return -1;
+ }
+
+ void CplexBase::_getRowName(int row, std::string &name) const {
+ int size;
+ CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row);
+ if (size == 0) {
+ name.clear();
+ return;
+ }
+
+ size *= -1;
+ std::vector<char> buf(size);
+ char *cname;
+ int tmp;
+ CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size,
+ &tmp, row, row);
+ name = cname;
+ }
+
+ void CplexBase::_setRowName(int row, const std::string &name) {
+ char *cname;
+ cname = const_cast<char*>(name.c_str());
+ CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname);
+ }
+
+ int CplexBase::_rowByName(const std::string& name) const {
+ int index;
+ if (CPXgetrowindex(cplexEnv(), _prob,
+ const_cast<char*>(name.c_str()), &index) == 0) {
+ return index;
+ }
+ return -1;
+ }
+
+ void CplexBase::_setRowCoeffs(int i, ExprIterator b,
+ ExprIterator e)
+ {
+ std::vector<int> indices;
+ std::vector<int> rowlist;
+ std::vector<Value> values;
+
+ for(ExprIterator it=b; it!=e; ++it) {
+ indices.push_back(it->first);
+ values.push_back(it->second);
+ rowlist.push_back(i);
+ }
+
+ CPXchgcoeflist(cplexEnv(), _prob, values.size(),
+ &rowlist.front(), &indices.front(), &values.front());
+ }
+
+ void CplexBase::_getRowCoeffs(int i, InsertIterator b) const {
+ int tmp1, tmp2, tmp3, length;
+ CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
+
+ length = -length;
+ std::vector<int> indices(length);
+ std::vector<double> values(length);
+
+ CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2,
+ &indices.front(), &values.front(),
+ length, &tmp3, i, i);
+
+ for (int i = 0; i < length; ++i) {
+ *b = std::make_pair(indices[i], values[i]);
+ ++b;
+ }
+ }
+
+ void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) {
+ std::vector<int> indices;
+ std::vector<int> collist;
+ std::vector<Value> values;
+
+ for(ExprIterator it=b; it!=e; ++it) {
+ indices.push_back(it->first);
+ values.push_back(it->second);
+ collist.push_back(i);
+ }
+
+ CPXchgcoeflist(cplexEnv(), _prob, values.size(),
+ &indices.front(), &collist.front(), &values.front());
+ }
+
+ void CplexBase::_getColCoeffs(int i, InsertIterator b) const {
+
+ int tmp1, tmp2, tmp3, length;
+ CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
+
+ length = -length;
+ std::vector<int> indices(length);
+ std::vector<double> values(length);
+
+ CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2,
+ &indices.front(), &values.front(),
+ length, &tmp3, i, i);
+
+ for (int i = 0; i < length; ++i) {
+ *b = std::make_pair(indices[i], values[i]);
+ ++b;
+ }
+
+ }
+
+ void CplexBase::_setCoeff(int row, int col, Value value) {
+ CPXchgcoef(cplexEnv(), _prob, row, col, value);
+ }
+
+ CplexBase::Value CplexBase::_getCoeff(int row, int col) const {
+ CplexBase::Value value;
+ CPXgetcoef(cplexEnv(), _prob, row, col, &value);
+ return value;
+ }
+
+ void CplexBase::_setColLowerBound(int i, Value value) {
+ const char s = 'L';
+ CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
+ }
+
+ CplexBase::Value CplexBase::_getColLowerBound(int i) const {
+ CplexBase::Value res;
+ CPXgetlb(cplexEnv(), _prob, &res, i, i);
+ return res <= -CPX_INFBOUND ? -INF : res;
+ }
+
+ void CplexBase::_setColUpperBound(int i, Value value)
+ {
+ const char s = 'U';
+ CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
+ }
+
+ CplexBase::Value CplexBase::_getColUpperBound(int i) const {
+ CplexBase::Value res;
+ CPXgetub(cplexEnv(), _prob, &res, i, i);
+ return res >= CPX_INFBOUND ? INF : res;
+ }
+
+ CplexBase::Value CplexBase::_getRowLowerBound(int i) const {
+ char s;
+ CPXgetsense(cplexEnv(), _prob, &s, i, i);
+ CplexBase::Value res;
+
+ switch (s) {
+ case 'G':
+ case 'R':
+ case 'E':
+ CPXgetrhs(cplexEnv(), _prob, &res, i, i);
+ return res <= -CPX_INFBOUND ? -INF : res;
+ default:
+ return -INF;
+ }
+ }
+
+ CplexBase::Value CplexBase::_getRowUpperBound(int i) const {
+ char s;
+ CPXgetsense(cplexEnv(), _prob, &s, i, i);
+ CplexBase::Value res;
+
+ switch (s) {
+ case 'L':
+ case 'E':
+ CPXgetrhs(cplexEnv(), _prob, &res, i, i);
+ return res >= CPX_INFBOUND ? INF : res;
+ case 'R':
+ CPXgetrhs(cplexEnv(), _prob, &res, i, i);
+ {
+ double rng;
+ CPXgetrngval(cplexEnv(), _prob, &rng, i, i);
+ res += rng;
+ }
+ return res >= CPX_INFBOUND ? INF : res;
+ default:
+ return INF;
+ }
+ }
+
+ //This is easier to implement
+ void CplexBase::_set_row_bounds(int i, Value lb, Value ub) {
+ if (lb == -INF) {
+ const char s = 'L';
+ CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
+ CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub);
+ } else if (ub == INF) {
+ const char s = 'G';
+ CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
+ CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
+ } else if (lb == ub){
+ const char s = 'E';
+ CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
+ CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
+ } else {
+ const char s = 'R';
+ CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
+ CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
+ double len = ub - lb;
+ CPXchgrngval(cplexEnv(), _prob, 1, &i, &len);
+ }
+ }
+
+ void CplexBase::_setRowLowerBound(int i, Value lb)
+ {
+ LEMON_ASSERT(lb != INF, "Invalid bound");
+ _set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i));
+ }
+
+ void CplexBase::_setRowUpperBound(int i, Value ub)
+ {
+
+ LEMON_ASSERT(ub != -INF, "Invalid bound");
+ _set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub);
+ }
+
+ void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e)
+ {
+ std::vector<int> indices;
+ std::vector<Value> values;
+ for(ExprIterator it=b; it!=e; ++it) {
+ indices.push_back(it->first);
+ values.push_back(it->second);
+ }
+ CPXchgobj(cplexEnv(), _prob, values.size(),
+ &indices.front(), &values.front());
+
+ }
+
+ void CplexBase::_getObjCoeffs(InsertIterator b) const
+ {
+ int num = CPXgetnumcols(cplexEnv(), _prob);
+ std::vector<Value> x(num);
+
+ CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1);
+ for (int i = 0; i < num; ++i) {
+ if (x[i] != 0.0) {
+ *b = std::make_pair(i, x[i]);
+ ++b;
+ }
+ }
+ }
+
+ void CplexBase::_setObjCoeff(int i, Value obj_coef)
+ {
+ CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef);
+ }
+
+ CplexBase::Value CplexBase::_getObjCoeff(int i) const
+ {
+ Value x;
+ CPXgetobj(cplexEnv(), _prob, &x, i, i);
+ return x;
+ }
+
+ void CplexBase::_setSense(CplexBase::Sense sense) {
+ switch (sense) {
+ case MIN:
+ CPXchgobjsen(cplexEnv(), _prob, CPX_MIN);
+ break;
+ case MAX:
+ CPXchgobjsen(cplexEnv(), _prob, CPX_MAX);
+ break;
+ }
+ }
+
+ CplexBase::Sense CplexBase::_getSense() const {
+ switch (CPXgetobjsen(cplexEnv(), _prob)) {
+ case CPX_MIN:
+ return MIN;
+ case CPX_MAX:
+ return MAX;
+ default:
+ LEMON_ASSERT(false, "Invalid sense");
+ return CplexBase::Sense();
+ }
+ }
+
+ void CplexBase::_clear() {
+ CPXfreeprob(cplexEnv(),&_prob);
+ int status;
+ _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
+ }
+
+ void CplexBase::_messageLevel(MessageLevel level) {
+ switch (level) {
+ case MESSAGE_NOTHING:
+ _message_enabled = false;
+ break;
+ case MESSAGE_ERROR:
+ case MESSAGE_WARNING:
+ case MESSAGE_NORMAL:
+ case MESSAGE_VERBOSE:
+ _message_enabled = true;
+ break;
+ }
+ }
+
+ void CplexBase::_applyMessageLevel() {
+ CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND,
+ _message_enabled ? CPX_ON : CPX_OFF);
+ }
+
+ void CplexBase::_write(std::string file, std::string format) const
+ {
+ if(format == "MPS" || format == "LP")
+ CPXwriteprob(cplexEnv(), cplexLp(), file.c_str(), format.c_str());
+ else if(format == "SOL")
+ CPXsolwrite(cplexEnv(), cplexLp(), file.c_str());
+ else throw UnsupportedFormatError(format);
+ }
+
+
+
+ // CplexLp members
+
+ CplexLp::CplexLp()
+ : LpBase(), LpSolver(), CplexBase() {}
+
+ CplexLp::CplexLp(const CplexEnv& env)
+ : LpBase(), LpSolver(), CplexBase(env) {}
+
+ CplexLp::CplexLp(const CplexLp& other)
+ : LpBase(), LpSolver(), CplexBase(other) {}
+
+ CplexLp::~CplexLp() {}
+
+ CplexLp* CplexLp::newSolver() const { return new CplexLp; }
+ CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); }
+
+ const char* CplexLp::_solverName() const { return "CplexLp"; }
+
+ void CplexLp::_clear_temporals() {
+ _col_status.clear();
+ _row_status.clear();
+ _primal_ray.clear();
+ _dual_ray.clear();
+ }
+
+ // The routine returns zero unless an error occurred during the
+ // optimization. Examples of errors include exhausting available
+ // memory (CPXERR_NO_MEMORY) or encountering invalid data in the
+ // CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a
+ // user-specified CPLEX limit, or proving the model infeasible or
+ // unbounded, are not considered errors. Note that a zero return
+ // value does not necessarily mean that a solution exists. Use query
+ // routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain
+ // further information about the status of the optimization.
+ CplexLp::SolveExitStatus CplexLp::convertStatus(int status) {
+#if CPX_VERSION >= 800
+ if (status == 0) {
+ switch (CPXgetstat(cplexEnv(), _prob)) {
+ case CPX_STAT_OPTIMAL:
+ case CPX_STAT_INFEASIBLE:
+ case CPX_STAT_UNBOUNDED:
+ return SOLVED;
+ default:
+ return UNSOLVED;
+ }
+ } else {
+ return UNSOLVED;
+ }
+#else
+ if (status == 0) {
+ //We want to exclude some cases
+ switch (CPXgetstat(cplexEnv(), _prob)) {
+ case CPX_OBJ_LIM:
+ case CPX_IT_LIM_FEAS:
+ case CPX_IT_LIM_INFEAS:
+ case CPX_TIME_LIM_FEAS:
+ case CPX_TIME_LIM_INFEAS:
+ return UNSOLVED;
+ default:
+ return SOLVED;
+ }
+ } else {
+ return UNSOLVED;
+ }
+#endif
+ }
+
+ CplexLp::SolveExitStatus CplexLp::_solve() {
+ _clear_temporals();
+ _applyMessageLevel();
+ return convertStatus(CPXlpopt(cplexEnv(), _prob));
+ }
+
+ CplexLp::SolveExitStatus CplexLp::solvePrimal() {
+ _clear_temporals();
+ _applyMessageLevel();
+ return convertStatus(CPXprimopt(cplexEnv(), _prob));
+ }
+
+ CplexLp::SolveExitStatus CplexLp::solveDual() {
+ _clear_temporals();
+ _applyMessageLevel();
+ return convertStatus(CPXdualopt(cplexEnv(), _prob));
+ }
+
+ CplexLp::SolveExitStatus CplexLp::solveBarrier() {
+ _clear_temporals();
+ _applyMessageLevel();
+ return convertStatus(CPXbaropt(cplexEnv(), _prob));
+ }
+
+ CplexLp::Value CplexLp::_getPrimal(int i) const {
+ Value x;
+ CPXgetx(cplexEnv(), _prob, &x, i, i);
+ return x;
+ }
+
+ CplexLp::Value CplexLp::_getDual(int i) const {
+ Value y;
+ CPXgetpi(cplexEnv(), _prob, &y, i, i);
+ return y;
+ }
+
+ CplexLp::Value CplexLp::_getPrimalValue() const {
+ Value objval;
+ CPXgetobjval(cplexEnv(), _prob, &objval);
+ return objval;
+ }
+
+ CplexLp::VarStatus CplexLp::_getColStatus(int i) const {
+ if (_col_status.empty()) {
+ _col_status.resize(CPXgetnumcols(cplexEnv(), _prob));
+ CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0);
+ }
+ switch (_col_status[i]) {
+ case CPX_BASIC:
+ return BASIC;
+ case CPX_FREE_SUPER:
+ return FREE;
+ case CPX_AT_LOWER:
+ return LOWER;
+ case CPX_AT_UPPER:
+ return UPPER;
+ default:
+ LEMON_ASSERT(false, "Wrong column status");
+ return CplexLp::VarStatus();
+ }
+ }
+
+ CplexLp::VarStatus CplexLp::_getRowStatus(int i) const {
+ if (_row_status.empty()) {
+ _row_status.resize(CPXgetnumrows(cplexEnv(), _prob));
+ CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front());
+ }
+ switch (_row_status[i]) {
+ case CPX_BASIC:
+ return BASIC;
+ case CPX_AT_LOWER:
+ {
+ char s;
+ CPXgetsense(cplexEnv(), _prob, &s, i, i);
+ return s != 'L' ? LOWER : UPPER;
+ }
+ case CPX_AT_UPPER:
+ return UPPER;
+ default:
+ LEMON_ASSERT(false, "Wrong row status");
+ return CplexLp::VarStatus();
+ }
+ }
+
+ CplexLp::Value CplexLp::_getPrimalRay(int i) const {
+ if (_primal_ray.empty()) {
+ _primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob));
+ CPXgetray(cplexEnv(), _prob, &_primal_ray.front());
+ }
+ return _primal_ray[i];
+ }
+
+ CplexLp::Value CplexLp::_getDualRay(int i) const {
+ if (_dual_ray.empty()) {
+
+ }
+ return _dual_ray[i];
+ }
+
+ // Cplex 7.0 status values
+ // This table lists the statuses, returned by the CPXgetstat()
+ // routine, for solutions to LP problems or mixed integer problems. If
+ // no solution exists, the return value is zero.
+
+ // For Simplex, Barrier
+ // 1 CPX_OPTIMAL
+ // Optimal solution found
+ // 2 CPX_INFEASIBLE
+ // Problem infeasible
+ // 3 CPX_UNBOUNDED
+ // Problem unbounded
+ // 4 CPX_OBJ_LIM
+ // Objective limit exceeded in Phase II
+ // 5 CPX_IT_LIM_FEAS
+ // Iteration limit exceeded in Phase II
+ // 6 CPX_IT_LIM_INFEAS
+ // Iteration limit exceeded in Phase I
+ // 7 CPX_TIME_LIM_FEAS
+ // Time limit exceeded in Phase II
+ // 8 CPX_TIME_LIM_INFEAS
+ // Time limit exceeded in Phase I
+ // 9 CPX_NUM_BEST_FEAS
+ // Problem non-optimal, singularities in Phase II
+ // 10 CPX_NUM_BEST_INFEAS
+ // Problem non-optimal, singularities in Phase I
+ // 11 CPX_OPTIMAL_INFEAS
+ // Optimal solution found, unscaled infeasibilities
+ // 12 CPX_ABORT_FEAS
+ // Aborted in Phase II
+ // 13 CPX_ABORT_INFEAS
+ // Aborted in Phase I
+ // 14 CPX_ABORT_DUAL_INFEAS
+ // Aborted in barrier, dual infeasible
+ // 15 CPX_ABORT_PRIM_INFEAS
+ // Aborted in barrier, primal infeasible
+ // 16 CPX_ABORT_PRIM_DUAL_INFEAS
+ // Aborted in barrier, primal and dual infeasible
+ // 17 CPX_ABORT_PRIM_DUAL_FEAS
+ // Aborted in barrier, primal and dual feasible
+ // 18 CPX_ABORT_CROSSOVER
+ // Aborted in crossover
+ // 19 CPX_INForUNBD
+ // Infeasible or unbounded
+ // 20 CPX_PIVOT
+ // User pivot used
+ //
+ // Pending return values
+ // ??case CPX_ABORT_DUAL_INFEAS
+ // ??case CPX_ABORT_CROSSOVER
+ // ??case CPX_INForUNBD
+ // ??case CPX_PIVOT
+
+ //Some more interesting stuff:
+
+ // CPX_PARAM_PROBMETHOD 1062 int LPMETHOD
+ // 0 Automatic
+ // 1 Primal Simplex
+ // 2 Dual Simplex
+ // 3 Network Simplex
+ // 4 Standard Barrier
+ // Default: 0
+ // Description: Method for linear optimization.
+ // Determines which algorithm is used when CPXlpopt() (or "optimize"
+ // in the Interactive Optimizer) is called. Currently the behavior of
+ // the "Automatic" setting is that CPLEX simply invokes the dual
+ // simplex method, but this capability may be expanded in the future
+ // so that CPLEX chooses the method based on problem characteristics
+#if CPX_VERSION < 900
+ void statusSwitch(CPXENVptr cplexEnv(),int& stat){
+ int lpmethod;
+ CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod);
+ if (lpmethod==2){
+ if (stat==CPX_UNBOUNDED){
+ stat=CPX_INFEASIBLE;
+ }
+ else{
+ if (stat==CPX_INFEASIBLE)
+ stat=CPX_UNBOUNDED;
+ }
+ }
+ }
+#else
+ void statusSwitch(CPXENVptr,int&){}
+#endif
+
+ CplexLp::ProblemType CplexLp::_getPrimalType() const {
+ // Unboundedness not treated well: the following is from cplex 9.0 doc
+ // About Unboundedness
+
+ // The treatment of models that are unbounded involves a few
+ // subtleties. Specifically, a declaration of unboundedness means that
+ // ILOG CPLEX has determined that the model has an unbounded
+ // ray. Given any feasible solution x with objective z, a multiple of
+ // the unbounded ray can be added to x to give a feasible solution
+ // with objective z-1 (or z+1 for maximization models). Thus, if a
+ // feasible solution exists, then the optimal objective is
+ // unbounded. Note that ILOG CPLEX has not necessarily concluded that
+ // a feasible solution exists. Users can call the routine CPXsolninfo
+ // to determine whether ILOG CPLEX has also concluded that the model
+ // has a feasible solution.
+
+ int stat = CPXgetstat(cplexEnv(), _prob);
+#if CPX_VERSION >= 800
+ switch (stat)
+ {
+ case CPX_STAT_OPTIMAL:
+ return OPTIMAL;
+ case CPX_STAT_UNBOUNDED:
+ return UNBOUNDED;
+ case CPX_STAT_INFEASIBLE:
+ return INFEASIBLE;
+ default:
+ return UNDEFINED;
+ }
+#else
+ statusSwitch(cplexEnv(),stat);
+ //CPXgetstat(cplexEnv(), _prob);
+ switch (stat) {
+ case 0:
+ return UNDEFINED; //Undefined
+ case CPX_OPTIMAL://Optimal
+ return OPTIMAL;
+ case CPX_UNBOUNDED://Unbounded
+ return INFEASIBLE;//In case of dual simplex
+ //return UNBOUNDED;
+ case CPX_INFEASIBLE://Infeasible
+ // case CPX_IT_LIM_INFEAS:
+ // case CPX_TIME_LIM_INFEAS:
+ // case CPX_NUM_BEST_INFEAS:
+ // case CPX_OPTIMAL_INFEAS:
+ // case CPX_ABORT_INFEAS:
+ // case CPX_ABORT_PRIM_INFEAS:
+ // case CPX_ABORT_PRIM_DUAL_INFEAS:
+ return UNBOUNDED;//In case of dual simplex
+ //return INFEASIBLE;
+ // case CPX_OBJ_LIM:
+ // case CPX_IT_LIM_FEAS:
+ // case CPX_TIME_LIM_FEAS:
+ // case CPX_NUM_BEST_FEAS:
+ // case CPX_ABORT_FEAS:
+ // case CPX_ABORT_PRIM_DUAL_FEAS:
+ // return FEASIBLE;
+ default:
+ return UNDEFINED; //Everything else comes here
+ //FIXME error
+ }
+#endif
+ }
+
+ // Cplex 9.0 status values
+ // CPX_STAT_ABORT_DUAL_OBJ_LIM
+ // CPX_STAT_ABORT_IT_LIM
+ // CPX_STAT_ABORT_OBJ_LIM
+ // CPX_STAT_ABORT_PRIM_OBJ_LIM
+ // CPX_STAT_ABORT_TIME_LIM
+ // CPX_STAT_ABORT_USER
+ // CPX_STAT_FEASIBLE_RELAXED
+ // CPX_STAT_INFEASIBLE
+ // CPX_STAT_INForUNBD
+ // CPX_STAT_NUM_BEST
+ // CPX_STAT_OPTIMAL
+ // CPX_STAT_OPTIMAL_FACE_UNBOUNDED
+ // CPX_STAT_OPTIMAL_INFEAS
+ // CPX_STAT_OPTIMAL_RELAXED
+ // CPX_STAT_UNBOUNDED
+
+ CplexLp::ProblemType CplexLp::_getDualType() const {
+ int stat = CPXgetstat(cplexEnv(), _prob);
+#if CPX_VERSION >= 800
+ switch (stat) {
+ case CPX_STAT_OPTIMAL:
+ return OPTIMAL;
+ case CPX_STAT_UNBOUNDED:
+ return INFEASIBLE;
+ default:
+ return UNDEFINED;
+ }
+#else
+ statusSwitch(cplexEnv(),stat);
+ switch (stat) {
+ case 0:
+ return UNDEFINED; //Undefined
+ case CPX_OPTIMAL://Optimal
+ return OPTIMAL;
+ case CPX_UNBOUNDED:
+ return INFEASIBLE;
+ default:
+ return UNDEFINED; //Everything else comes here
+ //FIXME error
+ }
+#endif
+ }
+
+ // CplexMip members
+
+ CplexMip::CplexMip()
+ : LpBase(), MipSolver(), CplexBase() {
+
+#if CPX_VERSION < 800
+ CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MIP);
+#else
+ CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MILP);
+#endif
+ }
+
+ CplexMip::CplexMip(const CplexEnv& env)
+ : LpBase(), MipSolver(), CplexBase(env) {
+
+#if CPX_VERSION < 800
+ CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MIP);
+#else
+ CPXchgprobtype(cplexEnv(), _prob, CPXPROB_MILP);
+#endif
+
+ }
+
+ CplexMip::CplexMip(const CplexMip& other)
+ : LpBase(), MipSolver(), CplexBase(other) {}
+
+ CplexMip::~CplexMip() {}
+
+ CplexMip* CplexMip::newSolver() const { return new CplexMip; }
+ CplexMip* CplexMip::cloneSolver() const {return new CplexMip(*this); }
+
+ const char* CplexMip::_solverName() const { return "CplexMip"; }
+
+ void CplexMip::_setColType(int i, CplexMip::ColTypes col_type) {
+
+ // Note If a variable is to be changed to binary, a call to CPXchgbds
+ // should also be made to change the bounds to 0 and 1.
+
+ switch (col_type){
+ case INTEGER: {
+ const char t = 'I';
+ CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
+ } break;
+ case REAL: {
+ const char t = 'C';
+ CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
+ } break;
+ default:
+ break;
+ }
+ }
+
+ CplexMip::ColTypes CplexMip::_getColType(int i) const {
+ char t;
+ CPXgetctype (cplexEnv(), _prob, &t, i, i);
+ switch (t) {
+ case 'I':
+ return INTEGER;
+ case 'C':
+ return REAL;
+ default:
+ LEMON_ASSERT(false, "Invalid column type");
+ return ColTypes();
+ }
+
+ }
+
+ CplexMip::SolveExitStatus CplexMip::_solve() {
+ int status;
+ _applyMessageLevel();
+ status = CPXmipopt (cplexEnv(), _prob);
+ if (status==0)
+ return SOLVED;
+ else
+ return UNSOLVED;
+
+ }
+
+
+ CplexMip::ProblemType CplexMip::_getType() const {
+
+ int stat = CPXgetstat(cplexEnv(), _prob);
+
+ //Fortunately, MIP statuses did not change for cplex 8.0
+ switch (stat) {
+ case CPXMIP_OPTIMAL:
+ // Optimal integer solution has been found.
+ case CPXMIP_OPTIMAL_TOL:
+ // Optimal soluton with the tolerance defined by epgap or epagap has
+ // been found.
+ return OPTIMAL;
+ //This also exists in later issues
+ // case CPXMIP_UNBOUNDED:
+ //return UNBOUNDED;
+ case CPXMIP_INFEASIBLE:
+ return INFEASIBLE;
+ default:
+ return UNDEFINED;
+ }
+ //Unboundedness not treated well: the following is from cplex 9.0 doc
+ // About Unboundedness
+
+ // The treatment of models that are unbounded involves a few
+ // subtleties. Specifically, a declaration of unboundedness means that
+ // ILOG CPLEX has determined that the model has an unbounded
+ // ray. Given any feasible solution x with objective z, a multiple of
+ // the unbounded ray can be added to x to give a feasible solution
+ // with objective z-1 (or z+1 for maximization models). Thus, if a
+ // feasible solution exists, then the optimal objective is
+ // unbounded. Note that ILOG CPLEX has not necessarily concluded that
+ // a feasible solution exists. Users can call the routine CPXsolninfo
+ // to determine whether ILOG CPLEX has also concluded that the model
+ // has a feasible solution.
+ }
+
+ CplexMip::Value CplexMip::_getSol(int i) const {
+ Value x;
+ CPXgetmipx(cplexEnv(), _prob, &x, i, i);
+ return x;
+ }
+
+ CplexMip::Value CplexMip::_getSolValue() const {
+ Value objval;
+ CPXgetmipobjval(cplexEnv(), _prob, &objval);
+ return objval;
+ }
+
+} //namespace lemon
+